MODELO GAUSSIANO

Modelos Gaussianos

- Popularizaram-se na década de 70.
- Empregados atualmente pela maioria dos órgãos reguladores para estudo de dispersão atmosférica (inclusive a EPA)
- Hipótese de turbulência homogênea e estacionária, fluxo de emissão constante, contaminante quimicamente estável e topografia constante.

 Hipótese de turbulência homogênea e estacionária, fluxo de emissão constante, contaminante quimicamente estável e topografia constante.

$$u\frac{\partial C}{\partial x} = K_{yy}\frac{\partial^2 C}{\partial y^2} + K_{zz}\frac{\partial^2 C}{\partial z^2} + q\delta(x_0)\delta(y_0)\delta(z_0)$$

Sujeito às seguintes condições de contorno:

C(0, y, z) = 0 $C(x, y, z) = 0 \rightarrow y, z = \pm \infty$

concentração nas direções y e z [m]

Formulações para os valores de Sigma

Parâmetros I	para dispersão em ambientes urbanos (o Formulação de Briggs	distâncias de 100 a 10000 m)
Classe de Pasquill	$\sigma_{y}[m]$	$\sigma_z[m]$
A-B	$0.32x (1 + 0.0004x)^{-0.5}$	$0.24x (1 + 0.001x)^{0.5}$
C	$0.22x(1 + 0.0004x)^{-0.5}$	0.20x
D	$0.16x(1 + 0.0004x)^{-0.5}$	$0.14x (1 + 0.0003x)^{-0.5}$
E-F Parâmetros	0.11x (1 + 0.0004x) ^{-0.5} para dispersão em ambientes rurais (di Formulação de Briggs	$0.08x (1 + 0.0015x)^{-0.0015x}$
E-F Parâmetros Classe de Pasquill	$0.11x (1 + 0.0004x)^{-0.5}$ para dispersão em ambientes rurais (di Formulação de Briggs $\sigma_y[m]$	$0.08x (1 + 0.0015x)^{-0.3}$ istâncias de 100 a 10000 m) $\sigma_z[m]$
E-F Parâmetros Classe de Pasquill A	$0.11x (1 + 0.0004x)^{-0.5}$ para dispersão em ambientes rurais (di Formulação de Briggs $\sigma_y[m]$ $0.22x (1 + 0.0001x)^{-0.5}$	$0.08 \times (1 + 0.0015 \text{x})^{-0.3}$ istâncias de 100 a 10000 m) $\sigma_z[m]$ 0.20 x
E-F Parâmetros Classe de Pasquill A B	$0.11x (1 + 0.0004x)^{-0.5}$ para dispersão em ambientes rurais (di Formulação de Briggs $\sigma_y[m]$ $0.22x (1 + 0.0001x)^{-0.5}$ $0.16x (1 + 0.0001x)^{-0.5}$	$0.08x (1 + 0.0015x)^{-0.2}$ istâncias de 100 a 10000 m) $\sigma_z[m]$ 0.20 x 0.12 x
E-F Parâmetros Classe de Pasquill A B C	$\frac{0.11x (1 + 0.0004x)^{-0.5}}{\text{para dispersão em ambientes rurais (di Formulação de Briggs}}$ $\sigma_y[m]$ $\frac{0.22x (1 + 0.0001x)^{-0.5}}{0.11x (1 + 0.0001x)^{-0.5}}$ $0.11x (1 + 0.0001x)^{-0.5}$	$\sigma_z[m] = \frac{0.08 \times (1 + 0.0015 \times)^{-0.5}}{\sigma_z[m]}$ istâncias de 100 a 10000 m) $\sigma_z[m] = \frac{0.20 \times 0.12 \times 0.002 \times (1 + 0.0002 \times)^{-0.5}}{0.0002 \times (1 + 0.0002 \times)^{-0.5}}$
E-F Parâmetros Classe de Pasquill A B C D	$\frac{0.11x (1 + 0.0004x)^{-0.5}}{\text{Formulação de Briggs}}$ $\sigma_y[m]$ $\frac{0.22x (1 + 0.0001x)^{-0.5}}{0.16x (1 + 0.0001x)^{-0.5}}$ $0.11x (1 + 0.0001x)^{-0.5}$	$\sigma_z[m] = \frac{\sigma_z[m]}{\sigma_z[m]}$ istâncias de 100 a 10000 m) $\sigma_z[m]$ 0.20 x 0.12 x 0.08 x (1 + 0.0002x)^{-0.5}
E-F Parâmetros Classe de Pasquill A B C D E	$\begin{array}{c} 0.11x \ (1 + 0.0004x)^{-0.5} \\ \\ \hline \\ para dispersão em ambientes rurais (di Formulação de Briggs \\ \\ \hline \\ \sigma_y[m] \\ \hline \\ 0.22x \ (1 + 0.0001x)^{-0.5} \\ 0.16x \ (1 + 0.0001x)^{-0.5} \\ 0.08x \ (1 + 0.0001x)^{-0.5} \\ 0.08x \ (1 + 0.0001x)^{-0.5} \\ \end{array}$	$\sigma_{z}[m]$ 0.08x (1 + 0.0015x) ^{-0.3} istâncias de 100 a 10000 m) $\sigma_{z}[m]$ 0.20 x 0.12 x 0.08 x (1 + 0.0002x) ^{-0.5} 0.06 x (1 + 0.0015x) ^{-0.5} 0.03 x (1 + 0.0015x) ⁻¹

