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Abstract. In a series of publications, we have employed ontological theories and 
principles used to evaluate and improve the quality of conceptual modeling 

grammars and models. In this article, we continue this work by providing an 
ontological interpretation and sound modeling guidelines for a traditionally 

neglected notion in the conceptual modeling literature, namely, the representation 

of types whose instances are quantities (amounts of matter, masses). Here, we 
analyze different alternatives for the adequate representation of quantities as well 

as their parts in conceptual models. Moreover, we advance a number of 

metamodeling constraints that can be incorporated in a UML 2.0 metamodel 
extension, thus, allowing for the suitable representation of these notions. 
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Introduction 

In recent years, there has been a growing interest in the application of Foundational 

Ontologies, i.e., formal ontological theories in the philosophical sense, for providing 

real-world semantics for conceptual modeling languages, and theoretically sound 

foundations and methodological guidelines for evaluating and improving the individual 

models produced using these languages.  

In a series of publications, we have successfully applied ontological theories and 

principles to analyze a number of fundamental conceptual modeling constructs ranging 

from Roles, Types and Taxonomic Structures, Part-Whole Relations, Relationships, 

Attributes, Weak Entities and Datatypes, among others [1-4]. In this article we continue 

this work by addressing a representation problem which has been traditionally 

neglected not only in the literature of conceptual modeling but also in existing 

ontological analysis of conceptual modeling grammars. We focus here on the 

representation of quantities (amounts of matter, masses). Existing proposals for 

modeling quantities in conceptual modeling deal exclusively with the representation of 

a quantitative measure aspect of quantities (e.g., [5, p.36]). However, as we argue in 

this article, there are many modeling situations in which this approach does not suffice. 

For this reason, we need a modeling approach for explicitly dealing with the 

complementary numerical identity aspect. 

The contributions of this article are two-fold. Firstly, we conduct an ontological 

analysis of the notion of quantities and explore alternative manners in which these 



entities could be adequately represented in conceptual models. Our criteria of adequacy 

here include fundamental requirements for conceptual modeling which includes that the 

types representing quantity universals in a conceptual model have only instances which 

are determinate, i.e., which obey determinate principles of identity. Moreover, we also 

consider a fundamental requirement that conceptual models including quantity types 

should be satisfiable by finite data populations. As a result, we advocate for a specific 

interpretation to the notion of quantities and a specific proposal for their representation. 

Secondly, given the specific proposed ontological interpretation for quantities, we 

explore the nature of a parthood relation involving quantities and their subparts. We 

then explicitly define this relation both in terms of its traditional mereological meta-

properties (e.g., transitivity, extensionality) but also in terms of two additional 

characteristics which are fundamental for conceptual modeling, namely, shareability 

and essentiality. As an additional result connected to this second contribution, we 

present a number of metamodeling constraint that can be used for the implementation 

of a UML
1
 modeling profile for representing quantities and their subparts.       

  The remainder of this article is organized as follows. Section 1 briefly reviews a 

number of aspects related to part-whole theories which are germane to the purposes of 

this article. Section 2 revisits the notion of principle of identity and its connection to 

sortal universals. The section also briefly explores the connection between identity and 

the notion of homeomerosity for the case of quantities, as both notions are later shown 

to play an important role in evaluating representation alternatives. Section 3 analyzes 

three different alternative solutions for representing quantities in conceptual modeling. 

Section 4 elaborates on the representation of a specific type of parthood relation 

between quantities and their subparts. Finally, section 6 presents some final 

considerations. 

1. A Review of Part-Whole Theories 

1.1. Mereological Theories 

In practically all philosophical theories of parts, the relation of proper parthood 

(symbolized as <) stands for a strict partial ordering, i.e., an asymmetric and transitive 

relation, from which irreflexivity follows: 

 

∀∀∀∀x ¬(x < x) 

 

(1) 

∀∀∀∀x,y (x < y) →→→→ ¬(y < x) (2) 

∀∀∀∀x,y,z (x < y) ∧∧∧∧ (y < z) →→→→ (x < z) (3) 

 

These axioms amount to what is referred in the literature by the name of Ground 

Mereology (M), which is the core of any theory of parts. Taking reflexivity (and 

antisymmetry) as constitutive of the meaning of ‘part’ implies regarding identity as a 

limit case of parthood. In this spirit, an improper part of relation (≤≤≤≤) can be defined as:  

 

(x ≤≤≤≤ y) =def (x < y) ∨∨∨∨ (x = y) 

 

(4) 

                                                           
1
The Unified Modeling Language (UML) is a de facto standard for software and data engineering 

(http://www.uml.org/). A modeling profile is a built in mechanism in UML to create specialized versions of 

the language. 



