
An Ontological Interpretation of
Non-Functional Requirements

Renata Guizzardi a,1, Feng-Lin Lib, Alexander Borgidac,
Giancarlo Guizzardia, Jennifer Horkoffb, and John Mylopoulosb
a Federal University of Espírito Santo (UFES), Vitória, Brazil

b University of Trento, Trento, Italy

c Rutgers University, New Brunswick, USA

Abstract. Non-functional requirements (NFRs) have been the focus of research in
Requirements Engineering (RE) for more than 20 years. Despite this attention,
their ontological nature is still an open question, thereby hampering efforts to de-
velop concepts, tools and techniques for eliciting, modeling, and analyzing them,
in order to produce a specification for a system-to-be. In this paper, we propose to
treat NFRs as qualities, based on definitions of the UFO foundational ontology.
Furthermore, based on these ontological definitions, we provide guidelines for dis-
tinguishing between non-functional and functional requirements, and sketch a syn-
tax of a specification language that can be used for capturing NFRs.

Keywords. Non-functional requirements, foundational ontology, UFO, qualities.

Introduction

Requirements Engineering (RE) is the field of Software Engineering (SE) concerned
with the elicitation, modeling and analysis of stakeholder needs and wants, for purpos-
es of deriving a specification for a system-to-be. In much of RE research and practice,
these needs and wants are captured in terms of functional requirements (FRs) and non-
functional requirements (NFRs). While functional requirements specify what the soft-
ware system must do, non-functional requirements specify, among others, how well the
system shall perform its functions [1]. For example, “Users shall be able to withdraw
money from their accounts” is a functional requirement for an ATM machine. On the
other hand, issues concerning how long it takes for a user to withdraw money and how
well the information of the account holder is protected are non-functional requirements.
It is well documented in the RE literature that NFRs are a frequent cause of software
development failure or malfunction; see, for instance the woes of the new US
HealthCare (“Obamacare”) website, most of which related to an inability to handle the
heavy workload experienced after its launch2.

Non-functional requirements have been the focus of research in Requirements En-
gineering (RE) for decades. One can refer to the two important surveys on NFRs [23,
24] to form an opinion on the state of the art on the topic. The NFR framework [2], first
proposed in the early 90s, provides a simple qualitative framework for modeling NFRs

1 Renata Guizzardi, rguizzardi@inf.ufes.br
2 http://www.cnn.com/2013/10/29/politics/obamacare-hearing/

as softgoals, i.e., goals with no clear-cut criteria for satisfaction. These can be analyzed
using qualitative reasoning techniques. However, applying the NFR framework in
practice has shown that softgoals are useful for modeling early requirements elicited
from stakeholders, both functional (e.g., collect real-time traffic information) and non-
functional (e.g., the system should respond quickly).

This begs again the question: what are NFRs? There have been some recent initia-
tives to formalize RE foundations with the use of ontologies [3,4]. In particular, Jureta
et al. [4] propose a core ontology for requirements based on DOLCE [5]. We consider
this work as the baseline for the ontological interpretation presented in this paper, as
some of their concepts (e.g. softgoal, quality constraint) are consistent with our view
on NFRs and related notions. We believe, however, that this ontology is not appropri-
ate for explaining all ontological phenomena required to effectively defining and deal-
ing with NFRs. Therefore, the objective of this paper is an exercise in ontological anal-
ysis and conceptual clarification. We aim at spotting what is lacking in this previous
ontological account of requirements, and provide the ontological foundations we deem
necessary to capture a richer set of ontological phenomena related to NFRs.

In an earlier, short position paper [6], we have presented the preliminary idea of
NFRs as requirements over qualifies based on DOLCE. In this work, we greatly extend
this initial proposal, and use instead the Unified Foundational Ontology (UFO) [7]. The
main motivations behind this decision is the fact that, besides being compatible with
DOLCE, at least in the ontology fragment relevant for this work, UFO offers a more
complete set of categories to cover some important aspects of the domain we target,
especially regarding the analysis of quality spaces, situations and goals.

The main contributions of this paper are as follows:

• Providing an ontological interpretation of non-functional requirements as re-
quirements over as qualities, grounded on UFO [7,8,9].

• Providing ontological guidelines for distinguishing between non-functional
and functional requirements.

• Positioning NFRs relative to other ontological concepts, providing support for
the development of an ontology-based syntax to specify NFRs.

• Describing a sound approach for the analysis of the satisfaction of gradable
NFRs.

The rest of the paper is organized as follows: Section 1 discusses the core ontology
for requirements, also identifying and exemplifying what is missing; Sections 2 and 3
describe the core contributions of this paper, focusing on the ontological interpretation
of NFRs based on the UFO foundational ontology; Section 4 elaborates on some prac-
tical implications of this interpretation, presenting the aforementioned guidelines, syn-
tax and method that practitioners may use to capture NFRs; Section 5 presents the final
consideration and future work.