Class	ses de E	stabilida	ade de F	Pasquill		
		Radiação solar ((1)	Cobertura	noturna	
Velocidade do vento a		(W/m ²)		de nuve	ns (cn)	
10 m do solo (m/s)	I>700	$350{\leq}I{\leq}700$	I<350	$cn \geq 4/8$	cn ≤3/8	
< 2	А	A – B	В	_	_	
2 – 3	A - B	в	С	E	F	
3 - 5	в	$\mathbf{B} - \mathbf{C}$	С	D	E	
5 - 6	С	C - D	D	D	D	
> 6	С	D	D	D	D	
Onde:	A: extremamen	nte instável	D: neutra			
	B: moderadam	ente instável	E: fracamente e	stável		
	C: fracamente	instável	F: moderadame			

PARÂMETROS DE DISPERSÃO

Formulação de Turner

$$\sigma_{y}(x) = \exp\left[I_{y}+J_{y}.\ln x + K_{y}(\ln x)^{2}\right]$$
$$\sigma_{z}(x) = \exp\left[I_{z}+J_{z}.\ln x + K_{z}(\ln x)^{2}\right]$$

Os parâmetros $I_y, J_y, K_y, I_z, J_z e K_z$ são constantes empíricas propostas por Turner, possuindo valores definidos a partir das Classes de Estabilidade de Pasquill.

PARÂMETROS DE DISPERSÃO

· Parâmetros de Turner para o cálculo dos coeficientes de dispersão da pluma gaussiana.

Classes de estabilidade	Α	В	С	D	Е	F
l _y	-1,104	-1,634	-2,054	-2,555	-2,754	-3,143
Jy	0,987	1,035	1,023	1,042	1,011	1,015
Κ _y	-0,0076	-0,0096	-0,0076	-0,0087	-0,0064	-0,007
lz	4,679	-1,999	-2,341	-2,341	-3,783	-4,49
Jz	-1,717	0,875	0,947	0,947	1,173	1,402
Kz	0,277	0,0136	-0,002	-0,0316	-0,045	-0,054

PARÂMETROS DE DISPERSÃO

• Formulação de ASME (American Meteorological Society) e Klug

Os valores de $\sigma_z \ e \ \sigma_y$ são determinadas empiricamente а

partir da expressão da lei da potência.

Γ

$$\sigma_{y} = R_{y} x^{r_{y}} \quad \sigma_{z} = R_{z} x^{r_{z}}$$

 $R_y,\,R_z,\,r_y$ e r_z dependem da Classe de Estabilidade de Paquill e da média do tempo.

PARÂMETROS DE DISPERSÃO								
A formulação de ASME e Klug é caracterizada pela tabela abaixo.								
					Stabili	ty Class		
Source	Averaging Time (min)	Coefficient	A	В	с	D	E	F
ASME	60	R _r	0.40	0.36		0.32		0.31
			0.91	0.86		0.78		0.71
		R.	0.40	0.33		0.22		0.06
			0.91	0.86		0.78		0.71
Klug	10	$R_{\rm r}$	0.469	0.306	0.230	0.219	0.237	0.273
			0.903	0.885	0.855	0.764	0.691	0.594
		R _z	0.017	0.072	0.076	0.140	0.217	0.262
		<i>r</i> :	1.380	1.021	0.879	0.727	0.610	0.500

ALTURA EFETIVA DE LANCAMENTO

 Para o cálculo da altura efetiva de lançamento é necessário conhecer o valor da variação da altura (Δh) em termos das propriedades dos gases e do estado da atmosfera, onde sua caracterização é um problema complexo. As mais detalhadas formulações envolvem a soluções de equações de conservação de massa, quantidade de movimento linear e energia. As formulações mais usuais empregam correlações empíricas para determinar a elevação da pluma.