The axioms (1-3) define the minimal (partial ordering) constrains that every relation 

must fulfill to be considered a partOf relation. Although necessary, these constraints 

are not sufficient, i.e., it is not the case any partial ordering qualifies as a parthood 

relation. Some authors [6], require an extra axiom termed the weak supplementation 

principle (5) as constitutive of the meaning of part and, hence, consider (1-3) plus (5) 

(the so-called Minimal Mereology (MM)) as the minimal constraints that a 

mereological theory should incorporate. 

 

∀∀∀∀x,y (y < x) →→→→ ∃∃∃∃z (z < x) ∧∧∧∧ ¬¬¬¬overlap(z,y) 

 

(5) 

 

An extension to MM has then been created by strengthening the supplementation 

principle represented by (5). In this system, (5) is thus replaced by the following 

stronger supplementation axiom:     

 

∀∀∀∀x,y ¬¬¬¬(y ≤≤≤≤ x) →→→→ ∃∃∃∃z (z ≤≤≤≤ y) ∧∧∧∧ ¬¬¬¬overlap(z,x) 

 

(6) 

 

Formula (6) is named the strong supplementation principle, and the theory that 

incorporates (1-3), (5) and (6) is named Extensional Mereology (EM). A known 

consequence of the introduction of axiom (6) is that in EM, we have that two objects 

are identical iff they have the same (proper) parts, a mereological counterpart of the 

extensionality principle (of identity) in set theory.  

A second way that MM has been extended is with the aim to provide a number of 

closure operations to the mereological domain. As discussed, for example, in [6,7], 

theories named CMM (Closure Minimal Mereology) and CEM (Closure Extensional 

Mereology) can be obtained by extending MM and EM with the operations of Sum, 

Product, Difference and Complement. In particular, with an operation of sum (also 

termed mereological fusion), one can create an entity which is the so-called 

mereological sum of a number of individuals.    

1.2. Problems with Mereology as a Theory of Conceptual Parts 

Mereology has shown itself useful for many purposes in mathematics and philosophy 

[6,7]. Moreover, it provides a sound formal basis for the analysis and representation of 

the relations between parts and wholes regardless of their specific nature. However, as 

pointed out by [8,9] (among other authors), it contains many problems that make it 

hard to directly apply it as a theory of conceptual parts. As it shall become clear in the 

discussion that follows, on one hand the theory is too strong, postulating constraints 

that cannot be accepted to hold generally for part-whole relations on the conceptual 

level. On the other hand, it is too weak to characterize the distinctions that mark the 

different types of conceptual part-whole relations. 

A problem with ground mereology is the postulation of unrestricted transitivity of 

parthood. As discussed in depth in the literature [1,10], there many cases in which 

transitivity fails. In general, in conceptual modeling, part-whole relations have been 

established as non-transitive, i.e., transitive in certain cases and intransitive in others. 

The problem with extensional mereologies from a conceptual point of view arises 

from the introduction of the strong supplementation principle and, consequently, of 

formula (6) which states that objects are completely defined by their parts. If an entity 

is identical to the mereological sum of its parts, thus, changing any of its parts changes 

the identity of that entity.  Ergo, an entity cannot exist without each of its parts, which 



is the same as saying that all its parts are essential parts. Essential parthood can be 

defined as a case of specific constant dependence (existential dependence) between 

individuals, i.e., x is an essential part of y iff y cannot possibly exist without having 

that specific individual x as part [6]. As discussed in depth in [2], essential parthood 

plays a fundamental role in conceptual modeling. However, while some parts of objects 

represented in conceptual models are essential, not all of them are essential. The failure 

to acknowledge that can be generalized as the failure of classical mereological theories 

to take into account the different roles that parts play within the whole.  As discussed in 

[4,11], a conceptual theory of parthood should also countenance a theory of wholes, in 

which the relations that tie the parts of a whole together are also considered. 

From a conceptual point of view, the problem with the theory of General 

(Classical) Extensional Mereology is related to the existence of a sum (or fusion) for 

any arbitrary non-empty (but non-necessarily finite) set of entities. Just as in set theory 

one can create a set containing arbitrary members, in GEM one can create a new object 

by summing up individuals that can even belong to different ontological meta-

categories. For example, in GEM, the individual Θ created by the sum of Noam 
Chomsky’s left foot, the first act of Puccini’s Turandot and the number 3, is an entity 

considered as legitimate as any other. As argued by [9], humans only accept the 

summation of entities if the resulting mereological sum plays some role in their 

conceptual schemes. To use an example cited there: the sum of a frame, a piece of 

electrical equipment and a bulb constitutes an integral whole that is considered 

meaningful to our conceptual classification system. For this reason, this sum deserves a 

specific concept in cognition and name in human language. The same does not hold for 

the sum of bulb and the lamp’s base. Once more, we advocate that a theory of 

conceptual parthood must also comprise a theory of wholes.  