1. A Core Ontology for Requirements

An initial conceptualization for RE was offered by Jackson and Zave [3] nearly two
decades ago, founded on three basic concepts: requirement, specification and domain
assumption. Based on this characterization, the classical “requirements problem” is
defined as follows: given a set of requirements R, and a set of domain assumptions D,

find a set of specifications S consistent with D such that 𝐷, 𝑆 ⊢ 𝑅. For example, to
satisfy the requirement “make online payment” (R), a software/service needs to support
the function “pay with credit card” (S) under the (implicit) domain assumption of “hav-
ing a credit card with available credits” (D).

On observing that this characterization does not allow partial fulfillment of some
requirements and leaves out important notions, Jureta et al. [10,4] have proposed a
revised Core Ontology for RE (aka CORE) based on goal-oriented requirements engi-
neering (GORE), which is founded on the premise that requirements are stakeholder
goals. The revised account starts from the premise that requirements elicitation consists
of communication acts, and is grounded on the DOLCE ontology [5]. CORE distin-
guishes between non-functional and functional requirements using qualities as in
DOLCE: (i) A requirement r that refers to a quality q is non-functional; further, if the
quality type QT of q has an acknowledged shared quality space QS among the stake-
holders, then r is a quality constraint; while if the corresponding QS is not shared
among the RE participants (hence r is vague for agreed success), then r is a softgoal. (ii)
If r does not refer to a quality, and refers to a perdurant, then r is a functional goal. In
addition, stakeholders’ preferences over requirements are captured as evaluations.

Accordingly, Jureta et al. re-define the “requirements problem” as finding S such
that 𝐷, 𝑆 |~ 𝐺,𝑄,𝐴≻, where Q is a set of softgoals and/or quality constraints, G is a set
of functional goals, and 𝐴≻ is a relation indicating preferences among combinations of
D, G and Q instances. S contains specifications in the form of tasks to be carried out, as
well as AND-refinements of goals into subgoals. The authors also argue that the en-
tailment relation should be non-monotonic (hence, the use of the symbol “|~” instead
of “⊢”) because newly added domain assumptions or specifications could defeat previ-
ously valid conclusions.

Since its proposal in 2008, this core ontology has enjoyed considerable attention,
and has served as the baseline of new research directions in RE [11,12]. However, in
our experience, its handling NFRs has deficiencies:

1. It is unable to capture a class of requirements that refer to neither qualities nor
perdurants, but endurants. E.g., “the user interface shall have a standard menu
button for navigation”, where “menu button” is an endurant. As a result, this
FR cannot fit into any of the categories of CORE.

2. It is difficult to capture requirements that are vague for success but do not re-
fer to qualities. For example, requirements such as “attract customers” and
“increase sales” refer to perdurants rather than qualities, and are accordingly
classified as functional goals. However, this conclusion contradicts Jureta et
al’s claim that “functional goals are Boolean, i.e., true or false”, since these
examples, like softgoals, have no clear-cut criteria for success.

3. We have discovered requirements that refer to both qualities and functions.
For example, although we can classify the requirement “the system shall col-
lect real-time traffic information” as a softgoal according to the core ontology
(“real-time”, i.e., timeliness, is a quality of traffic information), we are still left
with the question “is it only an NFR?” It seems to be a combination of func-
tional and non-functional requirements, which can eventually be refined into
distinct sub-goals.

2. Ontological Foundations

In general, we are in line with Jureta et al. [4] that NFRs are requirements on qualities.
In this section, we go deeper to capture the ontological meaning of quality and use it to
interpret NFRs. For that, it is important to review some of the concepts defined in UFO
[7], the adopted foundational ontology in this work.

Over the years, UFO has been successfully employed to provide ontological seman-
tics and methodological guidelines, as well as for analyzing and redesigning modeling
languages, standards and reference models in domains ranging from Bioinformatics,
Enterprise Modeling, Telecommunications, Software Engineering, among others3.

We present here only a fragment of the UFO containing the categories that are ger-
mane for the purposes of this article (Figure 1). Moreover, we illustrate these categories
and some contextually relevant relations with UML (Unified Modeling Language)
diagrams. These diagrams express typed relations (represented by lines with a reading
direction pointed by >) connecting categories (represented as rectangles), cardinality
constraints for these relations, subsumption constraints (represented by open-headed
arrows connecting a sub-category to its subsuming super-category), as well as disjoint-
ness constraints relating sub-categories with the same super-category, meaning that
these sub-categories do not have common instances. Of course, these diagrams are used
here primarily for visualization. The reader interested in an in-depth discussion and
formal characterization of UFO is referred to [7,8,9,13].

Figure 1 A fragment of UFO representing basic categories (including qualities are related notions)

We start by distinguishing between individuals and universals. Individuals are enti-
ties that exist in reality possessing a unique identity, while universals are patterns of
features that are repeatable in a number of different individuals. A concrete individual
can be either an endurant or a perdurant. Endurants4 do not have temporal parts, and
persist in time while keeping their identity (e.g. a person and the color of an apple)
while perdurants (also referred to as events) are composed of temporal parts (e.g.
storm, heart attack, trip). Substantials are existentially independent endurants (e.g. a

3 See http://nemo.inf.ufes.br/en/publications for publications on the different UFO applications
4 By convention, if the word “universal” is not part of a term, then the term is assumed to refer to a particular.