ALTURA EFETIVA DE LANCAMENTO

 Uma formulação alternativa e mais simples foi introduzida por Morton (citado Seinfeld) e trabalhada por Briggs (citado por Seinfeld). Os autores propõem que a variação da altura obedece a seguinte forma:

$$\Delta h = \frac{Ex^{b}}{u_{h}^{a}}$$

Onde:

- x distância entre a fonte e o ponto de medição da concentração
- u_h- velocidade do vento na altura h
- E parâmetro de Briggs, com formulações diferentes para as condições de estabilidade atmosféricas (tabela)
- a e b constantes também dependentes da estabilidade atmosférica (tabela)

Estabilidade atmosférica	a	b	E	Condição de aplicação
Neutra e instável	1	2/3	1,6 F ^{1/3}	F < 55 e x < 49F ⁵
Neutra e instável	1	0	21,4 F ^{3/4}	$F < 55 \ e \ x \ge 49 F^{5/6}$
Neutra e instável	1	2/3	1,6 F ^{1,8}	$F \ge 55 \ e \ x < 119 F^2$
Neutra e instável	1	0	38,7 F ³⁰	$F \ge 55 \ e \ x \ge 119 F^2$
Estável	1/3	0	$2,4(F/S_2)^{1\beta}$	-
Estável	0	0	5F ¹⁴ S ₂ ^{-3/8}	-
Estável	1	2/3	1,6 F ^{1,8}	-

ALTURA EFETIVA DE LANCAMENTO

$$F = \frac{gd^2 V_S(T_s - T_a)}{4T_s} \qquad S_2 = \frac{(g \partial \theta / \partial z 0)}{T_a}$$

Onde:

- F parâmetro de fluxo de empuxo
- S parâmetro de quantidade de movimento inicial
- g aceleração da gravidade
- *d* diâmetro da chaminé
- Vs velocidade de saída dos gases da chaminé [m/s]
- Ts temperatura absoluta dos gases na saída da chaminé [K]
- Ta temperatura absoluta atmosférica ambiente [K]
- u_h velocidade do vento na altura da chaminé [m/s]
- $(\partial \theta | \partial z)$ gradiente de temperatura potencial: é a diferença entre o gradiente de temperatura ambiente $\partial T / \partial z$ e o gradiente vertical adiabático Γ

ALTURA EFETIVA DE LANCAMENTO

Valores típicos do gradiente de temperatura potencial para as classes de estabilidade de Pasquill.

Classes de estabilidade	Gradiente de temperatura
	potencial $\partial \theta_a / \partial z$, °C/100m
A (extremamente instável)	< -0,9
B(moderadamente instável)	-0,9 a 0,7
C(fracamente instável)	-0,7 a -0,5
D (neutra)	-0,5a 0,5
E (fracamente estável)	0,5 a 2,5
F (moderadamente estável)	> 2,5

Altura efetiva de lançamento

 $\Delta h = d \cdot \left(\frac{V_s}{\overline{u}}\right)^{1.4} \left[1 + \left(\frac{Ts - Tar}{Ts}\right)\right]$

Δh - variação da altura de lançamento, baseada na quantidade de movimento e no empuxo térmico [m]

d - diâmetro da chaminé [m]

Vs - velocidade de saída dos gases [m/s]

 velocidade média do vento na direção do escoamento medida no topo da chaminé [m/s]

Ts - temperatura dos gases na saída da chaminé [K]

Tar - temperatura do ar atmosférico nas imediações da chaminé [K]

Algoritmo para o uso do modelo Gaussiano

Algoritmo para o uso do modelo Gaussiano

- 1 Determinar as coordenadas cartesianas da fonte e do receptor;
- 2 Determinar as características da fonte emissora;
- 3 Verificar qual a classe de estabilidade atmosférica, baseando-se nas condições meteorológicas;
- 4 Calcular a velocidade do vento na altura do topo da chaminé;
- 5 Calcular a altura efetiva de lançamento;
- 6 Determinar o valor dos parâmetros σ_y e $\sigma_{z'}$
- 7 Calcular a concentração de contaminante no receptor.