According to Simons [6], the difference between purely formal ontological sums 

and, what he terms, integral wholes is an ontological one, which can be understood by 

comparing their existence conditions. For sums, these conditions are minimal: the sum 

exists just when the constituent parts exist. By contrast, for an integral whole 

(composed of the same parts of the corresponding sum) to exist, a further unifying 

condition among the constituent parts must be fulfilled. A unifying condition or 

relation can be used to define a closure system in the following manner. A set B is a 

closure system under the relation R, or simply, R-closure system iff   

 

cs 〈〈〈〈R〉〉〉〉 B =def  (cl 〈〈〈〈R〉〉〉〉 B)  ∧∧∧∧ (con 〈〈〈〈R〉〉〉〉 B) 

 

(7) 

 

where (cl 〈〈〈〈R〉〉〉〉 B) means that the set B is closed under R (R-Closed) and (con 〈〈〈〈R〉〉〉〉 B) 

means that the set B is connected under R (R-Connected). R-Closed and R-Connected 

are then defined as: 

 

cl 〈〈〈〈R〉〉〉〉 B =def ∀∀∀∀x (x∈∈∈∈B) →→→→ ((∀∀∀∀y R(x,y) ∨∨∨∨ R(y,x) →→→→ (y∈∈∈∈B)) 

 

(8) 

con 〈〈〈〈R〉〉〉〉 B =def ∀∀∀∀x (x∈∈∈∈B) →→→→ (∀∀∀∀y (y∈∈∈∈B) →→→→ (R(x,y) ∨∨∨∨ R(y,x)) (9) 

 

An integral whole is then defined as an object whose parts form a closure system 

induced by what Simons terms a unifying (or characterizing) relation R. 

Besides modal meta-properties such as generic or specific dependence of parts, 

conceptual modeling theory of parthood must also recognize additional modes in which 

something can be a part of a whole. One of these notions of great importance is the so-



called (non-)shareability (or exclusiveness) of parts [4]. This distinction is reflected, for 

instance, in UML as the distinction between the aggregation relation (represented as a 

hollow diamond) and a composition relation (represented as a black diamond). In a 

nutshell, an individual x of type A is said to be an non-shareable (proper) part of 

another individual y of type B (symbolized here as <NS(x,A,y,B)) iff y is the only B that 

has x as part:  

 

<0S(x,A,y,B) =def instanceOf(x,A) ∧∧∧∧ instanceOf(y,B) ∧∧∧∧ (x< y) 

∧∧∧∧ (∀∀∀∀z instanceOf(z,B) ∧∧∧∧ (x < z) →→→→ (y = z)) 

 

(10) 

  

Finally, in a seminal article entitled “A taxonomy of part-whole relations”, Winston & 

Chaffin & Herrmann [12] (henceforth WCH), propose an account of the notion of 

parthood by elaborating on different ways that parts can related to a whole. This study 

led to a refinement on the formal relation of parthood by distinguishing the six types of 

meronymic relations. This taxonomy has been later refined by [8] demonstrating that 

the six linguistically-motivated types of part-whole relation proposed give rise to only 

three distinct ontological types, namely: (a) subquantity-quantity (e.g., alcohol-wine) – 

modeling parts of an amount of matter; (b) member-collective (e.g., a specific tree – the 

black forest) – modeling a collective entity in which all parts play an equal role w.r.t. 

the whole; (c) component – functional complex (e.g., heart-circulatory system, engine – 

car) - modeling an entity in which all parts play a different role w.r.t. the whole, thus, 

contributing to the functionality of the latter. 

2. Homeomerosity and Identity related to Quantities 

In [13], van Leeuwen shows an important syntactical difference in natural languages 

that reflects a semantical and ontological one, namely, the difference between common 

nouns (CNs) on one side and arbitrary general terms (adjectives, verbs, mass nouns, 

etc…) on the other. CNs have the singular feature that they can combine with 

determiners and serve as argument for predication in sentences such as: 

 

(i) (exactly) five mice were in the kitchen last night; 

(ii) the mouse which has eaten the cheese, has been in turn eaten by the cat. 

 

In other words, if we have the patterns (exactly) five X… and the Y which is Z…, only 

the substitution of X,Y,Z by CNs will produce sentences which are grammatical. To 

see that, we can try the substitution by the adjective Red in the sentence (i): (exactly) 

five red were in the kitchen last night. A request to ‘count the red in this room’ cannot 

receive a definite answer: Should a red shirt be counted as one or should the shirt, the 

two sleeves, and two pockets be counted separately so that we have five reds? The 

problem in this case is not that one would not know how to finish the counting but that 

one would not know how to start since arbitrarily many parts of a red thing are still red. 