Entity

Concrete Individual

Substantial Moment

Intrinsic Moment

Situation

Endurant Perdurant (Event)

Disposition

*

*

activates >

*

1..*

< manifested by

1

1..*

< inheres in

Universal

Quality Universal

Quality

Abstract Individual

Quality Structure

Quality Domain Quality Dimension

Quality Region

Quality Value
Function

1 2..*composed by >

1 1

hasValue

1

1..*

< memberOf

1

1..*

constituted by >

1 1
associated with >

{disjoint}

{disjoint}

{disjoint}

{disjoint}

{disjoint}

{disjoint}

1..* 1

instantiates [::]

1..*

1

instantiates [::]

person or a car). Moments, in contrast, are existentially dependent on other individuals,
inhering in these individuals (e.g. someone’s headache and the color of a car). Inher-
ence (symbolized as inh) is a type of non-reflexive, asymmetric and anti-transitive type
of functional existential dependent relation connecting a moment to its bearer. We
focus here on intrinsic moments, i.e., moments that are dependent on one single indi-
vidual (e.g., a headache, a color, the disposition of a magnet to attract metallic material).
Most distinctions made for individuals, mutatis mutandis, also apply to universals; thus,
we have the counterparts: substantial universal, moment universal and intrinsic mo-
ment universal. As shown in Figure 1, a quality universal is defined as an intrinsic
moment universal that is associated to a quality structure, which can be either a quality
dimension or a quality domain.

UFO’s notions of quality structure, quality dimension and quality domain are
based on the work of Gardenfors [14,15]. According to this work, for all perceivable or
conceivable quality universal, there is an associated quality structure in human cogni-
tion. For example, height, mass, and response time are associated with one-dimensional
structures; other quality universals such as color, taste, and usability are represented by
several dimensions. For instance, color can be represented in terms of the dimensions
of hue, saturation and brightness; usability in RE is composed of learnability, operabil-
ity, accessibility, among other dimensions. Moreover, Gardenfors differentiates integral
and separable quality dimensions: “certain quality dimensions are integral in the sense
that one cannot assign an object a value on one dimension without giving it a value on
the other. For example, an object cannot be given a hue without giving it a brightness
value. Dimensions that are not integral are said to be separable, as for example the
size and hue dimensions.” [14]. A quality domain is a set of integral dimensions that
are separable from all other dimensions [14]. A quality region is a convex region C of a
quality structure (i.e. either a dimension or a domain); C is convex iff: for all pairs of
points (x, y) in C, all points between x and y are also in C [14]. The value of a quality
individual can be represented as a point in a quality domain. UFO names this point a
quality value (which DOLCE calls “quale” [5]). For example, a color quality c of an
apple a takes its value in a three-dimensional quality domain constituted of the quality
dimensions hue, saturation and brightness. It is relevant to highlight that in UFO both
physical (e.g., color, height, shape) and nominal quality types (e.g., social security
number, the economic value of an asset) are sorts of quality universals and, hence, are
associated with quality structures. Figure 1 also shows that a quality instantiates a qual-
ity universal and it has a quality value in a quality structure associated with that quality
universal. Moreover, as an intrinsic moment, a quality inheres in individuals. Finally, in
pace with DOLCE, if a quality universal is associated to a quality domain, its instances
bear sub-qualities that take values in each of the dimensions of that domain. For in-
stance, the color of an individual apple is itself a bearer for individual qualities of hue,
saturation and brightness.

Besides quality, we include here the category functions as a sub-category of intrin-
sic moments, i.e., as existentially dependent entities. Moreover, we consider functions
as particular types of dispositions (capacities, capabilities) exhibited by an entity [8].
Functions (and dispositions, in general); are potential (realizable) property instances
manifested through the occurrence of an event that happens if a situation (state of the
world) of a particular kind obtains. The occurrence of this event, in turn, brings about a
certain situation in the world [16].

In UFO, an agent is a substantial that creates actions, perceives events and to
which we can ascribe mental states (i.e., intentional moments). Intentionality in UFO

is intended in a broader sense than “intending something”. Rather, it refers to the ca-
pacity of some properties of individuals to refer to possible situations of reality. Thus,
“intending something” is a specific type of intentionality termed intention in UFO.
Intentions are intentional moments that represent an internal commitment of the
agent to act towards that will. A goal is a proposition, and more specifically, the
propositional content of an intention. Furthermore, a goal is satisfied by a situation iff
the situation makes true the proposition expressed by that goal.

3. Non-Functional Requirements and Related Ontological Concepts

This section (including its subsections) aims at explaining the concepts depicted in
Figure 2. As already seen, an intention has a goal as propositional content. Goals are
specialized into NFRs (also named quality goals) and functional requirements (FRs).
We take that FRs refers to a function (a capability, capacity) that has the potential to
manifest certain behavior in particular situations. In other words, a FR has a proposi-
tional content that requires of a certain entity to bear a function of a given type. So,
contra Jureta et al. [4], we take that FRs refer to perdurants only indirectly, i.e., by
referring to a function, which being a disposition is realizable through the occurrence
of perdurants of a given type. For example, the “keyword search” function of an online
shop will be manifested by a process (perdurant) of matching between an input key-
word and the list of keywords in the system in a particular situation (when the keyword
is given and the search button is clicked) and brings about a certain effect (the matched
product will be displayed).

