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Abstract. Non-functional requirements (NFRs) have been the focus of research in 
Requirements Engineering (RE) for more than 20 years. Despite this attention, 
their ontological nature is still an open question, thereby hampering efforts to de-
velop concepts, tools and techniques for eliciting, modeling, and analyzing them, 
in order to produce a specification for a system-to-be. In this paper, we propose to 
treat NFRs as qualities, based on definitions of the UFO foundational ontology. 
Furthermore, based on these ontological definitions, we provide guidelines for dis-
tinguishing between non-functional and functional requirements, and sketch a syn-
tax of a specification language that can be used for capturing NFRs.     
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Introduction 

Requirements Engineering (RE) is the field of Software Engineering (SE) concerned 
with the elicitation, modeling and analysis of stakeholder needs and wants, for purpos-
es of deriving a specification for a system-to-be. In much of RE research and practice, 
these needs and wants are captured in terms of functional requirements (FRs) and non-
functional requirements (NFRs). While functional requirements specify what the soft-
ware system must do, non-functional requirements specify, among others, how well the 
system shall perform its functions [1]. For example, “Users shall be able to withdraw 
money from their accounts” is a functional requirement for an ATM machine. On the 
other hand, issues concerning how long it takes for a user to withdraw money and how 
well the information of the account holder is protected are non-functional requirements. 
It is well documented in the RE literature that NFRs are a frequent cause of software 
development failure or malfunction; see, for instance the woes of the new US 
HealthCare (“Obamacare”) website, most of which related to an inability to handle the 
heavy workload  experienced after its launch2.  

Non-functional requirements have been the focus of research in Requirements En-
gineering (RE) for decades. One can refer to the two important surveys on NFRs [23, 
24] to form an opinion on the state of the art on the topic. The NFR framework [2], first 
proposed in the early 90s, provides a simple qualitative framework for modeling NFRs 
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as softgoals, i.e., goals with no clear-cut criteria for satisfaction. These can be analyzed 
using qualitative reasoning techniques. However, applying the NFR framework in 
practice has shown that softgoals are useful for modeling early requirements elicited 
from stakeholders, both functional (e.g., collect real-time traffic information) and non-
functional (e.g., the system should respond quickly).  

This begs again the question: what are NFRs? There have been some recent initia-
tives to formalize RE foundations with the use of ontologies [3,4]. In particular, Jureta 
et al. [4] propose a core ontology for requirements based on DOLCE [5]. We consider 
this work as the baseline for the ontological interpretation presented in this paper, as 
some of their concepts (e.g. softgoal, quality constraint) are consistent with our view 
on NFRs and related notions. We believe, however, that this ontology is not appropri-
ate for explaining all ontological phenomena required to effectively defining and deal-
ing with NFRs. Therefore, the objective of this paper is an exercise in ontological anal-
ysis and conceptual clarification. We aim at spotting what is lacking in this previous 
ontological account of requirements, and provide the ontological foundations we deem 
necessary to capture a richer set of ontological phenomena related to NFRs. 

In an earlier, short position paper [6], we have presented the preliminary idea of 
NFRs as requirements over qualifies based on DOLCE. In this work, we greatly extend 
this initial proposal, and use instead the Unified Foundational Ontology (UFO) [7]. The 
main motivations behind this decision is the fact that, besides being compatible with 
DOLCE, at least in the ontology fragment relevant for this work, UFO offers a more 
complete set of categories to cover some important aspects of the domain we target, 
especially regarding the analysis of quality spaces, situations and goals.    

The main contributions of this paper are as follows:  

• Providing an ontological interpretation of non-functional requirements as re-
quirements over as qualities, grounded on UFO [7,8,9].   

• Providing ontological guidelines for distinguishing between non-functional 
and functional requirements. 

• Positioning NFRs relative to other ontological concepts, providing support for 
the development of an ontology-based syntax to specify NFRs. 

• Describing a sound approach for the analysis of the satisfaction of gradable 
NFRs.  

The rest of the paper is organized as follows: Section 1 discusses the core ontology 
for requirements, also identifying and exemplifying what is missing; Sections 2 and 3 
describe the core contributions of this paper, focusing on the ontological interpretation 
of NFRs based on the UFO foundational ontology; Section 4 elaborates on some prac-
tical implications of this interpretation, presenting the aforementioned guidelines, syn-
tax and method that practitioners may use to capture NFRs; Section 5 presents the final 
consideration and future work.  