Exemplo de estudo de impacto ambiental usando o modelo gaussiano

Exercício de Aprendizagem

Determine a concentração de SO_x no receptor causada por cada uma das fontes de emissão descritas na tabela da página seguinte. Sobre a região da Grande Vitória.

Apresente os resultados em forma geo-referenciada.

Fonte	Coordenada UTM X (m)	Coordenada UTM Y (m)	Altura da fonte h (m)	Vazão de gases na fonte Q (m ³ /s)	Temperatura do gás na saída da fonte T (K)	Vazão mássica lançada de SO ₂ Om (g/s)	Diâmetro da fonte na saída do gás D (m)
FON A1	369430	7757930	59	207.4	450	14,086	6.0
FON A2	369475	7757900	65	129.3	350	21.128	3.5
FON A3	369470	7757920	59	230.6	450	31,500	5.7
FON A4	369470	7757930	65	157.8	350	47.250	3.5
FON A5	369460	7757910	59	267.9	460	66.706	5.0
FON A6	369460	7757910	61	130.4	340	100.060	3.5
FON A7	369380	7757780	59	236.5	460	36.606	5.0
FON A8	369355	7757900	60	155.1	350	54.908	3.5
FON A9	370190	7757470	50	339.1	460	136.457	5.7
FON A10	370270	7757340	53	191.8	370	204.686	3.6
FON A11	370260	7757500	50	412.6	440	121.954	5.7
FON A12	370280	7757345	53	203.9	390	182.921	3.6
FON B1	371460	7767104	64	2.1	470	5.133	0.8
FON B2	371400	7767150	42	3.8	470	2.112	1.2
FON C1	371135	7761095	186	75.5	470	156.217	7.2
FON C2	371300	7760980	186	51.5	470	22,553	7.2
FON C3	371185	7760745	106	406.0	430	114.288	6.3
FON C4	370450	7761200	101	195.3	550	33.612	5.5
FON C5	370690	7761410	86	467.8	450	45.046	4.9
FON C6	370397	7763006	56	162.0	870	26.880	2.0
FON C7	370700	7761730	66	37.7	440	1.279	3.0
FON C8	370690	7761715	66	38.6	430	1.516	3.0

Aperfeiçoamentos

Modelo Gaussiano

 O modelo gaussiano, possui ainda formulações específicas para fontes instantâneas, de área, volume ou linha (fontes móveis), que podem ser combinadas para adaptar-se 'a fontes de geometria complexa.

Ampliando a aplicabilidade do modelo Gaussiano

- Presença de obstáculos —
- · Deposição seca
- Deposição úmida
- Reações químicas
- Topografia

Presença de obstáculos

- No estudo da dispersão de poluentes, a questão da determinação dos efeitos da presença de obstáculos é de grande importância;
 - Ambientes urbanos;
 - Ambientes industriais;
- · A modelagem matemática é uma importante ferramenta;
- Dentre os diversos aborgagens, a modelagem gaussiana é amplamente utilizada;
 - Necessidade de adaptar a modelagem gaussiana a situações diferentes para as quais ela foi concebida

Modificações do mod. gaussiano

- Presença de obstáculos Efeito de abaixamento da pluma: devido à perturbação do escoamento devido ao prédio (building downwash) e à chaminé (stack tip downwash), formulação de Briggs (1974):
 - Stack tip downwash ocorrerá sempre que a velocidade da emissão for menor ou igual a 1,5 vezes a velocidade do vento na altura da chaminé.

$$h'_{s} = h_{s} + 2d_{s} \left[\frac{v_{s}}{u_{s}} - 1.5 \right]$$

Onde:

- h_s' é a altura da pluma devido ao downwash;
 h_s é a altura da chaminé;
- n_s e a attura da chaminé;
 d_s é o diâmetro interno da chaminé;
- v_s é a velocidade de lançamento dos gases da chaminé;
- $-u_s$ é a velocidade do vento medida na altura da chaminé.