Figure 2. Non-functional Requirements and related concepts

Conversely to FRs, NFRs’ propositional content refers to qualities, i.e., which re-
quires a certain entity to bear a quality or exemplify a quality of a given type. To be
more specific, we treat NFRs as requirements that require qualities to take values in
particular quality regions in their corresponding quality structures. In general, quality
regions can be either crisp (e.g., 0 ~ 5 seconds) or vague (e.g., fast), hence NFRs

Goal<	 propositional	 content	 of

Situation

NFR	
(Quality	 Goal)

satisfies	 	 >

Intention

Functional	
Requirement

Quality
Universal

<	 requires	 	 value	 in	

Hardgoal Softgoal

Quality
Structure

associated	 with	 > Quality Value

member	 of	 >

Quality
Constraint

<	 instantiates
Quality

Quality	 Region

<	 hasValue

Crisp	 Quality	
Region

{disjoint}

constituted	 by>

*

*

1..* 1

*

*

1...*1

1

1..*
1..*

1..*1

1

1

1

*

Gradable	
Quality	 Region

Gradable NFR

1

*requires	 	 value	 in	 >	

{disjoint}

Function

1

1<	 refers	 to

Vague	 NFR

<	 refers	 to

1

(quality goals) can be accordingly crisp or vague. We identify those NFRs that specify
crisp quality regions and define them as quality constraints (QCs).

As NFRs are goals referring to qualities, one must understand which quality it is
and in which individual it inheres. Take, for instance, the requirement “The user inter-
face must have a standard format”. The quality in this case is format, while the bearer
is user interface; standard is a particular region in the interface format quality structure.
Sometimes, the quality may not be explicit, e.g. “The product should conform to the
American Disabilities Act”, in which case the quality is regulatory compliance and the
bearer is the product.

3.1. NFRs vs. Softgoals

In our view, the distinction between NFRs and FRs is orthogonal to that of hardgoals
and softgoals. Traditionally, hardgoals and softgoals are informally differentiated de-
pending on whether they have clear-cut criteria for success (the former) or not (the
latter) [17]. Here, we take the following stance on these concepts, capturing their dis-
tinction as follows: a hardgoal is a proposition that is objectively satisfied by a given
set of situations. In contrast, a softgoal is an initial and temporary vague expression of
intention before the goal at hand is properly refined. As such, we are not able to deter-
mine a priori the set of situations that satisfy a softgoal, i.e., its truthmaking conditions.

For example, “design the system’s main menu” is a high-level goal and it can be
considered vague (and thus modeled as a softgoal). In addition to capturing high-level
vague goals, softgoals are also useful when capturing and analyzing vague NFRs. As
previously mentioned, an NFR is a goal referring to a quality (type). In this case, a
softgoal is thus a proposition referring to a vague quality region, meaning that although
we are aware that such region exists in the quality structure, we do not know where the
boundaries of that region exactly are. For instance, consider that the aforementioned
goal is now refined into an NFR: “The menu buttons must have standard length and
width”. At first, the system’s stakeholders and analyst may have difficulties in mapping
standard to a specific region in the interface format quality structure. As the analysis
moves forward, vague NFRs are continuously refined and operationalized (as detailed
in the sub-sections to come), and hence such vagueness generally disappears.

The NFR framework [2] models NFRs as softgoals that are not clear for success,
and on the other side, the CORE ontology [4] treats functional requirements (FRs) as
hardgoals i.e. goals whose satisfaction have a determinate agent-independent truth-
value. However, we claim that these definitions of NFR/FR and hardgoal/softgoal are,
in fact, orthogonal, allowing us to identify NFRs that are in fact hardgoals as well as
FRs that are softgoals. Moreover, the categories of NFR and FR are not disjoint, indi-
cating that a requirement can fall into both categories. See Section 4 for some interest-
ing examples that illustrate the usefulness of this orthogonality principle.

3.2. Refining NFRs

Making NFRs measurable often involves refinement operations, where a requirement r
is refined into r’ such that r’ is more precise and/or measurable. Often, refinement
consists in conceptually deconstructing the NFR’s referred qualities. One way to do
this is to identify qualities that inhere in the quality associated with an NFR. For exam-
ple, a security quality can be refined in its sub-qualities (i.e., qualities inhering in it)
confidentiality, integrity and availability [18]. A second way to do this refinement is to

identify whether this quality is a resultant quality, which can be conceptually reduced
to qualities of parts of the bearer of the original quality. For instance, we could refine
the previously stated requirement “The user interface must have standard format” by
reducing the quality at hand in terms of qualities of parts of the bearer (the interface).
Since the interface is usually composed of buttons, fields, icons etc., “The menu buttons
must have standard format” illustrates a possible refinement of the previous require-
ment.