1. A Core Ontology for Requirements 

An initial conceptualization for RE was offered by Jackson and Zave [3] nearly two 
decades ago, founded on three basic concepts: requirement, specification and domain 
assumption. Based on this characterization, the classical “requirements problem” is 
defined as follows: given a set of requirements R, and a set of domain assumptions D, 



find a set of specifications S consistent with D such that 𝐷, 𝑆 ⊢ 𝑅. For example, to 
satisfy the requirement “make online payment” (R), a software/service needs to support 
the function “pay with credit card” (S) under the (implicit) domain assumption of “hav-
ing a credit card with available credits” (D). 

On observing that this characterization does not allow partial fulfillment of some 
requirements and leaves out important notions, Jureta et al. [10,4] have proposed a 
revised Core Ontology for RE (aka CORE) based on goal-oriented requirements engi-
neering (GORE), which is founded on the premise that requirements are stakeholder 
goals. The revised account starts from the premise that requirements elicitation consists 
of communication acts, and is grounded on the DOLCE ontology [5]. CORE distin-
guishes between non-functional and functional requirements using qualities as in 
DOLCE: (i) A requirement r that refers to a quality q is non-functional; further, if the 
quality type QT of q has an acknowledged shared quality space QS among the stake-
holders, then r is a quality constraint; while if the corresponding QS is not shared 
among the RE participants (hence r is vague for agreed success), then r is a softgoal. (ii) 
If r does not refer to a quality, and refers to a perdurant, then r is a functional goal. In 
addition, stakeholders’ preferences over requirements are captured as evaluations.  

Accordingly, Jureta et al. re-define the “requirements problem” as finding S such 
that 𝐷, 𝑆  |~  𝐺,𝑄,𝐴≻, where Q is a set of softgoals and/or quality constraints, G is a set 
of functional goals, and 𝐴≻ is a relation indicating preferences among combinations of 
D, G and Q instances. S contains specifications in the form of tasks to be carried out, as 
well as AND-refinements of goals into subgoals. The authors also argue that the en-
tailment relation should be non-monotonic (hence, the use of the symbol “|~” instead 
of “⊢”) because newly added domain assumptions or specifications could defeat previ-
ously valid conclusions. 

Since its proposal in 2008, this core ontology has enjoyed considerable attention, 
and has served as the baseline of new research directions in RE [11,12]. However, in 
our experience, its handling NFRs has deficiencies:  

1. It is unable to capture a class of requirements that refer to neither qualities nor 
perdurants, but endurants. E.g., “the user interface shall have a standard menu 
button for navigation”, where “menu button” is an endurant. As a result, this 
FR cannot fit into any of the categories of CORE.  

2. It is difficult to capture requirements that are vague for success but do not re-
fer to qualities. For example, requirements such as “attract customers” and 
“increase sales” refer to perdurants rather than qualities, and are accordingly 
classified as functional goals. However, this conclusion contradicts Jureta et 
al’s claim that “functional goals are Boolean, i.e., true or false”, since these 
examples, like softgoals, have no clear-cut criteria for success.  

3. We have discovered requirements that refer to both qualities and functions. 
For example, although we can classify the requirement “the system shall col-
lect real-time traffic information” as a softgoal according to the core ontology 
(“real-time”, i.e., timeliness, is a quality of traffic information), we are still left 
with the question “is it only an NFR?” It seems to be a combination of func-
tional and non-functional requirements, which can eventually be refined into 
distinct sub-goals.    



2. Ontological Foundations  

In general, we are in line with Jureta et al. [4] that NFRs are requirements on qualities. 
In this section, we go deeper to capture the ontological meaning of quality and use it to 
interpret NFRs. For that, it is important to review some of the concepts defined in UFO 
[7], the adopted foundational ontology in this work. 

Over the years, UFO has been successfully employed to provide ontological seman-
tics and methodological guidelines, as well as for analyzing and redesigning modeling 
languages, standards and reference models in domains ranging from Bioinformatics, 
Enterprise Modeling, Telecommunications, Software Engineering, among others3.  