Modificações do mod. gaussiano

- Building downwash:

 Se a altura da pluma calculado no passo anterior estiver abaixo da altura do obstáculo:

 $h'' = h' + 1,5 \cdot \xi_b$

• Onde:

- h'' é a altura da pluma corrigida para efeitos do obstáculo e da chaminé;
- h' é a altura da pluma corrigida para efeito da chaminé;
- ξ_{b} é a menor dimensão entre altura e largura do obstáculo

Modificações do mod. gaussiano

- Building downwash:
 - Se h" > 0,5 ξ_b , a pluma permanece elevada:
 - Se h" < 0,5 ξ_b , a pluma será capturada pela zona de recirculação do prédio considera-se a pluma como originada de uma fonte ao nível do solo.
- Empuxo témico:
 - Calcula-se a elevação da pluma devido ao empuxo térmico, Δh e entãp a altura efetiva da pluma, h_e, será:

Modificações do mod. gaussiano

- Presença de obstáculos, método 1:
 - Fonte virtual: Turner (1969) sugere o emprego de uma fonte virtual para representar a influência da esteira do obstáculo, empregando os parâmetros de dispersão σ_{yo} e σ_{zo} .
 - $\sigma_{vo} \approx$ W/4,3 e $\sigma_{zo} \approx$ H/2,15 (para prédios com alta relação L/H)
 - σ_{vo}≈ 2W/4,3 e σ_{zo}≈ 2H/2,15 (para prédios com baixa relação L/H),
 - Onde L = largura do prédio, H = altura do prédio e W = largura do prédio.
 - + A localização da fonte virtual é encontrada fazendo-se $\sigma_y(x_{y_0})$ = $\sigma_{y_0}~e~\sigma_z(x_{z_0})$ = σ_{z_0}
 - A aplicação do modelo gaussiano é feita utilizando-se σ_y=σ_y(x+x_{y0}) e σ_z=σ_z(x+x_{x0}), onde x é a distância entre o receptor e a face posterior do obstáculo

Modificações do mod. gaussiano
• Presença de obstáculos, método 2, (Gifford, 1960),
atribuído a Fuquay:
• a diluição do efluente será proporcional ao produto da
velocidade do vento e a área projetada do prédio, de forma
que a formulação do modelo gaussiano ficaria da seguinte
forma (para fonte ao nível do solo):

$$\overline{C}(x, y, z) = \frac{Q}{(\pi \sigma_y \sigma_z + cA_p)\overline{u}}$$

- Onde c assume valores entre 0,5 e 4

Г

Modificações do mod. gaussiano

- Presença de obstáculos, método 3, (Gifford, 1968), • atribuído a Davidson:
 - Introdução dos "parâmetros de difusão total" Σ_y e Σ_z :
 - + $\Sigma_y = [\sigma_y^2 + cA_p/\pi]^{1/2} e \Sigma_z = [\sigma_z^2 + cA_p/\pi]^{1/2}$
 - Estes parâmetros são utilizados na formulação do modelo gaussiano no lugar de σ_y e $\sigma_z;$
 - C é o mesmo parâmetro usado no método 2.

Modificações do mod. gaussiano

Presença de obstáculos, método 4, (Huber e Snyder, 1976), "expressões dos sigmas melhoradas":

- Para x/H entre 3 e 10:
 σ_y = 0.7(W/2) + 0.067 (x-3H);
 σ_z = 0.7H + 0.067 (x-3H);
 Onde W é a largura do obstáculo e H a altura;
- Para x/H superior a 10, usa-se um modelo com fonte virtual, de forma que: • $\sigma_y = \sigma_y (x + X_{y0})$ • $\sigma_z = \sigma_z (x + X_{z0})$

 - Onde a localização da fonte virtual é encontrada fazendo-se:
 - $σ_y'(10H) ≈0,7(w/2) + 0,5h = σ_y(x + x_{y0});$

 - $\sigma_z(10H) ≈ 1,2h = \sigma_z(x + x_{z0});$ Para x medido a partir da face posterior do obstáculo

Deposição úmida

$$C(x, y, z, t) = C(x, y, z) \exp(-\lambda t)$$

onde:

C(x,y,z,t) - concentração variando com o tempo de duração da chuva

C(x,y,z) - concentração na posição x,y,z calculada pelo modelo Gaussiano

t - tempo de duração da chuva

 λ - coeficiente de precipitação, que varia entre 0.4 x 10⁻⁵ e 3x10⁻³ com valor médio de 1.5x10⁻⁴. É função de:

diâmetro das gotas

características físicas e químicas de particulados e/ou gases
 quantidade de chuva

Reações químicas

$$Q' = A(1 - e^{-\alpha x}).Q$$

onde:

- Q é a quantidade de contaminante lançada pela fonte de emissão [g/s]
- A , α são constantes da reação química envolvendo o contaminante em estudo.
- x representa a distância do receptor à fonte [m]

Um conceito sugerido por SHEPPARD (1956), a partir dos experimentos de SNYDER (1985), é que o escoamento e a dispersão de poluentes atmosféricos em terreno complexo são desenvolvidas em duas camadas, onde:

✓ <u>Na camada inferior</u> o escoamento permanece na horizontal;
 ✓ <u>Na camada superior</u> o escoamento tende a ascender sobre o terreno.

