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Abstract While conceptual modeling is strongly related to
the final quality of the software product, conceptual modeling
itself remains a challenging activity. In particular, modelers
must ensure that conceptual models properly formalize their
intended conceptualization of a domain. This paper proposes
an approach to facilitate the validation process of conceptual
models defined in OntoUML by transforming these mod-
els into specifications in the logic-based language Alloy and
using its analyzer to generate instances of the model and
assertion counter-examples. By allowing the observation of
sequences of snapshots of model instances, the dynamics of
object creation, classification, association and destruction are
revealed. This confronts the modeler with the implications
of modeling choices and allows them to uncover mistakes or
gain confidence in the quality of conceptual models.
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1 Introduction

The practical relevance of thorough requirements analysis
is emphasized by evidence provided by the empirical soft-
ware engineering community, which states that it is much
cheaper to find and fix software problems during the require-
ments and design phase than after delivery [6]. In this con-
text, properly acquiring knowledge on a problem domain
prior to detailed design has justified several efforts in con-
ceptual modeling, which can be defined as “the activity of
formally describing some aspects of the physical and social
world around us for purposes of understanding and commu-
nication” [12]. In order to support such purposes, a formal
conceptual model must capture a modeler’s intention and
convey a precise message with unambiguous semantics. This
is particularly important if conceptual models are to be used
effectively as a basis for the construction of an information
system.

As argued in [8], the quality of a conceptual modeling lan-
guage can be assessed by considering the extent to which the
language supports the definition of models that capture the
modeler’s conceptualization of a domain. This concern has
justified the revision of a portion of UML into the OntoUML
conceptual modeling language. This revision enables model-
ers to make finer-grained distinctions between, among other
things, different types of classes according to the UFO foun-
dational ontology [8]. These ontological distinctions reflect,
in turn, different manners an object can be an instance of a
type. In particular, focusing on the different modal (temporal)
consequences these different modes of instantiation imply.

Regardless of the quality of the conceptual modeling lan-
guage employed, conceptual modeling itself remains a chal-
lenging activity, requiring additional methodological and tool
support for ensuring that the modeler’s intention is properly
reflected in the models.
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The development tool to aid the construction of OntoUML
conceptual models presented in [4] has given us so far the
opportunity to verify models for ontological well-formed-
ness, i.e., adherence to ontological consistency rules defined
at the language-level. While this guarantees some quality
for conceptual models by enforcing ontological consistency
via domain-independent syntactic rules, it does not serve to
increase the modeler’s confidence in the correct representa-
tion of the intended domain conceptualization, i.e., it does
not support modelers in answering the question “have we
built the right model for this particular domain?”.

This paper proposes an approach to facilitate the valida-
tion process of conceptual models defined in OntoUML by
transforming these models into specifications in the logic-
based language Alloy (a “lightweight formal method” [9])
and using its analyzer to generate instances of the model
and possibly produce assertion counter-examples. Validation
is defined here as “the process of determining the degree
to which a model is an accurate representation of the real-
world from the perspective of the intended uses of the model”
[17]. Our approach supports validation by allowing the obser-
vation of sequences of snapshots of model instances. We
argue that the visualization of instances confronts the mod-
eler with the implications of modeling choices. Should the
instances reveal inadmissible states-of-affairs (or sequences
thereof), the model may be analyzed to identify opportunities
for correction in an iterative validation approach. Moreover,
we believe that this can also be used as means to identify
missing or over restrictive domain rules.

In this article, we build on our earlier work in [5], in which
we have discussed the assessment of the modal aspects of
conceptual models. Here we focus on the issue of dynamic
classification, thus, we concentrate on illustrating sequences
of snapshots of model instances which reveal the dynamics
of object creation, classification, association and destruction.

The rest of the paper is organized as follows: Section 2
briefly describes OntoUML. Section 3 describes Alloy.
Section 4 presents our transformation rules from OntoUML
to Alloy. Section 5 presents instance generation and analy-
sis. Section 6 discusses related work and Sect. 7 brings final
conclusions.