The distinction between the grammatical categories of CNs and arbitrary general 

terms can be explained in terms of the ontological categories of Sortal and 

Characterizing universals [14] (also termed mixin types in the object-orientation 

literature [3]), which are roughly their ontological counterparts. Whilst the latter supply 

only a principle of application for the individuals they collect, the former supply both a 

principle of application and a principle of identity. A principle of application is that in 



accordance with which we judge whether a general term applies to a particular (e.g. 

whether something is a Person, a Dog, a Chair or a Student). A principle of identity 

supports the judgment whether two particulars are the same, i.e., in which 

circumstances the identity relation holds. By supplying a principle of identity and 

individuation, a sortal can also supply a principle of counting: counting depends on 

identity since to count correctly one cannot count the same individual twice. 

The statement that we can only make identity and quantification statements in 

relation to a Sortal amounts to one of the best-supported theories in the philosophy of 

language, namely, that the identity of an individual can only be traced in connection 

with a Sortal Universal, which provides a principle of individuation and identity to the 

particulars it collects [13]. The Sortal supplying these principles is named a Substance 

Sortal [13] or a Kind [3]. In [3], the authors advocate an equivalent stance for a theory 

of conceptual modeling by defending that: (i) among the conceptual modeling 

counterparts of general terms (classifiers), only constructs that represent substance 

sortals (kinds) can provide a principle of identity and individuation for its Instances; (ii) 

every individual in a conceptual model must be an instance of a sortal.  

One difference between subquantity-quantity and the other two types of parthood 

is that the relata of this relation always belong to the category of amounts of matter 

(masses, quantities), while in the component-functional complex and member-

collective they are Substantials (or Objects) [4]. Quantities (such as water, sand, sugar, 

martini, wine, etc.) lack both individuation and counting principles. For this reason, the 

general terms which are linguistically represented by mass nouns (the linguistic 

counterpart of amounts of matter) cannot be used to substitute X, Y and Z in the 

aforementioned sentence patterns. A substitution for, for example, water in sentence (i) 

is not viable, since arbitrarily many parts of water are still water. Likewise, a success in 

the substitution by water in (ii) depends on the possibility of determining the referent 

and judge identity statements of individual quantities of water. What exactly should be 

that referent?  

Before answering this question we should call attention to the notion of 

homeomerosity, which is used both by the WCH taxonomy and by [8] to distinguish 

subquantity-quantity relations from the other two types aforementioned. Traditionally, 

homeomerosity means that an individual only has parts which are of the same kind [15]. 

This is clearly not the case for all amounts of matter, as the Gin-Martini case 

demonstrates. However, one can still say that every subquantity of Martini is again 

Martini and that although Martini is composed of Gin, Gin is itself “homeomerous” in 

this more liberal sense. This line of reasoning seems to suggest that homeomerosity is 

equated with infinite decomposability, i.e., for every subquantity of Martini there is 

always a subquantity of Martini, and the same holds for quantities of Gin. Some 

authors (e.g., [15]), nonetheless, admit the existence of quantities of type K having K-

atoms, i.e., individuals of type K that have no parts of the same type K. Examples 

include concrete mass terms such as ‘furniture’, ‘cutlery’ or ‘crowd’. These allegedly 

exemplars of quantities are definitely not homeomerous, not even in the more liberal 

sense. For example, there are parts of a crowd, namely individual persons, which are 

not a crowd themselves and which are not homeomerous in any meaningful sense. 

What can be said in this case is that these aggregates have a uniform structure and, in 

parity with [8], we consider them as examples of member-collective parthood instead.  

One could also consider homeomerosity to simply mean that an aggregate can 

merely have some parts of the same kind while having other parts of other kinds. 

However, if this were to be the case one could not use it as a meta-property to 



differentiate subquantity-quantity from member-collective. Notice that examples of 

“homeomerous” parts in this sense can be easily found for member-collective: a crowd 

can be part of a larger crowd; a forest can be part of larger forest. Since WCH do not 

consider member-collective to be homeomerous, they would have to agree that 

quantities should be considered necessarily infinitely divisible in subquantities of the 

same kind.  

Now, an important question that comes to the mind is how we should represent in 

conceptual models the types whose instances are quantities in the sense just 

mentioned?  As we have discussed in depth in [3,13], in order to be able to make viable 

references to general terms which are not count nouns (mass terms, adjectives, verbs) 

they first must be nominalized. A nominalization of a mass noun, verb or an adjective 

promotes the shift to the category of count nouns (e.g., the fall of Jack, a lump of clay), 

hence, allowing for the representation of the corresponding (nominalized) sortal type. 

An important question that then arises is: what is the best nominalization of mass terms 

so that they can be satisfactorily represented in conceptual models as sortal types? In 

the next section, we investigate three candidate nominalization/representation 

alternatives. 

3. On the Representation of Quantities in Conceptual Modeling 

3.1. Quantities as Mereological Sums 

In order to investigate the representation alternatives let us take the example of a 

portion of wine which could be differentiated from other portions of wine by the year 

and source vineyard. What is the meaning (and implied principle of individuation) of a 

universal whose instances are portions of wine?  

