# **MODELO RECEPTOR**



Atacar o problema de identificação da contribuição da fonte em ordem inversa, partindo da concentração do contaminante no receptor e localizando as fontes responsáveis pela emissão.

# **MODELO RECEPTOR**

- Tipo de Modelo Receptor mais utilizado:
  - Balanço de Massa Químico CMB
- •O que é?

Método que combina as características físicas e químicas dos contaminantes medidas nas fontes e nos receptores...

Objetivo

Quantificar as contribuições das fontes num receptor.

### Exemplo:

Em uma região rural as medições de PM10 indicam uma concentração é 32  $\mu g/m^3$  na atmosfera, sendo que deste total 2.58  $\mu g/m^3$  de Si e 3.084  $\mu g/m^3$  de Fe.

| Espécie | Concentração (µg/m3) |
|---------|----------------------|
| Si      | 2.58                 |
| Fe      | 3.084                |

Existem 2 fontes principais de PM10 na região, uma usina termoelétrica e emissões devido ao solo. A análise das emissões indica um teor de 20% de Si e 3,2% de Fe na composição do solo, enquanto as emissões da usina termoelétrica possuem um teor de 1% de Si e 15% de Fe.

Se considerarmos que  $C_S$  e  $C_T$  são as contribuições (em  $\mu g/m^3$ ) do solo e da usina termoelétrica,para as concentrações de PM10 na região tem-se:

$$PM10_{TOTAL} = C_S + C_T$$

Assim, desconsiderando as emissões por outras fontes não identificadas tem-se,no receptor:

Contribuição do solo Contribuição da termoelétrica 
$$Si_{TOTAL} = Si_{SOLO} + Si_{TERMOELÉTRICA}$$
  $Fe_{TOTAL} = Fe_{SOLO} + Fe_{TERMOELÉTRICA}$ 

Supondo que não ocorrem reações químicas durante a trajetória dos contaminantes entre a fonte e o receptor, então, as proporções de Si e Fe são constantes e iguais aos valores iniciais guando atingem o receptor. Portanto:

$$Si_{SOLO} = 0.2 \times C_S$$

$$Si_{TERMOELÉTRICA} = 0.01 \times C_{T}$$

$$Fe_{SOLO} = 0.032 \times C_S$$

$$Si_{SOLO} = 0.2 \times C_S$$
  $Si_{TERMOELÉTRICA} = 0.01 \times C_T$   $Fe_{SOLO} = 0.032 \times C_S$   $Fe_{TERMOELÉTRICA} = 0.15 \times C_T$ 

Logo, tem-se:

$$\begin{cases} Si_{TOTAL} = 0.2 \times C_S + 0.01 \times C_T \\ Fe_{TOTAL} = 0.032 \times C_S + 0.15 \times C_T \end{cases}$$

ou:

$$2,58 = 0,2 \times C_s + 0,01 \times C_T$$
$$3,84 = 0.032 \times C_s + 0.15 \times C_T$$

De maneira mais geral, é possível generalizar este procedimento como resolver as matrizes:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{C}$$

onde A é uma matriz m x n (m linhas por n colunas), que indica o teor de cada espécie (m espécies) nas emissões de cada fonte (n fontes). E a matriz  $\mathbf{C}$  é a concentração de cada espécie no receptor. Enquanto que x é a contribuição de cada fonte.

Para este caso tem-se: 
$$\mathbf{A}.\mathbf{x} = \mathbf{C}$$
 onde 
$$\mathbf{A} = \begin{bmatrix} 0.2 & 0.01 \\ 0.032 & 0.15 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 2.58 \\ 3.84 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} C_S \\ C_T \end{bmatrix}$$
 logo 
$$\mathbf{C}_S = 37.5 \% \text{ e } \mathbf{C}_T = 56.2 \%$$
 
$$\mathbf{C}_S = 12 \ \mu\text{g/m}^3 \text{ e } \mathbf{C}_T = 18 \ \mu\text{g/m}^3$$
 
$$\begin{bmatrix} 0.2 & 0.01 \\ 0.032 & 0.15 \end{bmatrix} \begin{bmatrix} C_S \\ C_T \end{bmatrix} = \begin{bmatrix} 2.58 \\ 3.84 \end{bmatrix}$$

Balanço de Massa Químico - CMB

### **Fontes**

- Solo: 200 mg de Si / grama de amostra;

32 mg de Fe /grama de amostra.