We present here only a fragment of the UFO containing the categories that are ger-
mane for the purposes of this article (Figure 1). Moreover, we illustrate these categories 
and some contextually relevant relations with UML (Unified Modeling Language) 
diagrams. These diagrams express typed relations (represented by lines with a reading 
direction pointed by >) connecting categories (represented as rectangles), cardinality 
constraints for these relations, subsumption constraints (represented by open-headed 
arrows connecting a sub-category to its subsuming super-category), as well as disjoint-
ness constraints relating sub-categories with the same super-category, meaning that 
these sub-categories do not have common instances. Of course, these diagrams are used 
here primarily for visualization. The reader interested in an in-depth discussion and 
formal characterization of UFO is referred to [7,8,9,13]. 

 
Figure 1 A fragment of UFO representing basic categories (including qualities are related notions) 

We start by distinguishing between individuals and universals. Individuals are enti-
ties that exist in reality possessing a unique identity, while universals are patterns of 
features that are repeatable in a number of different individuals. A concrete individual 
can be either an endurant or a perdurant. Endurants4 do not have temporal parts, and 
persist in time while keeping their identity (e.g. a person and the color of an apple) 
while perdurants (also referred to as events) are composed of temporal parts (e.g. 
storm, heart attack, trip). Substantials are existentially independent endurants (e.g. a 
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person or a car). Moments, in contrast, are existentially dependent on other individuals, 
inhering in these individuals (e.g. someone’s headache and the color of a car). Inher-
ence (symbolized as inh) is a type of non-reflexive, asymmetric and anti-transitive type 
of functional existential dependent relation connecting a moment to its bearer. We 
focus here on intrinsic moments, i.e., moments that are dependent on one single indi-
vidual (e.g., a headache, a color, the disposition of a magnet to attract metallic material). 
Most distinctions made for individuals, mutatis mutandis, also apply to universals; thus, 
we have the counterparts: substantial universal, moment universal and intrinsic mo-
ment universal. As shown in Figure 1, a quality universal is defined as an intrinsic 
moment universal that is associated to a quality structure, which can be either a quality 
dimension or a quality domain.  

UFO’s notions of quality structure, quality dimension and quality domain are 
based on the work of Gardenfors [14,15]. According to this work, for all perceivable or 
conceivable quality universal, there is an associated quality structure in human cogni-
tion. For example, height, mass, and response time are associated with one-dimensional 
structures; other quality universals such as color, taste, and usability are represented by 
several dimensions. For instance, color can be represented in terms of the dimensions 
of hue, saturation and brightness; usability in RE is composed of learnability, operabil-
ity, accessibility, among other dimensions. Moreover, Gardenfors differentiates integral 
and separable quality dimensions: “certain quality dimensions are integral in the sense 
that one cannot assign an object a value on one dimension without giving it a value on 
the other. For example, an object cannot be given a hue without giving it a brightness 
value. Dimensions that are not integral are said to be separable, as for example the 
size and hue dimensions.” [14]. A quality domain is a set of integral dimensions that 
are separable from all other dimensions [14]. A quality region is a convex region C of a 
quality structure (i.e. either a dimension or a domain); C is convex iff: for all pairs of 
points (x, y) in C, all points between x and y are also in C [14]. The value of a quality 
individual can be represented as a point in a quality domain. UFO names this point a 
quality value (which DOLCE calls “quale” [5]). For example, a color quality c of an 
apple a takes its value in a three-dimensional quality domain constituted of the quality 
dimensions hue, saturation and brightness. It is relevant to highlight that in UFO both 
physical (e.g., color, height, shape) and nominal quality types (e.g., social security 
number, the economic value of an asset) are sorts of quality universals and, hence, are 
associated with quality structures. Figure 1 also shows that a quality instantiates a qual-
ity universal and it has a quality value in a quality structure associated with that quality 
universal. Moreover, as an intrinsic moment, a quality inheres in individuals. Finally, in 
pace with DOLCE, if a quality universal is associated to a quality domain, its instances 
bear sub-qualities that take values in each of the dimensions of that domain. For in-
stance, the color of an individual apple is itself a bearer for individual qualities of hue, 
saturation and brightness.   

Besides quality, we include here the category functions as a sub-category of intrin-
sic moments, i.e., as existentially dependent entities. Moreover, we consider functions 
as particular types of dispositions (capacities, capabilities) exhibited by an entity [8]. 
Functions (and dispositions, in general); are potential (realizable) property instances 
manifested through the occurrence of an event that happens if a situation (state of the 
world) of a particular kind obtains. The occurrence of this event, in turn, brings about a 
certain situation in the world [16]. 