A first possibility is to consider the referent of the expression “the portion of wine” 

as a mereological fusion of all subportions of wine that constitutes it. This approach is 

standard in philosophy and [6] suggests that quantities are probably the best case of 

application of the Classical Extensional Mereologies (CEM), since practically all 

objections raised against the CEM for the purpose of conceptual modeling can be 

safely lifted in the case of quantities and their parts. Nonetheless, and still from a 

philosophical point of view, the first problem with this conception of quantities is 

whether it is at all possible to have a principle of identity for portions of wine in this 

sense [15,16]. A mereological principle of identity in this case prescribes that portion 

of wine A is equal to portion of wine B iff they have the same parts. However, since 

the parts of A and B are also portions of wine, to decide if A and B have the SAME 

parts one has to decide about the identity of the parts, and the parts of the parts, leading 

to an infinite regress, since, by assumption, quantities are infinitely divisible. One 

could derive some synchronic information about identity by saying that two quantities 

are different if they do not occupy the same region of space. However, this cannot be 

used as a diachronic principle of identity. Alternatively, one could say that a quantity A 

in t1 is not the same quantity as B in t2 if they have different properties such as volume 

or weight (still assuming the mereological principle). Nonetheless, the fact that B in t2 

has the same volume or weight as A in t1 can only account for the sameness of the 

quantities in a very loose sense, meaning the same measure. In other words, in this case, 

the relation between A and B is one of equivalence, not one of numerical identity.  



In conceptual modeling, there are a number of situations in which dealing only 

with qualitative identity of masses does not suffice. For instance, one might be 

interested in tracking the persistence of a quantity of a certain liquid which has been 

poisoned, or, in a chemical experiment, it could be important to track the change of 

properties in the very SAME persisting quantity. For this reason, contra [8], who 

proposes that “quantities are arbitrary pieces of the whole as long as they are properly 

characterized by the quantitative measure”, we advocate that a treatment of masses in 

conceptual modeling must deal explicitly with the case of numerical identity.  

However, there is still a bigger problem with this idea from a conceptual modeling 

stance. Figure 1 depicts the representation of a portion of Wine universal in the sense 

just mentioned. In this specification, the idea is to represent a certain portion of wine as 

the mereological sum of all subportions of wine belonging to a certain vintage. As it 

can be noticed, since every portion of wine is composed of subportions of wine, the 

cardinality of the part-whole relation cannot be specified in a finite manner. The same 

holds for every cardinality constraint for associations involving portions of wine. As 

discussed, for instance in [17], finite satisfiability is a fundamental requirement for 

conceptual models which are intended to be used in areas such as Databases and 

Software Engineering. 

 

 
Figure 1. Representing Quantities as Mereological Sums. 

Furthermore, “homeomerous” entities represented in this manner can induce to 

representation errors in the presence of other shareability constraints. For example, 

figure 2 presents an exact copy of a UML class diagram from [18]
2
 that symbolizes a 

Fractal (perhaps the prototypical example of homeomerous form). The intention of the 

authors seems to be to represent that a fractal, i.e., the rendering of one iteration step of 

an IFS (Iterated Function Series), is part of only one instance of the infinite recursion 

of this function. In other words, a part of an instantiation of a Julia Series is not a part 

of another instantiation of the same fractal form, or part of an instantiation of the 

Mandelbrot Series. However, that is not what is represented in the model. The model 

states that every instance of a fractal (i.e., every iteration of an IFS) is part of only one 

other fractal. This is clearly mistaken: the n
th
 iteration of an IFS is part of all previous 

iterations of the same fractal. This problem is far from being specific to Fractals. In 

fact, for all homeomerous entities, with the exception of the maximal sum of 

subquantities, all other parts of quantity are necessarily part of innumerable other 

quantities of the same kind. 

Fractal

0..1

*

{homeomerous}
 

Figure 2. Mistaken Representation of homeomerous parts with non-sheareability (from [19]). 

                                                           
2
 The tagged value {homeomerous} in the picture is a proposal of [18] and it is present in the original article. 



3.2. Quantities as the Identificationally Dependent on Objects 

For the purpose of conceptual modeling, there is still one further philosophical 

argument invalidating the modeling alternative discussed in the previous section. 

According to [19], masses are identificationally dependent of substantials that are 

instances of sortal universals. As he put it: “The formal concepts ‘amount’, ‘part’ and 

‘stuff’, like ‘mass’ and ‘matter’, are formed ‘on the back of’ [19, p. 191] the formal 

concept ‘(material) thing’ or ‘(material) object’. There is no mass, except the mass of a 

certain object. There is no stuff except the stuff a certain thing consists of”. This is to 

say that individuating a quantity depends on the definite descriptions used for referring, 

which succeeds only when the referent can be individuated by an object type, i.e., it is 

the water in the bathtub, the clay that constitutes the statues, a cube of sugar, that can 

be referred to, not just some water, some clay, or some sugar. Moreover, quantities 

have no criteria for when they constitute a whole of some sort (unity criteria), except in 

cases in which we derive those criteria from objects that are only identifiable via sortals. 