Estas camadas são conceitualmente distintas pela divisão da linha de corrente (Hc), e será apresentada a seguir.

O conceito das duas camadas é utilizado em alguns modelos, onde o valor da concentração em um terreno complexo está associado a dois estados extremos da pluma, sendo eles:

 <u>Estado da pluma na horizontal</u>, onde o escoamento é forçado a passar sobre o terreno complexo;

✓ Estado da pluma seguindo o terreno, onde a pluma segue o terreno verticalmente.

A figura a seguir apresenta um esquema relativo aos dois conceitos de estado.

O peso relativo dos dois estados depende do grau da estabilidade atmosférica, da velocidade do vento e da altura da pluma relativa ao terreno.

<u>Em condições estáveis</u> a pluma horizontal é predominante;

✓ <u>Em condições neutras e instáveis</u> a pluma transportada seguindo o terreno é predominante.

A concentração do poluente com a presença de um terreno complexo é estimada, tal que:

$$C_T(x_r, y_r, z_r) = f \cdot C_{c,s}(x_r, y_r, z_r) + (1 - f)C_{c,s}(x_r, y_r, z_p)$$

$$\begin{split} C_T(x_r,y_r,z_r) &= f.C_{c,s}(x_r,y_r,z_r) + (1-f)C_{c,s}(x_r,y_r,z_p) \\ C_T(x_r,y_r,z_r) & \text{Concentração total} \\ C_{c,s}(x_r,y_r,z_r) & \text{Concentração para o estado da pluma na horizontal} \\ C_{c,s}(x_r,y_r,z_p) & \text{Concentração para o estado da pluma seguindo o terreno} \\ f & \text{Função peso do estado da pluma} \\ (x_r,y_r,z_r) & \text{Coordenadas do receptor} \\ z_p = z_r - z_t & \text{Altura do receptor em relação ao terreno;} \\ z_t & \text{Altura do terreno onde está receptor} \end{split}$$

٦

A função peso do estado da pluma (f) é dada por:

$$f = 0.5(1 + \phi_p)$$

A função peso do estado da pluma é encontrado a partir da divisão da linha de corrente (*Hc*), que é calculada como:

$$1/2 \cdot u^2 \{H_c\} = \int_{H_c}^{h_c} N^2 (h_c - z) dz$$
$$N = \left[\frac{g}{\theta} \frac{\partial \theta}{\partial z}\right]^{\frac{1}{2}} - \mathbf{N} \text{ é a freqüência de Brunt-Vaisala}$$

A fração da massa da pluma abaixo de Hc é computada por: $\varphi_{p} = \frac{\int_{0}^{H_{c}} C_{s} \{x_{r}, y_{r}, z_{r}\} dz}{\int_{0}^{\infty} C_{s} \{x_{r}, y_{r}, z_{r}\} dz} \quad \stackrel{-\mathbf{C}_{s} \{\mathbf{x}_{r}, \mathbf{y}_{r}, \mathbf{z}_{r}\} \text{ é a concentração}}{\text{na ausência de elevações.}}$ A função peso do estado da pluma (f) é dada por: $f = \mathbf{0} \cdot \mathbf{5} (\mathbf{1} + \mathbf{\phi}_{p})$ Quando a pluma estiver inteiramente abaixo de Hc: $\varphi_{p} = \mathbf{1} \text{ e } f = \mathbf{0}$ Quando a pluma estiver inteiramente acima de Hc: $\varphi_{p} = \mathbf{0} \text{ e } f = \mathbf{0}, \mathbf{5}$

A forma geral da expressão da concentração, considerando apenas o terreno plano, pode ser escrita da seguinte forma:

$$C\{x, y, z\} = \left(Q/\overline{u}\right) P_{\mathcal{V}}\{y; x\} P_{\mathcal{W}}\{z; x\}$$

 $\mathbf{Pv} \in \mathbf{Pw}$ são funções densidade de probabilidade que descrevem a distribuição lateral e vertical da concentração, respectivamente.