In UFO, an agent is a substantial that creates actions, perceives events and to 
which we can ascribe mental states (i.e., intentional moments). Intentionality in UFO 



is intended in a broader sense than “intending something”. Rather, it refers to the ca-
pacity of some properties of individuals to refer to possible situations of reality. Thus, 
“intending something” is a specific type of intentionality termed intention in UFO. 
Intentions  are  intentional  moments  that  represent  an  internal  commitment  of  the  
agent  to  act towards  that  will. A goal is a proposition, and more specifically, the 
propositional content of an intention. Furthermore, a goal is satisfied by a situation iff 
the situation makes true the proposition expressed by that goal. 

3. Non-Functional Requirements and Related Ontological Concepts 

This section (including its subsections) aims at explaining the concepts depicted in 
Figure 2. As already seen, an intention has a goal as propositional content. Goals are 
specialized into NFRs (also named quality goals) and functional requirements (FRs). 
We take that FRs refers to a function (a capability, capacity) that has the potential to 
manifest certain behavior in particular situations. In other words, a FR has a proposi-
tional content that requires of a certain entity to bear a function of a given type. So, 
contra Jureta et al. [4], we take that FRs refer to perdurants only indirectly, i.e., by 
referring to a function, which being a disposition is realizable through the occurrence 
of perdurants of a given type. For example, the “keyword search” function of an online 
shop will be manifested by a process (perdurant) of matching between an input key-
word and the list of keywords in the system in a particular situation (when the keyword 
is given and the search button is clicked) and brings about a certain effect (the matched 
product will be displayed). 

 
Figure 2. Non-functional Requirements and related concepts 

Conversely to FRs, NFRs’ propositional content refers to qualities, i.e., which re-
quires a certain entity to bear a quality or exemplify a quality of a given type. To be 
more specific, we treat NFRs as requirements that require qualities to take values in 
particular quality regions in their corresponding quality structures. In general, quality 
regions can be either crisp (e.g., 0 ~ 5 seconds) or vague (e.g., fast), hence NFRs 
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(quality goals) can be accordingly crisp or vague. We identify those NFRs that specify 
crisp quality regions and define them as quality constraints (QCs).  

As NFRs are goals referring to qualities, one must understand which quality it is 
and in which individual it inheres. Take, for instance, the requirement “The user inter-
face must have a standard format”. The quality in this case is format, while the bearer 
is user interface; standard is a particular region in the interface format quality structure. 
Sometimes, the quality may not be explicit, e.g. “The product should conform to the 
American Disabilities Act”, in which case the quality is regulatory compliance and the 
bearer is the product. 

3.1. NFRs vs. Softgoals 

In our view, the distinction between NFRs and FRs is orthogonal to that of hardgoals 
and softgoals. Traditionally, hardgoals and softgoals are informally differentiated de-
pending on whether they have clear-cut criteria for success (the former) or not (the 
latter) [17]. Here, we take the following stance on these concepts, capturing their dis-
tinction as follows: a hardgoal is a proposition that is objectively satisfied by a given 
set of situations. In contrast, a softgoal is an initial and temporary vague expression of 
intention before the goal at hand is properly refined. As such, we are not able to deter-
mine a priori the set of situations that satisfy a softgoal, i.e., its truthmaking conditions.   

For example, “design the system’s main menu” is a high-level goal and it can be 
considered vague (and thus modeled as a softgoal). In addition to capturing high-level 
vague goals, softgoals are also useful when capturing and analyzing vague NFRs. As 
previously mentioned, an NFR is a goal referring to a quality (type). In this case, a 
softgoal is thus a proposition referring to a vague quality region, meaning that although 
we are aware that such region exists in the quality structure, we do not know where the 
boundaries of that region exactly are. For instance, consider that the aforementioned 
goal is now refined into an NFR: “The menu buttons must have standard length and 
width”. At first, the system’s stakeholders and analyst may have difficulties in mapping 
standard to a specific region in the interface format quality structure. As the analysis 
moves forward, vague NFRs are continuously refined and operationalized (as detailed 
in the sub-sections to come), and hence such vagueness generally disappears. 