This view is also supported by Quine in [20], who proposes that every occurrence of a 

quantity expression having the form “The K”, “The same K” (where K is a concrete 

quantity type) is really a masked reference to a portion of K to which an ordinary sortal 

type applies. Alternatively formulating, as Quine puts it: “[in these situations, always] 

some special individuation standard is understood from the circumstances”. This 

perspective gives rise to a second option of representation for the wine/wine tank 

example, as depicted in figure 3. 

 

 
Figure 3. Representing Quantities as Identificationally Dependent on Objects. 

There are a number of observations that can be made about figure 3. In this second 

option for nominalization of quantities, Wine means the maximal content of a Wine 

Tank. Likewise, the referent of a portion of clay means whatever quantity of clay 

constitutes a given statue, which is in turn individuated by the principle of identity 

supplied by the sortal Statue. In this representation, there is no longer a problem for the 

specification of cardinality constraints between portion of wine and wine tank: every 

wine tank has as its content one single definite portion of wine. Additionally, since 

wine portion means the maximal content of a wine tank, it is not the case that this 

concept is homeomerous, i.e., there is no part of a portion of wine which is itself a 

portion of wine (otherwise, it would not be the maximal content). Thus, there is no 

problem with infinite cardinalities, infinite divisibility and, hence, the model can in 

principle be finitely satisfiable. Moreover, portion of Wine becomes a type supplying 

genuine principles of individuation, counting and identity: it is always determinate if 

two portions of wine are identical and it is always determinate how many portions of 

wine there are.  

Now, what is the nature of the relation R between a quantity of Wine and 

WineTank in figure 3? It is more than a relationship of spatial containment. Notice that 

if the identity of the quantity is defined by its container than relation R becomes one of 

existential dependency. Take the statue/lump of clay example. If A is the same lump of 

clay as long as it constitutes the same statue B, A would have a complete life-time 

dependency to B. For instance: (a) if a piece of B is removed, B is still the same statue 

and so is A still the same lump of clay, since it still constitutes the same statue; (b) If 

the form of B is altered, B ceases to exist and so does A, since it no longer constitutes 



the same statue. In summary, in this second alternative nominalization, we have to 

arrive at the counter-intuitive conclusion that a quantity in this sense has properties 

which are more akin to the notion of moment (trope) than that of substantial (object) [4].  

3.3. Quantities as Maximally Self-Connected Objects 

Although this second alternative contains important advantages over the first one from 

a conceptual modeling point of view, it leads to a problematic consequence. The 

problem is implied exactly by the rigid specific dependence relation between a quantity 

in this sense and its container. As put by [21], a sentence such as the “same K” (where 

K is a quantity universal) should be understood in a such way that x is the same K as y 

iff x is some K, y is some K, and (x = y), or, as discussed in [3,13], in statements of 

identity, the relata must instantiate the same kind, i.e., the same rigid sortal supplying 

their principle of identity. In parity with [15, 21], we consider as meaningful a sentence 

such as “the sugar that was in that cube is the same sugar as the one in this lump”. 

However, if this is the case, which kind of individuation and identity principle should 

be applied to x and y, that of cubes or of lumps?  

A third nominalization alternative that solves this problem is presented as follows. 

This last option relies on the notion of piece discussed by Lowe in [16]. According to 

Lowe, a piece of a quantity K is a maximally self-connected object constituted by 

portions of K (portions in the first sense discussed in 3.1). Following Lowe, by 

maximal self-connected portion of K we mean the following: (i) connected, in the 

sense that every part of it is spatially connected to every other part of it by a series of 

spatially contiguous parts; (ii) maximal, in the sense that it is not a proper part of any 

larger connected part of stuff of the same kind K. One should notice that this relation of 

(spatially contiguous) connection is transitive: if x is connected to y by a series of 

spatially contiguous parts, and if y is connected to z in the same sense, we have that x 

is spatially-contiguously connected to z.    

Like in the second nominalization alternative, a quantity of K in this sense is an 

instance of a type supplying definite individuation, identity and counting principles. 

Moreover, it is not homeomerous, however it can still be composed of other quantities 

K’ in the same sense of quantity (see figure 4). Moreover, in this case, it is still 

convenient to consider all parts of quantity as essential: a specific quantity of Wine is 

composed by that specific quantity of Alcohol. Finally, this representation alternative 

also does not contain the infinite regress problems mentioned for the first case.  

Now, differently from the second alternative, the dependence relation between a 

quantity and its container is a generic not a specific one. For this reason we can state 

that for the same maximally self-connected quantity of wine, there can be several 

“container phases”. This idea is represented in the (incomplete) model of figure 4. A 

vintage is an (substantial) object constituted by (possibly many) quantities of wine. It is, 

however, not a quantity since it can be scattered over many quantities. Moreover, it is 

not necessary for its constituent quantities to be essential: even if the quantity of wine 

now stored in a certain tank is destroyed, we still have numerically the same vintage. 