✓ Turbulência Vertical (σ_w) A Turbulência Vertical ou Variância Vertical da Velocidade, é baseada na soma da Porção Convectiva mais a Porção Mecânica. $\sigma_{wT}^2 = \sigma_{wc}^2 + \sigma_{wm}^2$ Para a Porção Convectiva: $\sigma_{wc}^2 = 1.6 \left(\frac{z}{z_w}\right)^{2/3} \cdot w_*^2$ for $z \le 0.1 z_w$ $\sigma_{wc}^2 = 0.35 w_*^2 \exp \left[-\frac{6(z - z_w)}{z_w}\right]$ for $z > z_w$

✓ Turbulência Vertical (σ_w)

A <u>Porção Mecânica da Turbulência Vertical</u> é baseada na soma da Porção Mecânica na Camada Limite mais a Porção Mecânica acima da Camada Limite (Camada Residual)

$$\sigma_{wm}^2 = \sigma_{wml}^2 + \sigma_{wmr}^2$$

Para a Porção Mecânica da Turbulência Vertical na Camada Limite :

$$\sigma_{uml} = 1.3u_* \qquad for \ z = 0 - \text{Panofsky et al. (1977)}$$

$$\sigma_{uml} = 1.3u_* \left(1 - \frac{z}{z_i}\right)^{V_2} for \ z < z_i$$

$$\sigma_{uml} = 0.0 \qquad for \ z \ge z_i$$
Brost et al. (1982)

✓ Turbulência Vertical (σ_w)

Para a Porção Mecânica da Turbulência Vertical acima da Camada Limite (Camada Residual):

Quando a medida da $\mathcal{O}_{\textit{wmr}}$ não está disponível, ela será calculada por:

$$\sigma_{wmr} = 0.02 \ u\{z_i\}$$

✓ Turbulência Lateral (σ_v)

 $\sigma_{vm}^2 = \sigma_{vm}^2 \{z_{im}\}$

A Turbulência Lateral ou Variância Lateral da Velocidade, é baseada na soma da Porção Convectiva mais a Porção Mecânica.

for $z > z_{im}$

 $\sigma_{vT}^{2} = \sigma_{vc}^{2} + \sigma_{vm}^{2}$ <u>Para a Porção Mecânica:</u> $\sigma_{vm}^{2} = \left[\frac{\sigma_{vm}^{2} \{z_{im}\} - \sigma_{vo}^{2}}{z_{im}}\right] z + \sigma_{vo}^{2} \quad for \ z \le z_{im}$

 $\sigma_{\nu 0}^{2} = C u_{*}^{2}$ - Turbulência Lateral perto da superfície C constant between 3 and 5. Izumi (1971) and Hicks (1985)–C = 3.6

Turbulência Lateral (σ_v)

Para a Porção Convectiva:

$$\sigma_{w}^{2} = 0.35 w_{*}^{2}$$

$$w_* = \left(\frac{gHz_{ic}}{\rho c_p T_{ref}}\right)^{1/2}$$

g = aceleração da gravidade, m s⁻² c_p = calor específico p = massa específica, kg m⁻³ κ = constante de von Karman = 0.4 Tref = Temperatura ambiente Zi = altura da camada de inversão, m

H = fluso de calor, W/m²

✓ Comprimento de Monin-Obukhov (L) $L = -\frac{\rho c_p T_{ref} u_*^3}{\kappa g H}$ $g = aceleração da gravidade, m s^2$ $c_p = calor específico$ $\rho = massa específica, kg m^3$ $\kappa = constante de von Karman = 0.4$ Tref = Temperatura ambiente

Assumindo condições neutras (Ψ_m = 0) para determinar u^* inicial e jogando nas equações descritas acima, u^* e L são iterativamente recalculados até que o valor de L mude menos que 1%.

Ferramentas disponíveis

FORMULAÇÕES DO MODELO GAUSSIANO

Muitos programas de computador têm sido desenvolvidos incorporando extensões do Modelo Gaussiano básico. Entre os <u>aperfeiçoamentos</u> <u>alcançados</u> destacam-se formulações específicas para fontes instantâneas, de área, de volume ou linha (que podem ser combinadas para adaptar-se à fontes de geometria complexa), fontes múltiplas, reflexão em camada de inversão elevada, plumas com empuxo negativo, entre outras.