The NFR framework [2] models NFRs as softgoals that are not clear for success, 
and on the other side, the CORE ontology [4] treats functional requirements (FRs) as 
hardgoals i.e. goals whose satisfaction have a determinate agent-independent truth-
value. However, we claim that these definitions of NFR/FR and hardgoal/softgoal are, 
in fact, orthogonal, allowing us to identify NFRs that are in fact hardgoals as well as 
FRs that are softgoals. Moreover, the categories of NFR and FR are not disjoint, indi-
cating that a requirement can fall into both categories. See Section 4 for some interest-
ing examples that illustrate the usefulness of this orthogonality principle. 

3.2. Refining NFRs 

Making NFRs measurable often involves refinement operations, where a requirement r 
is refined into r’ such that r’ is more precise and/or measurable. Often, refinement 
consists in conceptually deconstructing the NFR’s referred qualities. One way to do 
this is to identify qualities that inhere in the quality associated with an NFR. For exam-
ple, a security quality can be refined in its sub-qualities (i.e., qualities inhering in it) 
confidentiality, integrity and availability [18]. A second way to do this refinement is to 



identify whether this quality is a resultant quality, which can be conceptually reduced 
to qualities of parts of the bearer of the original quality. For instance, we could refine 
the previously stated requirement “The user interface must have standard format” by 
reducing the quality at hand in terms of qualities of parts of the bearer (the interface). 
Since the interface is usually composed of buttons, fields, icons etc., “The menu buttons 
must have standard format” illustrates a possible refinement of the previous require-
ment.  

As an example of refining an NFR by decomposing its quality, format with respect 
to buttons may, for instance, be decomposed into “size”, “shape”, and “color”. Consid-
ering “size”, it may be further decomposed into “height” and “width”. Hence, a con-
junct of a further refinement is “The menu buttons must have standard height and 
width”.  

3.3. Operationalizing NFRs 

To make NFRs measurable, we need to operationalize them by constraining the re-
ferred qualities so that these qualities take values in crisp quality regions (i.e., absolute-
ly defined regions). That is, operationalizing NFRs as quality constraints (QCs). 

 We may operationalize the NFR “The menu buttons must have standard length 
and width” by defining the quality constraint “The menu buttons must have height 0.75 
cm and width 1.75 cm”. While in this example, qualities are constrained to have specif-
ic quality values, in other cases, operationalization of an NFR may concern a region, as 
in “The search functionality must be efficient”, operationalized by “The search results 
shall be returned within 30 seconds after the user enters search criteria”. In our 
framework, the value “efficient” here is associated to a region in the time quality di-
mension, comprehending quality values from 0 to 30 seconds.   

Note that terms such as “efficient” and “low” may refer to different quality regions, 
depending on the type of the quality bearer. For instance, take the requirement “Learn-
ing to operate the login functionality must be efficient”. This NFR may be operational-
ized by “The user should learn how to operate the login functionality within 3 minutes”. 
Thus “efficient” for learning the login functionality and for returning search results 
(previous example) may map to different regions in the time quality dimension. 

3.4. Gradable NFRs 

Consider the satisfaction of a quality constraint (QC) as a function, which results in “1” 
(if the QC is satisfied) and “0” (if unsatisfied). The key point to determine the satisfac-
tion of a QC is to understand if the measured or perceived quality value is a member of 
the region to which the QC is associated. If yes, the satisfaction function returns “1” 
and otherwise, it returns “0”. For example, considering “The search results shall be 
returned within 30 seconds after the user enters search criteria” (constraint defined 
region: 0 < search time ≤ 30 sec.), if the runtime measurement of a search duration 
results in 25 seconds, the QC is satisfied; if the result is 32 seconds, then it is not. 

However, this may be too strong a condition. Perhaps a 32 second response is 
“good enough”. In many cases, “good enough” performance is sufficient, i.e., degree of 
fulfillment of a QC is what matters, rather than black-or-white fulfillment. Thus, in 
order to capture the intended semantics of many NFRs communicated by requirement 
engineers, the satisfaction function should not be a binary function but should instead 
return a graded satisfaction value in the interval between “0” and “1”. To account for 



such phenomena, we propose the definition of gradable NFRs, based on the conceptual 
space theory [14] and some of its recent extensions of the original theory as proposed 
in [19][20].     