2 OntoUML

Due to space limitations, we concentrate here on a frag-
ment of the Unified Foundation Ontology (UFO) [8], with a
specific focus on those distinctions that are spawned by
variations in meta-properties of a modal nature. UFO’s main
categories are depicted in Fig. 1 and are briefly discussed
in the remainder of this section by using a running example
depicted in Fig. 2. Since OntoUML is a modeling language
which metamodel is designed to be isomorphic to the UFO

Fig. 1 Excerpt of UFO taxonomy [8]

Fig. 2 Running example

ontology, the leaf ontological distinctions in Fig. 1 appear as
modeling primitives in the language (stereotyped classes and
relationships in Fig. 2).

2.1 Substances and moments

UFO is based on a fundamental distinction between Individu-
als and Universals (roughly instances and types, respectively)
and, within the category of individuals, it differentiates
between Substances and Moments. The distinction between
Substances and Moments is based on the formal notion of
existential dependence, a modal notion that can be briefly
defined as follows:

Definition 1 (existential dependence) an individual x is exis-
tentially dependent on another individual y iff, as a matter of
necessity, y must exist whenever x exists. In other words, in
every world w, if x exists in w then y must also exist in w.

Substances are existentially independent individuals, i.e.,
there is no Entity x disjoint from y that must exist whenever a
Substance y exists. Examples of Substances include ordinary
mesoscopic objects such as a Person or a Car. Conversely, a
Moment is an individual that can only exist in other individ-
uals, i.e., that is existentially dependent on other individuals.
Here, we concentrate on relational moments or relators (e.g.,
a covalent bond, an enrollment or a marriage).
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So, a Substantial Universal is a universal whose instances
are Substances (e.g., the universal Person or the universal
Apple). While, a Relator Universal is a universal whose
instances are individual relational moments (e.g., the partic-
ular enrollment connecting John and Organization0 in Fig. 4
is an instance of the universal Enrollment).

In addition, Kinds and Relators represent what is termed
an Ultimate Sortal Universal [8]. An Ultimate Sortal Univer-
sal is a universal that supplies a principle of identity which is
obeyed by its instances. A principle of identity is a principle
for which we can judge whether two individuals are the same
and which conditions an individual remain the same, i.e., it
supplies the conditions for univocal identification and per-
sistence of an individual [8]. For instance, in a given concep-
tualization, a principle of identity for Cars could be “having
the same chassis number”, hence, in that context, two cars
are the same iff they have the same chassis number and a car
c remains the same entity as long as it preserves that chassis
number, irrespective of other changes it could suffer. Every
individual of the conceptual model must instantiate one and
only one Ultimate Sortal Class supplying the principle of
identity it should obey [8]. Finally, all instances classified
under a Sortal Universal obey the same principle of identity.

2.2 Rigidity

We need to define some additional modal notions (rigid-
ity and non-rigidity) to be able to make further distinctions
within Object Universal.

Definition 2 (Rigidity) A universal U is rigid if for every
instance x of U, x is necessarily (in the modal sense) an
instance of U. In other words, if x instantiates U in a given
world w, then x must instantiate U in every world w� in which
x exists and that is accessible from w.

Non-rigidity is taken here to be simply the logical negation
of rigidity.

2.3 Sortal universals

Sortals, as previously mentioned, are sorts of universals that
carry principles of identity for their instances. Person, Car,
Dog and Student are examples of Sortal Universals.

Sortal Universals that are rigid are named Kinds and sub-
Kinds. These universals define a stable backbone, a taxon-
omy of rigid universals instantiated by a given substance
individual (the Kind being the Ultimate Substance Sortal for
objects).

Within the category of non-rigid sortal universals we have
a further distinction between Phases and Roles. Both Phases
and Roles are specializations of Kinds or subKinds. However,
they are differentiated w.r.t. their specialization conditions.
For the case of Phases, the specialization condition is always

an intrinsic one. For instance, in Fig. 2, a Child is a Person
within a certain age. For Roles, in contrast, their specializa-
tion condition is a relational one: a Student is a Person who
is enrolled in (has a study relation to) a School, etc. Formally
speaking, this distinction is based on a meta-property named
Relational Dependence:

Definition 3 (Relational Dependence) A type T is relation-
ally dependent on another type P via relation R iff in every
world w, for every instance x of T there is an instance y of P
in that world such that x and y are related via R in w.