FORMULAÇÕES DO MODELO GAUSSIANO

- · Algumas formulações:
- <u>BLP</u>: Modelo Gaussiano desenhado para lidar com os problemas associados à plantas de produção de alumínio onde os efeitos da elevação da pluma são bastante importantes;
- <u>CALINE3</u>: Modelo Gaussiano desenvolvido para avaliar o impacto de estradas (fontes móveis) em relevo relativamente não complexo;

FORMULAÇÕES DO MODELO GAUSSIANO

- <u>CALPUFF</u>: Modelo não-estacionário (regime transiente) do tipo puff, recomendado para simular dispersão em relevos relativamente complexos onde a variação espacial e temporal dos dados meteorológicos se torna importante, incluindo transformação e remoção de poluentes. Esse modelo também é indicado para estudos de dispersão em grande distâncias (dezenas a centenas de quilômetros);
- <u>CTDMPLUS</u>: Modelo Gaussiano usado para fontes pontuais e em quaisquer condições de estabilidade em relevos de topografia complexa;

FORMULAÇÕES DO MODELO GAUSSIANO

- >AERMOD-ISC3: Modelo Gaussiano que pode ser usado para determinar a concentração de poluentes associadas à diversas fontes em complexos industriais. Este modelo inclui: deposição seca e úmida, fontes pontuais, de linha, área e volume, incorpora os efeitos de elevação da pluma e um limitado ajuste ao relevo do terreno. Este é o principal modelo utilizado para Estudos de Impacto Ambiental da EPA;
- >OCD: Modelo Gaussiano desenvolvido para determinar o impacto de emissões off-shore a partir de fontes pontuais, de linha ou de área em regiões costeiras.

MODELO AERMOD

A principal diferença entre os Modelos ARMOD e ISC3 é:

Além do Modelo AERMOD conter um programa principal (AERMOD), ainda possui dois pré-processadores, o AERMET e o AERMAP.

	AERM Modelo de D	OD Dispersão.		
AERME Pré-processador n que envia ao AERI meteorológicas nece caracterizar dados d	<u>T</u> neteorológico MOD parâm. essários para la CLP.	Pré-proce que carao gera grao para o M AERMOD	AERMAP ssador de cteriza o te des de re odelo de D	terreno erreno e ceptores ispersão

PRÉ-PROCESSADOR AERMET

AERMET Seu principal propósito é calcular parâmetros da CLP para serem implementados no AERMOD.

Os parâmetros da CLP são calculados considerando as seguintes observações:

- Albedo;
- Razão de Bowen;
- Comprimento Aerodinâmico da Superfície;
- Observações Meteorológicas;
 - · Velocidade e Direção do Vento;
 - Temperatura Ambiente;
 - · Estabilidade Atmosférica;
 - Cobertura de Nuvem.

PRÉ-PROCESSADOR AERMET

A partir dessas observações, o algoritmo do ARMET calculada os seguintes <u>parâmetros da CLP</u>:

- Fluxos de Calor na Superfície (H);
- Velocidade de Fricção (u*);
- Comprimento de Monin-Obukhov (L);
- ✓ Escala de Temperatura Potencial (θ^*);
- Altura da Camada de Mistura (Zi);
- ✓ Escala de Velocidade Convectiva (w*).

PRÉ-PROCESSADOR AERMET

Os parâmetros da CLP são enviados pelo AERMET à interface do AERMOD, onde expressões de similaridade são usadas para computar <u>Perfis Verticais</u> de:

- Velocidade do Vento (u);
- ✓ Gradiente de Temperatura Potencial (dθ/dz);
- ✓ Temperatura Potencial (θ);
- ✓ Turbulência Vertical (σ_w);
- ✓ Turbulência Lateral (σ_v).

PRÉ-PROCESSADOR AERMAP

<u>AERMAP</u>

Pré-processador que usa em seu algoritmo dados da topografia da região de interesse (fornecidos pelo GTOPO 30).

Para cada receptor, o AERMAP passa as seguintes informações ao AERMOD:

- ✓ Local do Receptor (xr, yr, zr);
- Escala de Altura do terreno (hc);
- ✓ Altura Média acima do nível do mar (z_t).

Limitações do modelo Gaussiano

Limitações do modelo Gaussiano

- Não incorpora efeitos da mudança de direção e intensidade do vento
- Baseia-se em parâmetros empíricos que podem variar conforme as características da região (por exemplo: topografia, rugosidade do solo, proximidade do mar, etc)
- Considera a taxa de emissão de contaminante e a direção do vento constantes com o tempo.

Situações mais desvantajosas para o uso do modelo Gaussiano

- Condições altamente convectivas: turbulência nãohomogênea, não estacionária e não-uniforme, com grande variação espacial dos ventos (correntes convectivas ascendentes e descendentes)
- **Topografia complexa**: forte variação do campo de ventos na região
- Lançamentos próximos ao solo: efeitos de fricção do solo causam variação da velocidade com a altura e a turbulência é não-homogênea e não-uniforme.