As an example of refining an NFR by decomposing its quality, format with respect
to buttons may, for instance, be decomposed into “size”, “shape”, and “color”. Consid-
ering “size”, it may be further decomposed into “height” and “width”. Hence, a con-
junct of a further refinement is “The menu buttons must have standard height and
width”.

3.3. Operationalizing NFRs

To make NFRs measurable, we need to operationalize them by constraining the re-
ferred qualities so that these qualities take values in crisp quality regions (i.e., absolute-
ly defined regions). That is, operationalizing NFRs as quality constraints (QCs).

 We may operationalize the NFR “The menu buttons must have standard length
and width” by defining the quality constraint “The menu buttons must have height 0.75
cm and width 1.75 cm”. While in this example, qualities are constrained to have specif-
ic quality values, in other cases, operationalization of an NFR may concern a region, as
in “The search functionality must be efficient”, operationalized by “The search results
shall be returned within 30 seconds after the user enters search criteria”. In our
framework, the value “efficient” here is associated to a region in the time quality di-
mension, comprehending quality values from 0 to 30 seconds.

Note that terms such as “efficient” and “low” may refer to different quality regions,
depending on the type of the quality bearer. For instance, take the requirement “Learn-
ing to operate the login functionality must be efficient”. This NFR may be operational-
ized by “The user should learn how to operate the login functionality within 3 minutes”.
Thus “efficient” for learning the login functionality and for returning search results
(previous example) may map to different regions in the time quality dimension.

3.4. Gradable NFRs

Consider the satisfaction of a quality constraint (QC) as a function, which results in “1”
(if the QC is satisfied) and “0” (if unsatisfied). The key point to determine the satisfac-
tion of a QC is to understand if the measured or perceived quality value is a member of
the region to which the QC is associated. If yes, the satisfaction function returns “1”
and otherwise, it returns “0”. For example, considering “The search results shall be
returned within 30 seconds after the user enters search criteria” (constraint defined
region: 0 < search time ≤ 30 sec.), if the runtime measurement of a search duration
results in 25 seconds, the QC is satisfied; if the result is 32 seconds, then it is not.

However, this may be too strong a condition. Perhaps a 32 second response is
“good enough”. In many cases, “good enough” performance is sufficient, i.e., degree of
fulfillment of a QC is what matters, rather than black-or-white fulfillment. Thus, in
order to capture the intended semantics of many NFRs communicated by requirement
engineers, the satisfaction function should not be a binary function but should instead
return a graded satisfaction value in the interval between “0” and “1”. To account for

such phenomena, we propose the definition of gradable NFRs, based on the conceptual
space theory [14] and some of its recent extensions of the original theory as proposed
in [19][20].

In Gardenfors [14], the definition of quality region in the quality structure is based
on a combination of prototype theory [21] and the mathematical technique of Voronoi
diagrams [22]. Prototype theory claims that some instances of a concept are more rep-
resentative or typical than others (thus termed prototypes). Thus, the prototype of a
quality is nothing other than a point in its quality structure. Creating Voronoi diagrams
is a very general technique and may be applied to any metrical space in order to divide
the space into cells. Each cell has a center and it contains all and only those points that
lie no closer to the center of any other cell than to its own center (please see Figure 3)
(A) for an illustration). Combining prototype theory and this technique consists in de-
fining Voronoi diagrams by using the qualities prototypes as their central points.

Figure 3. Two dimension (A) Voronoi Diagram and (B) Collated Voronoi Diagram (adapted from [19])

To overcome the limitations in dealing with gradable concepts, Douven et al. [19]
extend this approach by assuming that conceptual spaces may contain prototypical
regions rather than isolated prototypical points. Using these prototypical regions, they
develop a technique to generate what they call Collated Voronoi Diagrams. This tech-
nique starts by considering the set of all possible selections of exactly one prototypical
point from each prototypical region. Each element of this set (a vector of prototypical
points coming from different regions) can be used to generate a different diagram of
the quality structure S. Let us call the set of all these diagrams VS. The Collated Voro-
noi Diagram can be generated by projecting all elements in VS onto each other (thus
overlaying the resulting diagrams). Figure 3 (B) depicts this idea. In the resulting dia-
gram, the regions created by the tessellation have thicker borders than in the traditional
Voronoi diagrams. We term these regions Gradable Regions and the borders that are
shared by these regions Borderline regions.

 Decock and Douven [20] take one step further in this extended theory. As they
point out, Figure 3 (B) is misleading in making one think that the transition from a
crisp region (i.e., one of the white polygons/polyhedrons in the figure) to a borderline
region is itself sharp. According to them, this interpretation would be phenomenologi-
cally incorrect and we should treat this transition as also being a smooth one. This idea
is illustrated by the authors with the following example: suppose we have four proto-
typical regions, each consisting of two points {a,b}, {c,d}, {e,f} and {g,h}, each repre-
senting a prototype region of a particular concept. Now, suppose we generate the VS in
the manner previously explained (i.e., VS would contain 24 = 16 members in this case).