Finally, as discussed in [8], Phases (in contrast to Roles) are
always defined in a partition set. For instance, in Fig. 2, the
universals Child, Teenager and Adult define a phase parti-
tion for the Kind Person. As consequence, we have that in an
each world w, every Person is either a Child, a Teenager or an
Adult in w and never more than one of these. In addition, if x
is a Child (Teenager, Adult) in w, there is always a possible
world w�, accessible from w, in which x will not be a Child,
in which case he will be either a Teenager or an Adult.

In summary, in the example of Fig. 2, these model dis-
tinctions (Definitions 2 and 3) are exemplified by contrast-
ing the (Kind) universal Person, the (Role) universal Student
and the (Phase) universal Teenager. Please note that, since
instances of non-rigid universals may change their types,
classifiers representing non-rigid universals are subject to
dynamic classification.

2.4 Mixin universals

Mixins are sorts of universals that do not carry a principle of
identity, instead they classify individuals that obey different
principles of identity (e.g., Agent in Fig. 2 which classifies
different kinds of entities such as Persons and Organizations).
Hence, mixins are types which provide properties to (char-
acterize) individuals which have already being individuated
by sortal-supplied principles.

Mixin Universals can also be refined under more specific
categories regarding rigidity. Rigid mixins are called Catego-
ries. We use the general term Mixin instead for mixins which
are not rigid.

2.5 Relator universals and relations

In order to represent the relation between Student and
Person, one should model Student as a role played by Person
in a certain context, where he is enrolled in a School. Analo-
gously, one should model School as a Role played by an Orga-
nization when providing educational services to a Student.
This context is materialized by the Material Relation study
(represented as the «material» stereotype in OntoUML),
which is in turn, derived from the existence of the Relator
Universal Enrollment («relator»). In other words, we can say
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that a particular student x studies at a particular school y iff
there is an Enrollment z that mediates x and y. This situation
is illustrated in Fig. 2. The formal relations of mediation in
this model represent the existential dependence of the relator
on its bearers [8].

2.6 Quality structures

In UML, “a data type is a type whose instances are identified
only by their value” [13]. Data types are used in OntoUML
to specify what is called a quality structure in [8]. In contrast
with individuals, “any instances of that data type with the
same value are considered to be the same instance” [13]. In
the example in Fig. 2, a data type is used to represent the
identifiers of enrollments.

3 Alloy

Alloy is defined as “a structural modeling language based
on first-order logic, for expressing complex structural con-
straints and behavior” [9]. The language is supported in a
constraint solver called “Alloy Analyzer” which provides
simulation and checking for an Alloy model.

A model in Alloy consists of logical constraints which are
captured in signature and fact declarations. When a model is
instantiated by the Alloy Analyzer, atoms are generated from
signatures respecting the logical constraints in the model. In
other words, a signature at the model level introduces a set
of atoms at the instance level.

Figure 3 shows an example of an elementary Alloy model,
which includes a Person signature. At the instance level,
“Person atoms” are generated by the Alloy analyzer. Other
signatures, such as “Organization” produce other kinds of
atoms. Figure 4 depicts a sequence of instance-level states,
each containing several atoms.

Signatures can include field declarations, which introduce
relations between signatures. There are no top-level relations
in Alloy; relations can only be declared as fields in signa-
ture declarations, e.g., in Fig. 3, signature Enrollment has a
field Student, which introduces a relation Enrollment→Per-
son. On every field or signature declaration, it is possible to
use a multiplicity keyword to restrict the cardinality of the
relation. The keywords are one, lone, some and set, which
restricts the image to one, one or zero, one or more and zero
or more elements, respectively. In Fig. 3, the field Student in
signature Enrollment uses the keyword “one”, which means
that for every Enrollment, there will be one and only one
Person associated to it via the student relation. Note that the
multiplicity keyword applies only in one direction. No con-
straint is implied on how many Enrollments a person may
relate to. Such restrictions may be added as signature facts
or as facts. Facts introduce constraints which are assumed to

Fig. 3 An Alloy model

be always true. Signature facts do the same but are implicitly
universally quantified over the signature’s set.