We, therefore, propose the use of this third alternative for the nominalization of 

quantities and their representation in conceptual models. From now on, we shall use the 

term quantity of matter K or objectified portion of matter K to refer to a piece of K in 

the Lowe’s sense aforementioned, and use the stereotype «quantity» to symbolize a 

(sortal) type whose instances are quantities in this sense. 



In the first representation alternative, quantities have very minimal existence 

conditions and can hardly be said to constitute integral wholes. In the second 

representation alternative, a genuine characterizing or unifying relation can be defined 

creating an integral whole. However, this relation is an external one, creating a specific 

dependence to a container object. Moreover, in this second alternative, a quantity 

resembles more a moment than an object, becoming identificationally and existentially 

dependent on its container. In the third representation choice, quantities are object-like 

integral wholes, unified by an intrinsic and again genuine unifying relation of spatially 

contiguous maximal self-connectedness.   

Finally, we can summarize many points of the argument carried out in this section 

by using an example proposed by [21]. If a sentence such as “Heraclitus bathed in 

some water yesterday and bathed in the same water today” is true then for some 

suitable substituends of x and y we have that: (a) x is a quantity of water and Heraclitus 

bathed in x yesterday; (b) y is a quantity of water and Heraclitus bathed in y today; (c) 

x = y. However, (c) when interpreted as (d) “the water Heraclitus bathed in yesterday = 

the water Heraclitus bathed in today” requires that: (e) there is exactly one x such that x 

is a quantity of water and Heraclitus bathed in x both yesterday and today. But, if 

quantity is interpreted in the first sense discussed in 3.1, there are not one but infinitely 

many particulars that would satisfy (a), (b) and (d) without satisfying (c). The same 

does not hold for the second and third senses. 

 

Figure 4. Representing quantities as maximally-self-connected portions 

4. Representing parts of a Quantity: the subQuantityOf relation 

We can now define the subQuantityOf as a part-whole relation holding between 

quantities in the technical sense explained in the previous section. As depicted in figure 

5 below, we decorate here the standard UML symbol for composition with a Q to 

represent this relation.  

 

 
Figure 5. Part-Whole relations among Quantities. 

 

Let us take the quantities A, B and C represented in this figure. We can show that for 

any A, B, C, the part-whole relation (C < A) holds as a result from the transitivity (C < 



B) and (B < A). The argumentation can be developed as follows: if A is a quantity then 

it is a maximal portion of matter unified by the characterizing relation of self-

connectedness. That is, any part of A is connected to any other part of A. If B is part of 

A then B is connected to all parts of A. Likewise, if C is part of B then C is connected 

to all parts of B. Since (as previously discussed) this notion of spatially contiguous 

connection is transitive, then we have that C is connected to all parts of A. Thus, since 

A is unified under self-connection, C must be part of A (otherwise the composition of 

A would not be a closure system, see definition in section 2). Therefore, we conclude 

that for the case of quantities, transitivity always holds. Another way to examine this 

situation is by inspecting A at an arbitrary time instant t. We can say that all parts of A 

are the quantities that are contained in a certain region of space R (i.e. a topoid
3
). Since 

A is an objectified matter, than the topoid R occupied by A must be self-connected. 

Therefore, if B is part of A then B must occupy a sub-region R’, which is part of R. 

Likewise, if C is part of B, it occupies a region R’’, part of R’. Since spatial part-whole 

relations are always transitive [22], we have that R’’ is part of R, and if C occupies R’’, 

then it is contained in R. Ergo, by definition, C is a part of A.  

As discussed in section 3.3, a type stereotyped as « quantity » in this work stands 

for a maximally-connected-amount-of-matter. Since a quantity is maximal, it cannot 

have as a part a quantity of the same kind. For the same reason, a subQuantityOf 

relation is always non-shareable. For example, take a case in which this relation holds 

between a quantity of alcohol x and a quantity of wine y. Since y is self-connected it 

occupies a self-connected portion of space. The same holds for x. In addition, the 

topoid occupied by x must be a (improper) part of the topoid occupied by y. Now 

suppose that there is a portion of wine z (different from y) such that x is a 

subQuantityOf z. A consequence of this is that z and x overlap, and since they are both 

self-connected, we can define a portion of wine w which is itself self-connected. In this 

case, both z and x are part of w and therefore, they are not maximally-self-connected-

portions. This contradicts the premises that x and z were quantities. Hence, we can 

conclude that the subQuantityOf  relation is always non-sharable. Furthermore, since 

every part of a quantity is itself a quantity, subQuantityOf must also have a cardinality 

constraint of one and exactly one in the subquantity side. Take once more the alcohol-

wine example above. Since alcohol is a quantity (and, hence, maximal), there is exactly 

one quantity of alcohol which is part of a specific quantity of wine.    