In Gardenfors [14], the definition of quality region in the quality structure is based 
on a combination of prototype theory [21] and the mathematical technique of Voronoi 
diagrams [22]. Prototype theory claims that some instances of a concept are more rep-
resentative or typical than others (thus termed prototypes). Thus, the prototype of a 
quality is nothing other than a point in its quality structure. Creating Voronoi diagrams 
is a very general technique and may be applied to any metrical space in order to divide 
the space into cells. Each cell has a center and it contains all and only those points that 
lie no closer to the center of any other cell than to its own center (please see Figure 3) 
(A) for an illustration). Combining prototype theory and this technique consists in de-
fining Voronoi diagrams by using the qualities prototypes as their central points.  

 
Figure 3. Two dimension (A) Voronoi Diagram and (B) Collated Voronoi Diagram (adapted from [19]) 

To overcome the limitations in dealing with gradable concepts, Douven et al. [19] 
extend this approach by assuming that conceptual spaces may contain prototypical 
regions rather than isolated prototypical points. Using these prototypical regions, they 
develop a technique to generate what they call Collated Voronoi Diagrams. This tech-
nique starts by considering the set of all possible selections of exactly one prototypical 
point from each prototypical region. Each element of this set (a vector of prototypical 
points coming from different regions) can be used to generate a different diagram of 
the quality structure S. Let us call the set of all these diagrams VS. The Collated Voro-
noi Diagram can be generated by projecting all elements in VS onto each other (thus 
overlaying the resulting diagrams). Figure 3 (B) depicts this idea. In the resulting dia-
gram, the regions created by the tessellation have thicker borders than in the traditional 
Voronoi diagrams. We term these regions Gradable Regions and the borders that are 
shared by these regions Borderline regions. 

  Decock and Douven [20] take one step further in this extended theory. As they 
point out, Figure 3 (B) is misleading in making one think that the transition from a 
crisp region (i.e., one of the white polygons/polyhedrons in the figure) to a borderline 
region is itself sharp. According to them, this interpretation would be phenomenologi-
cally incorrect and we should treat this transition as also being a smooth one. This idea 
is illustrated by the authors with the following example: suppose we have four proto-
typical regions, each consisting of two points {a,b}, {c,d}, {e,f} and {g,h}, each repre-
senting a prototype region of a particular concept. Now, suppose we generate the VS in 
the manner previously explained (i.e., VS would contain 24 = 16 members in this case). 



The authors then use the resulting set VS to provide an interpretation to the idea of 
graded membership function of a particular point to a concept X: a point in the quality 
structure S belongs to concept value X to degree D that equals the number of members 
of VS that locate the point in the cell associated with one of the two prototypical points 
of the region associated with X divided by the total number of members of VS. Figure 3 
(C) illustrates this idea. In this example, the point i belongs to the concept associated 
with region {a,b} to the degree 0.5, since 8 of the 16 members of VS locate i in the cell 
associated with a member of {a,b}. By the same reasoning, j, belongs to that concept 
by a degree of 0.25. 

By adopting this view, we define QCs as follows: a QC is an NFR that specifies a 
crisp region R in a quality structure S. As such, the satisfaction of a QC for a bearer B is 
defined by the membership (or lack thereof) of the proper quality value of B in the 
region R. A gradable NFR instead refers to a gradable region R’ of quality structure S’ 
(which is a member of a set of prototypical regions associated with S’). As such, the 
satisfaction of an NFR to a certain degree is defined by the graded membership of the 
proper quality value of B in region R’.  

4. Practical Implications 

We show in this section how the ontological interpretation of NFRs (1) provides opera-
tional guidelines for distinguishing between non-functional and functional require-
ments (Subsection 4.1); (2) supports the development of an ontology-based require-
ments specification language (Subsection 4.2); and (3) enables the analysis of the satis-
faction of gradable NFRs (Subsection 4.3).  

4.1. Distinguishing between non-functional and functional requirements 

The first benefit of capturing the ontological meaning of NFRs is conceptual clarifica-
tion. As we will demonstrate, the ontological interpretation proposed here enables us to 
clearly distinguish between non-functional and functional requirements.  

Despite many efforts devoted to NFRs, the question “what are NFRs?” is still de-
bated [23]. On treating NFRs, there are two general approaches in the literature. One 
takes the stance that functional requirements describe what a system should do, while 
non-functional ones specify how well the system should perform its functions [1]. The 
other is to treat everything that is not a functional requirement (i.e., not related to what 
a system should do) as a non-functional one (i.e., as a sort of dispersive class defined 
by negation) [24]. However, when put into practice, both criteria are deficient. For 
instance, how does one classify Ex. 1 below, which specifies a function (“support”) 
that will not be performed by the system but by an external agent (“the corporate sup-
port center”)? One may treat it as an NFR by following the second criterion, but this is 
conceptually incorrect. In fact, Ex. 1 will be classified as a FR in our proposal (because 
it requires a function of an entity in the system-to-be ecosystem).  