Signatures in Alloy can be used as a basis for the definition
of subsignatures. The subsignature mechanism corresponds
intuitively to the notion of specialization in conceptual mod-
eling; subsignatures inherit relations and constraints of upper
level signatures. For example, in Fig. 3, signatures Man and
Woman are subsignatures of the Person signature (which is
indicated by the keyword “in”). The sets introduced by these
signatures are subsets of the Person signature. A signature
that is not a subsignature is called a top-level signature. Each
atom generated by the Alloy Analyzer belongs to one and
only one top-level signature, although they can belong to
any number of subsignatures.

4 Transformation

Our approach is based on the transformation of OntoUML
models into Alloy models. The product of this transformation
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is an Alloy specification that can be fed into the Alloy Ana-
lyzer to generate a sequence of instance-level states which
are valid according to the language axioms. Throughout this
section we use a running example shown in Fig. 3. It corre-
sponds to the OntoUML model presented in Fig. 2.

4.1 Individuals and state transition representation

Individuals of the conceptual model are represented as Alloy
atoms. In the same way Alloy atoms belong to one and only
one top level signature, instances of an OntoUML conceptual
model belong to one and only one ultimate sortal class. Thus,
in our approach, each ultimate sortal class (i.e., each Kind
and each Relator) is transformed into an Alloy signature.
When the Alloy Analyzer generates atoms to find a suitable
instance of the Alloy Model, each generated atom represents
a unique individual of the conceptual model.

Since Alloy, in its latest version, has no built-in notion
of state transition, we reify this notion by declaring a State
signature, ordered with the native “util/ordering” library. By
associating individuals to State atoms, we are able to repre-
sent the dynamics of states of affairs in an ordered, linear and
discrete time representation.

To represent creation and/or destruction of individuals, a
field exists is declared in the state signature, with the pur-
pose of capturing which atoms exist in a given state. In other
words, an atom x exists in a state s iff relation s → x belongs
to exist. Further, in our view, the existence of an individual is
undivided in time, i.e., if an individual is destructed at some
point, it cannot exist in any subsequent states. This rule is
depicted in Fig. 3, line 28 (ˆ denotes transitive closure and
@ is used to prevent a field name from being expanded i.e to
refer to x’s particular “exist”field). We also constraint every
ultimate sortal atom to exist in some state, but omit such rule
due to space limits.

4.2 Class representation

In our approach, each class is represented as a set. An atom
x representing an individual is said to instantiate a given
class C if x belongs to the set that represents C. However,
since OntoUML allows dynamic classification for non-rigid
classes, we must represent classes differently according to
rigidity. Rigid classes are represented as simple atom sets,
while non-rigid classes are represented as fields of the state
signature. This way, rigid classification is state-independent
(as expected) and each state conveys information of the cur-
rent classification of atoms by non-rigid classifiers.

SubKinds (which are rigid classes) are represented as sub-
signatures, i.e., subsets of a signature set. When the Alloy
Analyzer populates the model with atoms, it arbitrarily
includes some of them in the possible subKind sets. Catego-
ries, on the other hand, are abstract classes whose extension

is equal to the sum of the extensions of the classes which
subsume it. Categories are thus represented as total func-
tions of the classes that subsume it, e.g., in Fig. 3 function
Agent defines a set of atoms that instantiate the Agent class,
namely, the union of Person and Organization sets.

All non-rigid classes, including roles, phases and mixins,
are represented as fields of the State signature, with sub-
tle differences in representation due to their different spe-
cialization conditions. This means that the transformation
for each of these classes must introduce different constraints
for the different fields. In particular, fields representing roles
are constrained such that every member must be a target
of the corresponding mediation relationship, reflecting the
relational dependence of roles. In turn, fields representing
mixins are constrained such that they are equal to the union
of all sets representing classes that subsume the mixin. This
is necessary since mixins are abstract classes and, similarly
to categories, cannot be instantiated directly.