The authors then use the resulting set VS to provide an interpretation to the idea of
graded membership function of a particular point to a concept X: a point in the quality
structure S belongs to concept value X to degree D that equals the number of members
of VS that locate the point in the cell associated with one of the two prototypical points
of the region associated with X divided by the total number of members of VS. Figure 3
(C) illustrates this idea. In this example, the point i belongs to the concept associated
with region {a,b} to the degree 0.5, since 8 of the 16 members of VS locate i in the cell
associated with a member of {a,b}. By the same reasoning, j, belongs to that concept
by a degree of 0.25.

By adopting this view, we define QCs as follows: a QC is an NFR that specifies a
crisp region R in a quality structure S. As such, the satisfaction of a QC for a bearer B is
defined by the membership (or lack thereof) of the proper quality value of B in the
region R. A gradable NFR instead refers to a gradable region R’ of quality structure S’
(which is a member of a set of prototypical regions associated with S’). As such, the
satisfaction of an NFR to a certain degree is defined by the graded membership of the
proper quality value of B in region R’.

4. Practical Implications

We show in this section how the ontological interpretation of NFRs (1) provides opera-
tional guidelines for distinguishing between non-functional and functional require-
ments (Subsection 4.1); (2) supports the development of an ontology-based require-
ments specification language (Subsection 4.2); and (3) enables the analysis of the satis-
faction of gradable NFRs (Subsection 4.3).

4.1. Distinguishing between non-functional and functional requirements

The first benefit of capturing the ontological meaning of NFRs is conceptual clarifica-
tion. As we will demonstrate, the ontological interpretation proposed here enables us to
clearly distinguish between non-functional and functional requirements.

Despite many efforts devoted to NFRs, the question “what are NFRs?” is still de-
bated [23]. On treating NFRs, there are two general approaches in the literature. One
takes the stance that functional requirements describe what a system should do, while
non-functional ones specify how well the system should perform its functions [1]. The
other is to treat everything that is not a functional requirement (i.e., not related to what
a system should do) as a non-functional one (i.e., as a sort of dispersive class defined
by negation) [24]. However, when put into practice, both criteria are deficient. For
instance, how does one classify Ex. 1 below, which specifies a function (“support”)
that will not be performed by the system but by an external agent (“the corporate sup-
port center”)? One may treat it as an NFR by following the second criterion, but this is
conceptually incorrect. In fact, Ex. 1 will be classified as a FR in our proposal (because
it requires a function of an entity in the system-to-be ecosystem).

Ex.1: The product shall be supported using the corporate support center.
Ex.2: The system shall have a standard navigation button for navigation.
Ex.3: The system shall help administrators to analyze failures/exceptions.
Ex.4: The transportation system shall collect real-time traffic information.

Jureta et al. [4] have made the first step in grounding this distinction on qualities in
the foundational ontology DOLCE [5]. As we have discussed in Section 1, their re-
quirements ontology still has deficiencies: it is not able to categorize requirements like
Ex. 2 (referring to neither qualities nor perdurants), Ex. 3 (referring to a perdurant but
being vague for success) and Ex. 4 (referring to both perdurants and qualities).

In our framework, if a requirement refers to a particular quality universal, then it
is non-functional; if it refers to a function (in the ontological sense), then it is func-
tional. Adopting this guideline, we can easily classify Ex. 2 as functional, because it
concerns a function that is manifested by the navigation button. Note that the distinc-
tion between NFR and FR is orthogonal to the one between hardgoal and softgoal.
Hence, an NFR can have a clear satisfaction criterion while a FR can also be vague. For
instance, Ex. 3 is a FR but one that has a subjective criterion of satisfaction (see section
3.1). Moreover, the classes of NFRs and FRs are not mutually exclusive. For example,
Ex. 4 specifies a desired function “collect traffic information” but also refers to a quali-
ty (timeliness) of “collecting traffic information”.

We have evaluated our framework by applying it to the PROMISE requirements
dataset [25], which includes 370 NFRs crossing 15 software projects. Using our onto-
logical classification of requirements, we identified 187 NFRs, 52 FRs, and 61 re-
quirements that constitute a combination of FRs and NFRs (the remaining 70 ones are
identified as function constraints or domain assumptions). For example, “The website
shall prevent the input of malicious data”, originally labeled as a security NFR, should
actually be a FR since it refers to a “prevent” function. The result suggests that our
framework is effective to help distinguishing between NFRs and FRs used in practice.
For more details on the evaluation, interested readers can refer to our companion paper
[26].

4.2. Representing Non-functional Requirements

A key benefit of understanding the ontological foundation of NFRs is that it provides
support for designing requirement modeling languages. Recall from Figure 1 that UFO
uses two fundamental predicates involving qualities: (1) inheres(q#, b#) relates a par-
ticular quality q# to its bearer b# (by convention we use ‘#’ to indicate individuals); (2)
hasValue(q#, v) relates a particular quality q# to the quality value v it currently has. We
rephrase this by defining a single, higher-order function hasQV as shown in Eq. 1 be-
low, in which QUS is a set of all quality universals, e.g., Color, Cost, and Size; BearerT
is a bearer type; QVT is a quality value type, and ‘:’ is used to give type signatures of
functions. This function takes as arguments a quality universal QU (e.g., Cost) which is
of type QUS (denoted as QU::QUS), an individual bearer b#::BearerT (e.g., trip#), and
returns the quality value v::QVT of a particular quality q#::QU (e.g., cost#) that inheres
in b#. Based on this function, an NFR that refers to a single individual having quality
value in region QRG is written as Eq. 2, with a formal characterization of its intended
semantics provided by Eq. 3; this says that b# shall bear a quality q# of type QU, and
q# shall have a quality value v be in the desired region QRG. For example, the re-
quirement “the cost of trip# should be low” can be now captured as Eq. 4,

hasQV : QUS → BearerT → QVT (1)

hasQV (QU)(b#) :< QRG (2)