Also as discussed in section 3.3, quantities are mereologically invariant, i.e., the 

change of any of its parts changes the identity of the whole. In other words, all 

subQuantityOf relations are essential parthood relations (see relations tagged with 

{essential} in figure 5). Therefore, since quantities are extensional entities, the weak 

supplementation axiom (4) defined to hold for all part-whole relations can be replaced 

by the adoption of the strong supplementation axiom for the case of this relation.  

The axiomatization of the subQuantityOf relation thus includes the basic axioms of 

any mereological theory, namely, irreflexivity, anti-symmetry and transitivity of the 

proper-part relation. But also the strong supplementation axiom and the extensionality 

principle. Moreover, it includes the exclusive parthood and the essential parthood 

axioms.  In other words, the axiomatization of this relation is the one of Extensional 

Mereology (EM), with non-shareable and essential parts. That means that two 

quantities are the same iff they have the same parts, and no two instance of the same 

quantity kind overlap.   

                                                           
3
A Topoid is a region of space with a certain mereotopological structure. 



We summarize the results of these sections in a proposal that can be incorporated 

in a UML profile for representing subQuantityOf relations (table 1). Since a profile is 

constituted by syntactical constraints and, since UML conceptual models are always 

defined at the type level, the meta-properties of irreflexivity, anti-symmetry and 

transitivity (at instance level) cannot be captured by profile constraints. We have 

included a constraint to guarantee weak supplementation for these relations taking in 

consideration the type-level nature of the diagrams, i.e., taking into consideration the 

minimum cardinality constraints of all subQuantityOf relations connected to the same 

type representing a whole. Finally, one should notice that the diagrams of figure 4 and 

5 do not obey this constraint and should be interpreted as (incomplete) model 

fragments. 

Table 1. Metamodel Constraints for a UML profile for modeling Quantities and the subQuantityOf relation 

5. Final Considerations 

The development of suitable foundational theories is an important step towards the 

definition of precise real-world semantics and sound methodological principles for 

conceptual modeling languages. In this paper, we conduct an ontological analysis to 

investigate the proper representation of types whose instances are quantities, as well as 

the representation of parthood relations involving quantities. As result, we were able to 

provide not only a sound ontological interpretation for the notion of quantity types, but 

also one that satisfies two fundamental modeling requirements: determinate numerical 

Metaclass Description and Concrete Syntax 

«quantity»

A
 

A «quantity» represents a sortal whose instances are quantities. Examples 

are those stuff universals that are typically referred in natural language by 

mass general terms (e.g., Gold, Water, Sand, Clay). 

subQuantityOf subQuantityOf is a proper parthood relation between two quantities. 

Examples include: (a) alcohol is part of Wine; (b) Plasma is part of 

Blood; (c) Sugar is part of Ice Cream; (d) Milk is part of Cappucino. We 

propose the icon Q  to represent this relation. 

 

Meta-Properties of subQuantityOf 

Irreflexivity, Asymmetry, Transitivity and Strong Supplementation (Extensional Mereology).  
 

Constraints for subQuantityOf 

1. The classes connected to both association ends of this relation must represent universals whose 
instances are quantities, i.e., they must be either stereotyped as «quantity» or be a subtype of a class 

stereotyped as «quantity»; 
2. This relation is always non-shareable (always represented with the black diamond notation in UML); 
3. All entities stereotyped as «quantity» are extensional individuals and, thus, all parthood relations 
involving quantities are marked with the tagged value {essential} representing an essential parthood 
relation. As a consequence, the association end connected to the part must be immutable;  

4. The maximum cardinality constraint in the association end connected to the part must be one; 
5. Weak Supplementation: Let U be a universal whose instances are wholes and let {C1…C2} be a set 
of universals related to U via aggregation relations. Let lowerCi be the value of the minimum 

cardinality constraint of the association end connected to Ci in the aggregation relation. Then, we 

have that  

(∑
=

n

i 1

lowerCi) ≥ 2; 



identity for their instances; finite satisfiability for conceptual models representing 

quantity types and subQuantityOf relations. In addition, the results advanced here 

contribute to the definition of concrete engineering tools for the practice of conceptual 

modeling. In particular, the metamodel extensions and associated constraints proposed 

can be implemented using available UML metamodeling tools in a straightforward 

manner (as demonstrated in [23]). This extended UML metamodel, in turn, can be 

directly employed by automated tools to support the development of conceptual models 

which are sensible to the ontological notions discussed here. Finally, the representation 

for the notion of quantity and subQuantityOf put forth here have been employed 

successfully in an industrial case study in the domain of petroleum and gas [24] to 

model notions such as specific quantities of Reservoir Rock and its subparts (specific 

subquantities of Water, Gas and Oil) as well as the participation of quantities in events 

such as Petroleum Production and Transportation.     
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