Generalization sets (i.e., sets of generalization relations
forming a partition) in (Onto)UML are quite trivial to trans-
form. Disjointness is represented with the disj keyword,
either as a function in fact constraints, or for some special
cases, such as phase partitioning, in the classes’ declaration.
Completeness is represented by equating the general class
set to the union of the generalized classes’ sets. The general
approach is to apply these constraints in the State signature
facts, such as we have done in the case of Person phase par-
titions (Fig. 3, lines 29 and 30). Nevertheless, if the gener-
alization set connects rigid classes, its properties of can be
represented as a simple fact, such as in the case of the Man
and Woman partitions of Person (Fig. 3, line 05).

4.3 Associations

Similarly to non-rigid classes, associations are generically
represented as fields of the state signature, e.g., the material
relation study (Fig. 3, line 26), which is derived from the
Enrollment relator, as mentioned in Sect. 2.5.

The cardinality of a relation can be narrowed down with
the basic multiplicity keywords. Consider a relation A m→n
B, where m and n are multiplicity keywords and A and B are
sets. Such relation is constrained to map each member of A to
n members of B and to map m members of B to each member
of A. Again, since we only have four basic multiplicity key-
words (“one”, “lone”, “some”, “set” as discussed in Sect. 3),
this mechanism works only for defining the most common
cardinalities in conceptual modeling, namely 1, 0. . .1, 1. . .*
and *. Nevertheless, the cardinalities may be further nar-
rowed down by universal quantification of the relation and
the use of the # operator.

Mediations imply existential dependency and exist
throughout the extent of the relators’ existence. Due to this,
we can represent mediations as fields of the relator signature.
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5 An example

In this section we shall guide through some instances of the
model generated by the Alloy Analyzer from the specifica-
tion presented in Fig. 3. Figure 4 shows a sequence of states
generated by the Alloy Analyzer from the Alloy model shown
in Fig. 3, which was in turn obtained from automatic trans-
formation of the OntoUML model in Fig. 2. Each arrow
represents a relation and each box represents an individ-
ual, except for Integers, where each box represents a value.
Theme options have been applied to improve visualization,
such as projecting over the state signature, applying different
shading for Alive and Deceased phases, and hiding individ-
uals which do not exist in the currently visible state as well
as unused values. The individuals John and Mary represent
two distinct instances of Person.

Our method takes advantage of the Alloy Analyzer to offer
automatic instance generation, which confronts the modeler
with arbitrary model population respecting the constraints
in the Alloy specification. The visualization of individu-
als of the conceptual model, their behavior while migrating
between non-rigid classes and how they associate with other
individuals will either strengthen the modeler’s confidence
in the produced model, if faced with expected behavior, or
reveal characteristics which are not intended and can then be
corrected.

The first state reveals two Person atoms (John and Mary),
one Enrollment atom and one Organization atom. Mary is
a living (thus insurable) adult. John is a deceased (thus not
insurable) child and a Student; Organization0 is his school.
This raises the first question on the model: should deceased
persons be allowed to be Students? We are not advocating
there is a general ontological choice that should be counte-

Fig. 4 A sequence of states

nanced in all conceptualizations; simply that a choice must
be made and it should reflect the intended conceptualization.

In the second state, the study relationship between John
and Organization0 no longer holds. Thus, Enrollment0 is
destroyed, John is no longer a student and Organization0 is
no longer a School. Two things emerge as unusual in this
state transitioning: John came back to life and Mary turned
from an Adult to a Teenager, contradicting common sense
and, most likely, the modeller’s intention. This suggests that
some sort of control on the intrinsic reasons that cause phase
changes may be necessary to ensure that transitioning occurs
as intended. This is necessary since the OntoUML model
does not make explicit the phase transition conditions (and
thus from the perspective of the generated Alloy specifica-
tion, transitions are arbitrary).