∃q#::QU, inheres(q#, b#) ˄ [∀v hasValue(q#, v) → in(v, QRG)] (3)

hasQV (Cost)(trip#) :< low (4)
Some requirements may concern qualities of a set of individuals that are instances

of a type (e.g., all the trips from Berlin to Paris in July, 2013, or all the executions of a
software function). For this purpose, we apply hasQV(QU)(b#) to the set of individuals
(i.e., bearers) to get their quality values. By function overloading, we define a new
function with the same name hasQV as shown in Eq. 5, in which ℘(BearerT), a short-
hand of PowerSet(BearerT), is the type of a set of individual bearers, each of which is
of type BearerT, ℘(QVT) is the type of a set of quality values. Accordingly, an NFR
that refers to a set of individuals is expressed as Eq. 6, of which the intended semantics
is shown in Eq. 7. Hence a requirement like “the cost of all trips from A to B at period
T should be low” can be represented as in Eq. 8, where Trip' is a subtype of Trip (de-
noting the trips from A to B at period T).

hasQV : QUS → ℘(BearerT) → ℘(QVT) (5)

hasQV (QU)(BearerT) :< QRG (6)

∀b#::BearT, ∀q#::QU, inheres(q#, b#) → [∀v hasValue(q#, v)→in(v, QRG)] (7)

hasQV (Cost)(Trip') :< low (8)
These formulations characterize the ontological foundation of NFRs, and provide

us with the semantics that a requirements modeling language (RML) should capture.
We introduce “QU(BearerT) :< QRG” as an abbreviation for “hasQV(QU)(BearerT) :<
QRG”, and use ‘:=’ to assign names to expressions, as in Ex.9.

NFR#1 := Processing time (keyword search) :< less than 30 seconds
NFR#2 := Cost ({trip#}) :< low (9)

Here NFR#1 requires each manifestation of keyword search to take less than 30
seconds while NFR#2 requires a particular trip to have low cost. Moreover, this syntax
can be further extended to capture more complex NFRs that concern universality (e.g.,
the processing time of keyword search shall be less than 30 seconds 90% of the time)
and agreement (e.g., 80% of the users report the interface is appealing), which are
common in practice. We further explore representation of such complex NFRs using a
compositional language in our companion paper [26].

4.3. The satisfaction of gradable NFRs

Specifying gradable NFRs can be quite useful in practice since, in many cases (as ex-
emplified in Section 3.4), it may be enough to “almost” reach the satisfaction of an
NFR. Thus, another practical application of our ontological interpretation to RE regards
the analysis of the satisfaction of gradable NFRs. This can be accomplished by using
the graded membership calculation described in Section 3.4.

For instance, suppose that the associated quality value region low of the gradable
NFR NFR#1 in Eq. 9 is represented by two prototype values 500€ and 700€. Similarly,
we can use 800€ and 1000€, and 1200€ and 1500€ to represent the region medium and
high. Given the three prototype regions, the Vs will include 8 simple diagrams. Now if
we have a cost value as 740€, then we will have 6 out of 8 diagrams classify it to the
region low. Thus, that NFR#1 is satisfied to a degree of 0.75. Interested readers can
refer to the calculation details available online 5. The interesting point here is that we

5 http://goo.gl/xXZ24E

can use prototype values to represent a region, and then adopt (collated) Voronoi dia-
grams to reason about the graded membership without the need of inventing made-up
numbers as that in fuzzy logic [27].

5. Conclusions

We propose an ontology-based interpretation of NFRs by adopting and applying the
UFO ontology. While doing that, we analyze how our proposal compares with and
extends the CORE requirement ontology [4], which to the best our knowledge, pro-
vides the only existing ontological account of NFRs.

In a nutshell, we treat both NFRs and FRs as goals and differentiate them by
claiming that the former refer to qualities while the latter are functions. From an onto-
logical viewpoint, qualities and functions belong to different ontological sub-categories
of intrinsic moments. A quality is a type of categorical property that is manifested
whenever it exists and which is directly associated to a quality structure. A function, in
contrast, is a type of dispositional property that is only manifested under certain cir-
cumstances and via the execution of an event. Moreover, as dispositions, functions do
not have values which are directly associated to quality structures.

Besides presenting the aforementioned ontological interpretations, this paper dis-
cusses how these interpretations differ from existing RE approaches to non-functional
versus functional requirements, as well as implications for RE practices.

For future work, we intend to conduct more evaluations by means of case studies.
Moreover, we also aim at developing our initial requirements analysis methodology [6],
by grounding it on the proposed ontology.