Ex.1: The product shall be supported using the corporate support center. 
Ex.2: The system shall have a standard navigation button for navigation. 
Ex.3: The system shall help administrators to analyze failures/exceptions. 
Ex.4: The transportation system shall collect real-time traffic information. 



Jureta et al. [4] have made the first step in grounding this distinction on qualities in 
the foundational ontology DOLCE [5]. As we have discussed in Section 1, their re-
quirements ontology still has deficiencies: it is not able to categorize requirements like 
Ex. 2 (referring to neither qualities nor perdurants), Ex. 3 (referring to a perdurant but 
being vague for success) and Ex. 4 (referring to both perdurants and qualities).    

In our framework, if a requirement refers to a particular quality universal, then it 
is non-functional; if it refers to a function (in the ontological sense), then it is func-
tional. Adopting this guideline, we can easily classify Ex. 2 as functional, because it 
concerns a function that is manifested by the navigation button. Note that the distinc-
tion between NFR and FR is orthogonal to the one between hardgoal and softgoal. 
Hence, an NFR can have a clear satisfaction criterion while a FR can also be vague. For 
instance, Ex. 3 is a FR but one that has a subjective criterion of satisfaction (see section 
3.1). Moreover, the classes of NFRs and FRs are not mutually exclusive. For example, 
Ex. 4 specifies a desired function “collect traffic information” but also refers to a quali-
ty (timeliness) of “collecting traffic information”. 

We have evaluated our framework by applying it to the PROMISE requirements 
dataset [25], which includes 370 NFRs crossing 15 software projects. Using our onto-
logical classification of requirements, we identified 187 NFRs, 52 FRs, and 61 re-
quirements that constitute a combination of FRs and NFRs (the remaining 70 ones are 
identified as function constraints or domain assumptions). For example, “The website 
shall prevent the input of malicious data”, originally labeled as a security NFR, should 
actually be a FR since it refers to a “prevent” function. The result suggests that our 
framework is effective to help distinguishing between NFRs and FRs used in practice. 
For more details on the evaluation, interested readers can refer to our companion paper 
[26]. 

4.2. Representing Non-functional Requirements  

A key benefit of understanding the ontological foundation of NFRs is that it provides 
support for designing requirement modeling languages. Recall from Figure 1 that UFO 
uses two fundamental predicates involving qualities: (1) inheres(q#, b#) relates a par-
ticular quality q# to its bearer b# (by convention we use ‘#’ to indicate individuals); (2) 
hasValue(q#, v) relates a particular quality q# to the quality value v it currently has. We 
rephrase this by defining a single, higher-order function hasQV as shown in Eq. 1 be-
low, in which QUS is a set of all quality universals, e.g., Color, Cost, and Size; BearerT 
is a bearer type; QVT is a quality value type, and ‘:’ is used to give type signatures of 
functions. This function takes as arguments a quality universal QU (e.g., Cost) which is 
of type QUS (denoted as QU::QUS), an individual bearer b#::BearerT (e.g., trip#), and 
returns the quality value v::QVT of a particular quality q#::QU (e.g., cost#) that inheres 
in b#. Based on this function, an NFR that refers to a single individual having quality 
value in region QRG is written as Eq. 2, with a formal characterization of its intended 
semantics provided by Eq. 3; this says that b# shall bear a quality q# of type QU, and 
q# shall have a quality value v be in the desired region QRG. For example, the re-
quirement “the cost of trip# should be low” can be now captured as Eq. 4, 

hasQV : QUS → BearerT → QVT  (1) 

hasQV (QU)(b#) :< QRG (2) 