In the last state transition, Mary disappears, i.e., is destruc-
ted. This brings up certain questions on the abstraction of the
domain. What is the semantics of the destruction of a sub-
stance individual? In this particular case, Mary’s destruction
should not be interpreted as her death since a Person’s death is
already modelled by a phase change. In addition, John skips
adolescence and becomes an Adult straight from Childhood.
This reinforces the need for controlling phase changes in the
model.

The questions that emerged through arbitrary instantia-
tion reflect modeling choices and missing domain-specific
constraints that affect deeply the semantics of the conceptual
model, and should be elucidated to guarantee that the model
corresponds to the intended conceptualization. If it does not,
constraints should be added, or the model should be corrected
to improve the fit between intended conceptualization and the
model.

Situations which are expected by the modeler and do not
emerge in random instance generation can be searched for
by the Alloy analyzer using logical constraints in the form
of predicates. Assertions can be used to validate rules that
are assumed to hold, as the Alloy Analyzer will try to find
counter-examples, instances of the model that contradict the
assertion. For example, let us consider the informal require-
ment that “within a school students should have a unique
enrollment id”. Is it safe to assume that the model complies
with this requirement? With the assertion shown in Fig. 5, we
check whether two different enrollment relationship always
have different enrollment numbers.

Running the Alloy analyzer will reveal a counter example,
shown in Fig. 6. We present only the state which violates the
constraint due to space restrictions (here John and Mary share
the same identifier). Labels starting with $ are used to identify
variables of the assertion. We may introduce the constraint
as a fact to ensure that generated enrollments cannot repeat
id numbers. Note that there are two possible interpretation
for the notion of “student” in the informal requirement. The
first interpretation focuses on the substantial individual that
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Fig. 5 Each id corresponds at most to one Enrollment

Fig. 6 A counter example to an assertion

plays the role. Under this interpretation, an id identifies a stu-
dent, thus, an id identifies a person. The second interpretation
focuses the facet of that person in that particular relationship
(a.k.a. qua-individual[8]). We have taken the second inter-
pretation and thus, quantify over the enrollments in Fig. 5.

Let us consider further the informal requirements that (i)
“students cannot be enrolled more than once in the same
school at one point in time” and that (ii) “some students
may be enrolled in the same school more than once in dif-
ferent points in time”. Figure 7 shows the assertion written
to check for (i) and a predicate to search for occurrences of
(ii). The predicate is of particular interest, since it specifies
a constraint that requires analysis beyond a single snapshot,
which is made possible by the reification of states.

Running the Alloy analyzer to verify the assertion will
produce a counterexample, as shown in Fig. 8. In contrast,
running the analyzer for the predicate finds instances of the

Fig. 7 An assertion and a predicate regarding student enrollment

Fig. 8 A student enrolled twice in the same school

model that satisfy the constraint. We refrain from showing yet
another figure due to lack of space, but Fig. 4 also complies
to the predicate.

It is important to notice that failure by the Alloy Analyzer
to find instances of the model that comply to a predicate, or
contradict an assertion is not an assurance of their inexis-
tence. This is because the analysis conducted by Alloy is not
‘complete’ in the sense that it examines only a finite space of
cases [9]. This space of cases is constrained by a parameter
called scope, which restricts the number of atoms of top-level
signatures. Nevertheless, within the given scope, the analysis
is exhaustive.

6 Related work

Several approaches in literature aim at assessing whether
conceptual models comply with their intended conceptual-
izations. Although many approaches (e.g., [3,16]) focus on
analysis of behavioral UML models, we are primarily con-
cerned with structural models and thus refrain from further
analysis of behavioral-focused work.

A prominent example is the UML Specification Environ-
ment (USE) tool proposed in [7]. The tool is able to indicate
whether instances of a UML class diagram respect constraints
specified in the model through OCL. Differently from our
approach, which is based on the automatic creation of exam-
ple state sequences, in USE the modeler must specify
sequences of snapshots to gain confidence on the quality of
the model [either through the user interface or by specifying
sequences of snapshots in a tool-specific language called A
Snapshot Sequence Language (ASSL)].