- Termelétrica: 10 mg de Si / grama de amostra;

150 mg de Fe / grama de amostra.

| Solução                   | $\mathbf{A} = \begin{pmatrix} 0.2 & 0.01 \\ 0.032 & 0.15 \end{pmatrix}$              |
|---------------------------|--------------------------------------------------------------------------------------|
| C = A.x                   | $\mathbf{A}^{-1} = \begin{pmatrix} 5.054 & -0.3369 \\ -1.078 & 6.7385 \end{pmatrix}$ |
| $A^{-1}.C = (A^{-1}.A).x$ | •                                                                                    |
| $A^{-1}.C = I.x$          | $\mathbf{C} = \begin{pmatrix} 2.58 \\ 3.084 \end{pmatrix}$                           |
| $A^{-1}.C = x$            | (12.0)                                                                               |
|                           | $\mathbf{x} = \begin{pmatrix} 12.0 \\ 18.0 \end{pmatrix}$                            |

#### Balanço de Massa Químico - CMB

(Incluindo as incertezas nas medições de concentração) Miller et al. (1972).

A metodologia apresentada anteriormente pode ser sumarizada pela expressão abaixo: i = 1, 2, 3, ..., n

$$c_i = a_{i1} \times s_1 + \underbrace{a_{i2} \times s_2}_{\text{fonte 2}} + \underbrace{a_{i3} \times s_3}_{\text{fonte 3}} + \underbrace{a_{i4} \times s_4}_{\text{fonte 4}} + \dots + \underbrace{a_{im} \times s_m}_{\text{fonte } m}$$

contribuição da fonte 1 para a concentração da espécie *i* no receptor

percentual da espécie i na fonte 1

concentração da espécie i

#### Balanço de Massa Químico - CMB

Ou simplesmente:

$$c_i = \sum_{j=1}^m a_{ij} \times s_j$$
  $i = 1, 2, 3, ... n$ 

contribuição de cada fonte *j* para a concentração da espécie *i* no receptor

percentual da espécie i em cada fonte j

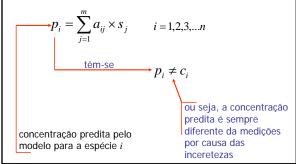
concentração da espécie i

Todavia, a concentração da espécie química i não é um valor exato, e possui incertezas ligadas ao processo de medição. Assim, a concentração da espécie química i no receptor pode ser expressa como um valor real ( $\widetilde{c}_i$ ) mais um erro de medição ( $e_i$ ) associado às incertezas do experimento:

$$c_i = \tilde{c}_i + e_i$$
  $i = 1, 2, 3, ...n$ 

Estes erros podem ser caracterizados pelo desvio padrão de suas distribuições  $(\sigma_i)$ .

Portanto, as concentrações preditas pelo modelo  $(p_i)$ , não serão exatamente iguais às medições no receptor  $(c_i)$  no receptor.



Então, deseja-se encontrar os valores de  $p_i$  que sejam mais próximos de  $\mathbf{c}_i$ . Ou seja, gostaríamos de minimizar a "distância" entre  $\mathbf{c}_i$  e  $p_i$  para cada uma das espécies. Esta "distância" pode ser definida como:

$$d^2 = \sum_{i=1}^{n} (c_i - p_i)^2$$
 concentração predita pelo modelo para a espécie  $i$  concentração da espécie  $i$  medida no receptor

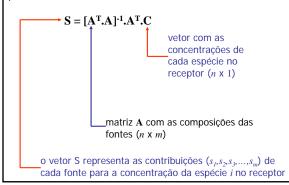
Isto é, queremos encontrar os valores  $s_1, s_2, s_3, ..., s_m$  que representem as contribuições da cada fonte (1, 2, 3, ..., m), de maneira que a diferença entre  $p_i$ e  $c_i$  seja a menor possível.

Por causa das incertezas nos valores de  $c_i$ , nenhuma escolha dos valores das contribuições  $(s_1, s_2, s_3, ..., s_m)$  fará com que  $c_i$  seja "exatamente igual" a  $p_i$ . Então, temos que resolver um problema de minimização de d:

$$d^{2} = \sum_{i=1}^{n} (c_{i} - p_{i})^{2}$$

Felizmente, este é um problema comum em diversos ramos da matemática, e já existem soluções analíticas calculadas para ele.

A forma mais comum de solução é o método dos mínimos quadrados:



$$S = [A^{T}.A]^{-1}.A^{T}.C$$

onde:

 $\mathbf{A} \to n \times m$ , matriz com as composições das fontes,

 $\mathbf{A}^{\mathrm{T}} 
ightarrow m$  x n, matriz transposta de  $\mathbf{A}$ ,

 $\mathbf{C} \to n$  x 1, vetor com medidas de concentrações das n espécies no receptor.