Acknowledgment. This research has been funded by the ERC advanced grant
267856 “Lucretius: Foundations for Software Evolution”, unfolding during the period
of April 2011 - March 2016.

References

[1] B. Paech and D. Kerkow, “Non-functional requirements engineering-quality is essential,” in 10th
International Workshop on Requirments Engineering Foundation for Software Quality, 2004.

[2] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-functional Requirements,” Softw. Eng., 2000.
[3] M. Jackson and P. Zave, “Deriving specifications from requirements: an example,” in Software Engi-

neering, 1995. ICSE 1995. 17th International Conference on, 1995, pp. 15–15.
[4] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “A core ontology for requirements,” Appl. Ontol., vol. 4,

no. 3, pp. 169–244, 2009.
[5] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari, “Ontology Library,” WonderWeb

Deliv. D18, 2003.
[6] F.-L. Li, J. Horkoff, J. Mylopoulos, L. Liu, and A. Borgida, “Non-Functional Requirements Revisited,”

in CEUR Proceedings of the 6th International i* Workshop (iStar 2013), Valencia, Spain, 2013, pp.
109–114.

[7] G. Guizzardi, Ontological foundations for structural conceptual models. CTIT, Centre for Telematics
and Information Technology, 2005.

[8] G. Guizzardi, G. Wagner, R. de Almeida Falbo, R. S. Guizzardi, and J. P. A. Almeida, “Towards
Ontological Foundations for the Conceptual Modeling of Events,” in Conceptual Modeling, Springer,
2013, pp. 327–341.

[9] G. Guizzardi, R. de Almeida Falbo, and R. S. Guizzardi, “Grounding Software Domain Ontologies in
the Unified Foundational Ontology (UFO): The case of the ODE Software Process Ontology.,” in CIb-
SE, 2008, pp. 127–140.

[10] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the core ontology and problem in requirements
engineering,” in International Requirements Engineering, 2008. RE’08. 16th IEEE, 2008, pp. 71–80.

[11] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards a new generation of re-
quirements modeling languages with goals, preferences, and inconsistency handling,” in Requirements
Engineering Conference (RE), 2010 18th IEEE International, 2010, pp. 115–124.

[12] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Integrating preferences into goal models
for requirements engineering,” in Requirements Engineering Conference (RE), 2010 18th IEEE Inter-
national, 2010, pp. 135–144.

[13] A. B. Benevides, G. Guizzardi, B. F. B. Braga, and J. P. A. Almeida, “Validating Modal Aspects of
OntoUML Conceptual Models Using Automatically Generated Visual World Structures.,” J UCS, vol.
16, no. 20, pp. 2904–2933, 2010.

[14] P. Gärdenfors, Conceptual spaces: The geometry of thought. MIT press, 2004.
[15] P. Gärdenfors, “How to make the semantic web more semantic,” in Formal Ontology in Information

Systems, 2004, pp. 19–36.
[16] R. Hoehndorf, J. Kelso, and H. Herre, “Contributions to the formal ontology of functions and disposi-

tions: An application of non-monotonic reasoning,” ICBO, p. 173, 2009.
[17] E. Yu, “Modeling strategic relationships for process reengineering,” Soc. Model. Requir. Eng., vol. 11,

2011.
[18] ISO/IEC 25010, “Systems and software engineering - Systems and software Quality Requirements and

Evaluation (SQuaRE) - System and software quality models,” 2011.
[19] I. Douven, L. Decock, R. Dietz, and P. Égré, “Vagueness: A conceptual spaces approach,” J. Philos.

Log., vol. 42, no. 1, pp. 137–160, 2013.
[20] L. Decock and I. Douven, “What Is Graded Membership?,” Noûs, 2012.
[21] E. Rosch, “Cognitive representations of semantic categories.,” J. Exp. Psychol. Gen., vol. 104, no. 3, p.

192, 1975.
[22] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data structure,” ACM

Comput. Surv. CSUR, vol. 23, no. 3, pp. 345–405, 1991.
[23] M. Glinz, “On non-functional requirements,” in Requirements Engineering Conference, 2007. RE’07.

15th IEEE International, 2007, pp. 21–26.
[24] L. Chung and J. do Prado Leite, “On non-functional requirements in software engineering,” in Concep-

tual Modeling: Foundations and Applications, 2009, pp. 363–379.
[25] T. Menzies, B. Caglayan, H. Zhimin, K. Ekrem, K. Joe, P. Fayola, and T. Burak, “The PROMISE

Repository of empirical software engineering data,” Jun-2012. [Online]. Available:
http://promisedata.googlecode.com.

[26] F.-L. Li, J. Horkoff, A. Borgida, R. S. S. Guizzardi, G. Guizzardi, J. Mylopoulos, and L. Liu, “Non-
Functional Requirements as Qualities, with a Spice of Ontology,” in Requirements Engineering (RE),
22nd International Conference, 2014.

[27] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for requirements-driven adaptation,” in Require-
ments Engineering Conference (RE), 2010 18th IEEE International, 2010, pp. 125–134.