Similar to USE, [11] focuses on analysis and constraint
validation of single snapshots only. Differently from our
approach, [11] relies on manual translation of class diagrams.
Further, they translate all classes to Alloy signatures, which
suggests that no dynamic classification is possible.

The approach described in [10,1] is similar to ours in
that the authors have implemented a model transformation
to automatically generate Alloy specifications from UML
class diagrams. Further, they introduce a notion of state tran-
sition to show sequences of snapshots. However, since they
also translate all classes to Alloy signatures, dynamic clas-
sification is not accounted for. This implies in significant
differences in the transformation patterns and restricts the
applicability of the approach to analyze conceptual models
that rely on dynamic classification.

While in this paper we use a linear notion of time, in
[5] we have explored a branching-time Kripke structure to
represent the dynamic aspects of the model. Each approach
has several consequences. Branching time grants us with a
wider view of possibilities for individuals by allowing the
visualization of multiple realities. However, it requires us to

123



62 B. F. B. Braga et al.

instantiate one atom for every state (or “world”), whether
factual or counter-factual, and possibly extra atoms for every
individual which only appear in some of the branches; thus
enlarging the required scope. This may be problematic due to
the fact that larger scopes increase analysis complexity and,
hence, response time. By ignoring the branches and focusing
on a single sequence of events, we save the computational
effort and possibly reach further into the state space, populat-
ing the examples with more individuals or simply improving
the performance of analysis. Naturally, this means that, in the
approach presented here, each execution of the Alloy Ana-
lyzer corresponds to different possible history lines, each of
which corresponds to a “path” through the branching-time
structure. As a consequence, each “path” is considered in
isolation and, therefore, no intersections between different
history lines (“paths”) are revealed.

7 Concluding remarks

Conceptual modeling constitutes a fundamental phase in
Software Engineering and Database Design in which aspects
of the domain of discourse are represented in diagrammatic
specifications. As well understood in these fields, the quality
of implementations is strongly dependent on the quality of
the conceptual models from which they are derived.

In the last decade, UML has become a de facto standard
for conceptual modeling in Software Engineering. However,
its adequacy for that purpose is impaired due to its ambiguous
semantics. For this reason, many approaches have been devel-
oped to: (i) provide formal semantics for UML, (ii) provide
automated mechanisms for checking the formal consistency
of UML models.

Nonetheless, none of the related works we have identified
covering (i) and (ii) capture the issue of dynamic classifica-
tion/object migration. Object migration has been an impor-
tant issue in the literature of conceptual modeling at least
since the late seventies [2] and its role in capturing subtle
semantics aspects of software systems can be summarized by
the following quote from [14]: “To effectively model com-
plex applications in which constantly changing situations can
be represented, a systems must be able to support the evolu-
tion …of individual objects. The strict uniformity of objects
contained in a class is unreasonable…. An object that evolves
by changing its type dynamically is able to represent chang-
ing situations as it can be an instance of different types from
moment to moment.” In addition, as discussed in depth in
[8], having an explicit account for modeling and analysis of
dynamic classification in a conceptual modeling language
is fundamental to avoid semantic interoperability problems.
As demonstrated there, for instance, the false identity of two
classes in some practical model integration situations can

only be spotted when the difference in modal (temporal)
extensions of these classes are contrasted and made explicit.

Finally, from a real-worlds semantics perspective, there is
an important difference between our work and other
traditional conceptual modeling accounts of dynamic
classification in the literature such as [2,14], namely, that
our dynamic categories reflect a system of theoretical dis-
tinctions founded in research in formal ontology, philosophy
of language and cognitive science. For this reason, these dis-
tinctions are not only precise from a logical point of view but
are also cognitively warranted in the sense that they reflect the
meta-level categories that we humans as cognitive subjects
in fact employ to construct our conceptualizations of reality
(as empirically supported by several works, see [8]). This
characteristic is of great importance for conceptual model-
ing, in which the resulting specifications should not only be
formally correct but should also be effective in supporting
humans in tasks such as problem-solving, understanding and
communication.
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