Na prática, ainda é necessário permitir que nossa equação seja válida para o caso das incertezas em cada uma das medições de concentração seja diferente. Assim, a expressão final assume a forma:

$$d^{2} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} (c_{i} - p_{i})^{2}$$

incerteza da medição de - concentração da espécie *i* no receptor

A solução para este problema é dada na forma:  $\mathbf{S} = [\mathbf{A}^{\mathsf{T}}.\mathbf{W}.\mathbf{A}]^{-1}.\mathbf{A}^{\mathsf{T}}.\mathbf{W}.\mathbf{C}$  vetor com as concentrações de cada espécie no receptor  $(n \times 1)$  matriz diagonal com os fatores de ponderação, onde  $w_{ii} = 1/\sigma_{i}^{2}$   $(n \times n)$  matriz  $\mathbf{A}$  com as composições das fontes  $(n \times m)$  o vetor  $\mathbf{S}$  representa as contribuições  $(s_{I}, s_{2}, s_{3}, ..., s_{m})$  de

cada fonte para a concentração da espécie i no receptor

A solução para este problema é dada na forma:

$$S = [A^{T}.W.A]^{-1}.A^{T}.W.C$$

onde:

 $\mathbf{A} \rightarrow n \ \mathbf{x} \ m$ , matriz com as composições das fontes,

 $A^T \rightarrow m \times n$ , matriz transposta de A,

 $\mathbf{W} \to n \ \mathbf{x} \ n$ , matriz diagonal com os fatores de ponderação, onde  $w_{ii} = 1/\sigma_f^2$ .

 $\mathbf{C} \to n$  x 1, vetor com medidas de concentrações das n espécies no receptor.

## Exemplo

Em uma região rural as medições de PM10 indicam uma concentração é 32  $\mu g/m^3$  na atmosfera, sendo que deste total 2.58  $\mu g/m^3$  de Si e 3.084  $\mu g/m^3$  de Fe.

| Espécie | Concentração [µg/m³] |
|---------|----------------------|
| Si      | 2.58 ± 0.2           |
| Fe.     | $3.084 \pm 0.1$      |

#### **Fontes**

- Solo: 200 mg de Si / grama de amostra;

32 mg de Fe / grama de amostra.

- Termelétrica: 10 mg de Si / grama de amostra;

150 mg de Fe / grama de amostra.

|         |       | Fonte             | ( 0.2     | 0.01 |
|---------|-------|-------------------|-----------|------|
| Espécie | Solo  | Termelétrica      | A _       | 0.01 |
| Si      | 0.2   | Termelétrica 0.01 | -   0.032 | 0.15 |
| Fe      | 0.032 |                   | `         | ,    |

A solução para este problema é dada na forma:

$$\mathbf{S} = [\mathbf{A}^{\mathsf{T}}.\mathbf{W}.\mathbf{A}]^{-1}.\mathbf{A}^{\mathsf{T}}.\mathbf{W}.\mathbf{C} \leftarrow \mathbf{C} = \begin{bmatrix} 2,58 \\ 3,084 \end{bmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0.2 & 0.01 \\ 0.032 & 0.15 \end{pmatrix}$$

$$\mathbf{W} = \begin{pmatrix} 1/\sigma_{Si}^{2} & 0 \\ 0 & 1/\sigma_{Fe}^{2} \end{pmatrix} = \begin{pmatrix} 1/0,2^{2} & 0 \\ 0 & 1/0,1^{2} \end{pmatrix}$$

$$S = \begin{bmatrix} C_{SOLO} \\ C_{SOLO} \\ C_{SOLO} \end{bmatrix} \rightarrow S = \begin{bmatrix} 11 \\ 22 \end{bmatrix}$$

### Balanço de Massa Químico - CMB

## Receptor

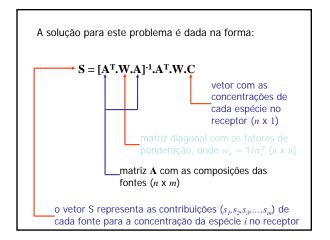
(1988 a 1989) do Aerossol em Fresno, Califórnia (μg/m³).

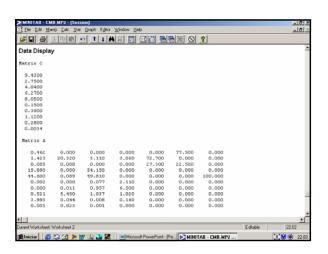
Composição Anual

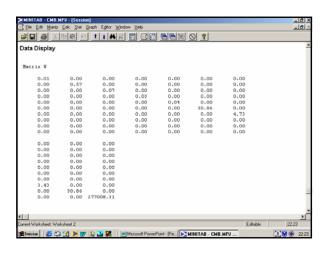
| Espécie | PM2,5            |
|---------|------------------|
| NO3     | 9.43 +- 11.43    |
| SO4     | 2.75 +- 1.32     |
| NH4     | 4.04 +- 3.89     |
| EC      | 6.27 +- 5.68     |
| OC      | 8.05 +- 5.31     |
| Al      | 0.15 +- 0.18     |
| Si      | 0.38 +- 0.46     |
| S       | 1.12 +- 0.54     |
| K       | 0.28 +- 0.18     |
| V       | 0.0034 +- 0.0019 |

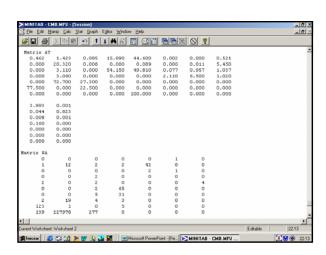
Fonte: resumido de Chow et al., citados por Seinfeld et al., (1998).