∃q#::QU, inheres(q#, b#) ˄ [∀v hasValue(q#, v) → in(v, QRG)] (3) 



hasQV (Cost)(trip#) :< low (4) 
Some requirements may concern qualities of a set of individuals that are instances 

of a type (e.g., all the trips from Berlin to Paris in July, 2013, or all the executions of a 
software function). For this purpose, we apply hasQV(QU)(b#) to the set of individuals 
(i.e., bearers) to get their quality values. By function overloading, we define a new 
function with the same name hasQV as shown in Eq. 5, in which ℘(BearerT), a short-
hand of PowerSet(BearerT), is the type of a set of individual bearers, each of which is 
of type BearerT, ℘(QVT) is the type of a set of quality values. Accordingly, an NFR 
that refers to a set of individuals is expressed as Eq. 6, of which the intended semantics 
is shown in Eq. 7. Hence a requirement like “the cost of all trips from A to B at period 
T should be low” can be represented as in Eq. 8, where Trip' is a subtype of Trip (de-
noting the trips from A to B at period T).    

hasQV : QUS → ℘(BearerT) → ℘(QVT)  (5) 

hasQV (QU)(BearerT) :< QRG (6) 

∀b#::BearT, ∀q#::QU, inheres(q#, b#) → [∀v hasValue(q#, v)→in(v, QRG)] (7) 

hasQV (Cost)(Trip') :< low (8) 
These formulations characterize the ontological foundation of NFRs, and provide 

us with the semantics that a requirements modeling language (RML) should capture. 
We introduce “QU(BearerT) :< QRG” as an abbreviation for “hasQV(QU)(BearerT) :< 
QRG”, and use ‘:=’ to assign names to expressions, as in Ex.9.  

NFR#1 := Processing time (keyword search) :< less than 30 seconds 
NFR#2 := Cost ({trip#}) :< low (9) 

Here NFR#1 requires each manifestation of keyword search to take less than 30 
seconds while NFR#2 requires a particular trip to have low cost. Moreover, this syntax 
can be further extended to capture more complex NFRs that concern universality (e.g., 
the processing time of keyword search shall be less than 30 seconds 90% of the time) 
and agreement (e.g., 80% of the users report the interface is appealing), which are 
common in practice. We further explore representation of such complex NFRs using a 
compositional language in our companion paper [26]. 

4.3. The satisfaction of gradable NFRs  

Specifying gradable NFRs can be quite useful in practice since, in many cases (as ex-
emplified in Section 3.4), it may be enough to “almost” reach the satisfaction of an 
NFR. Thus, another practical application of our ontological interpretation to RE regards 
the analysis of the satisfaction of gradable NFRs. This can be accomplished by using 
the graded membership calculation described in Section 3.4.  

For instance, suppose that the associated quality value region low of the gradable 
NFR NFR#1 in Eq. 9 is represented by two prototype values 500€ and 700€. Similarly, 
we can use 800€ and 1000€, and 1200€ and 1500€ to represent the region medium and 
high. Given the three prototype regions, the Vs will include 8 simple diagrams. Now if 
we have a cost value as 740€, then we will have 6 out of 8 diagrams classify it to the 
region low. Thus, that NFR#1 is satisfied to a degree of 0.75. Interested readers can 
refer to the calculation details available online 5. The interesting point here is that we 

                                                
5 http://goo.gl/xXZ24E  



can use prototype values to represent a region, and then adopt (collated) Voronoi dia-
grams to reason about the graded membership without the need of inventing made-up 
numbers as that in fuzzy logic [27].   

5. Conclusions 

We propose an ontology-based interpretation of NFRs by adopting and applying the 
UFO ontology. While doing that, we analyze how our proposal compares with and 
extends the CORE requirement ontology [4], which to the best our knowledge, pro-
vides the only existing ontological account of NFRs.  

In a nutshell, we treat both NFRs and FRs as goals and differentiate them by 
claiming that the former refer to qualities while the latter are functions. From an onto-
logical viewpoint, qualities and functions belong to different ontological sub-categories 
of intrinsic moments. A quality is a type of categorical property that is manifested 
whenever it exists and which is directly associated to a quality structure. A function, in 
contrast, is a type of dispositional property that is only manifested under certain cir-
cumstances and via the execution of an event. Moreover, as dispositions, functions do 
not have values which are directly associated to quality structures.  

Besides presenting the aforementioned ontological interpretations, this paper dis-
cusses how these interpretations differ from existing RE approaches to non-functional 
versus functional requirements, as well as implications for RE practices.  

For future work, we intend to conduct more evaluations by means of case studies. 
Moreover, we also aim at developing our initial requirements analysis methodology [6], 
by grounding it on the proposed ontology.  
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