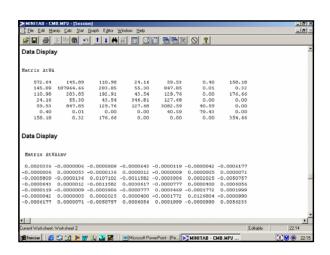
| Fontes                                                               | <u> </u>      |         |           |             |               |         |      |
|----------------------------------------------------------------------|---------------|---------|-----------|-------------|---------------|---------|------|
| Perfis d                                                             | las fontes (% | da mass | sa emitid | a) para a ( | Califórnia Ce | entral. |      |
|                                                                      | 1             |         | 1         |             |               | 1       |      |
|                                                                      | Queimadas     | Oleo    | Veículo   | Calcáreo    | (NH4)2SO4     | NH4NO3  | OC   |
| Espécie                                                              |               | cru     |           |             |               |         | sec. |
| NO3                                                                  | 0.462         | 0       | 0         | 0           | 0             | 77.5    | (    |
| SO4                                                                  | 1.423         | 20.32   | 3.11      | 3.06        | 72.7          | 0       | (    |
| NH4                                                                  | 0.0852        | 0.0076  | 0         | 0           | 27.3          | 22.5    | (    |
| EC                                                                   | 15.89         | 0       | 54.15     | 0           | 0             | 0       | (    |
| OC                                                                   | 44.6          | 0.0894  | 49.81     | 0           | 0             | 0       | 100  |
| Al                                                                   | 0.0019        | 0       | 0.077     | 2.11        | 0             | 0       | (    |
| Si                                                                   | 0             | 0.011   | 0.957     | 6.5         | 0             | 0       | (    |
| S                                                                    | 0.521         | 5.45    | 1.037     | 1.02        | 0             | 0       | (    |
| K                                                                    | 3.993         | 0.044   | 0.008     | 0.16        | 0             | 0       | (    |
| V                                                                    | 0.0005        | 0.823   | 0.001     | 0           | 0             | 0       | (    |
| Fonte: resumido de Chow et al., citados por Seinfeld et al., (1998). |               |         |           |             |               |         |      |

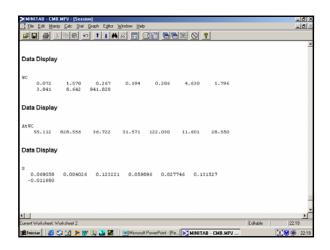




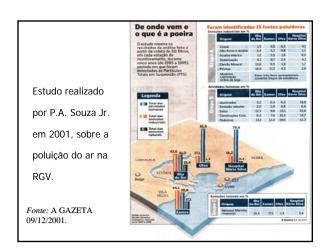








|                       | FONTE              | PM2,5 |
|-----------------------|--------------------|-------|
| <u>Resultado</u>      | Geológica          | -     |
| Contribuiçãos         | Veículo            | 12,32 |
| Contribuições         | Queimadas          | 6,90  |
| médias anuais das     | Óleo cru           | 0,40  |
| fontes (µg/m³) para   | Sulfato de amônia  | 2,77  |
| ionics (μg/iii ) para | Nitrato de amônia  | 13,15 |
| PM2,5 em Fresno –     | Aerossóis marinhos | -     |
| Califórnia.           | OC                 | -1,17 |
| odinorna.             | Calcáreo           | 5,99  |
|                       | Massa calculada    | 41,53 |
|                       | Massa medida       | 49,30 |



Na prática, ainda é necessário permitir que nossa equação seja válida para o caso de existirem incertezas em cada uma das medições de concentração no receptor e na fonte. Neste caso, a solução pode ser calculada de maneira analoga, utilizando a formulação proposta por Hopke (1985):



 $S = [A^{T}.V.A]^{-1}.A^{T}.V.C$ 

Matriz da inceretezas, onde cada componente  $v_{ij}$  é calculado como:

$$v_{ij} = \sigma_i^2 + \sum_{i=1}^m \sigma_{a_{ij}}^2 S_j^2$$

Hopke, P.K., (1985) Receptor Modelling in Environmental Chemistry, Wiley, New York.

## Suposições do CMB:

- As composições das fontes de emissão são copentes.
- As espécies incluídas não são livas.
- Todas as fontes que contribuer receptor devem ser incluídas
- O número de fontes e espécies.
- As incertezas das medidas sao e normalmente distribuídas.