
CIS 068

Welcome to CIS 068 !

1. GUIs: JAVA Swing

2. (Streams and Files we‘ll not cover this in this semester, just a review)

CIS 068

Overview

• JAVA and GUIs: SWING

– Container, Components, Layouts

– Using SWING

• Streams and Files

– Text Files, Binary Files

CIS 068

The First Swing Program
Example:

The First Swing Program

CIS 068

The GUI

Container: JFrame

Layout: BorderLayout

North

Center

Components: JLabel JButton, containing

an ImageIcon

CIS 068

Steps to build a GUI

1. import package

2. set up top level container

(e.g. JFrame)

3. apply layout

(e.g. BorderLayout)

4. add components

(e.g. Label, Button)

5. REGISTER listeners

6. show it to the world !

CIS 068

The Source
1. import package

2. set up top level container

(e.g. JFrame)

3. apply layout

(e.g. BorderLayout)

4. add components

(e.g. Label, Button)

5. REGISTER listeners

6. show it to the world !

CIS 068

Swing Components

• Top Level Containers

• General Purpose Containers

• Special Purpose Containers

• Basic Controls

• Uneditable Information Displays

• Interactive Displays of Highly Formatted
Information

CIS 068

Swing Components

Top Level Containers

Your application usually extends one of these classes !

CIS 068

Swing Components

General Purpose Containers

CIS 068

Swing Components

General Purpose Containers

• typically used to collect Basic Controls
(JButton, JChoiceBox…)

• Added to layout of top-level containers

JPanel

JFrame

CIS 068

Swing Components

Special Purpose Containers

CIS 068

Swing Components

Special Purpose Containers

• If you want to use them, go to
java.sun.com

CIS 068

Swing Components

Basic Controls

CIS 068

Swing Components

Basic Controls

• Unlike ‘passive’ containers, controls are
the ‘active’ part of your GUI

Remark: containers aren’t only ‘passive’, they are also ‘active’ sources of events,

eg. Mouse-events.

• Being the visible part of your interface,
controls bring your application to life

• Controls are event sources !

• Objects of your application register to
controls to handle the events

CIS 068

Swing Components

Uneditable Information Displays

CIS 068

Swing Components

Interactive Displays of Highly Formatted
Information

CIS 068

Swing Components

Interactive Displays of Highly Formatted
Information

• Define standard interfaces for
frequently needed tasks

... go to java.sun.com for further
information ...

CIS 068

Layout Management

How to glue it all together:

The Layout Management

CIS 068

Layout Management

• The process of determining the size and

position of components

• A layout manager is an object that performs

layout management for the components

within the container.

• Layout managers have the final say on the

size and position of components added to a

container

• Using the add method to put a component in

a container, you must ALWAYS take the

container's layout manager into account

CIS 068

Layout Management

... and finally, the layout manager

preserves the world from home

made layout-design !

CIS 068

Layout Management

Java supplies five commonly used layout
managers:

1. BorderLayout

2. BoxLayout

3. FlowLayout

4. GridBagLayout

5. GridLayout

CIS 068

Layouts

BorderLayout

Position must be specified, e.g. add (“North”, myComponent)

CIS 068

Layouts

BoxLayout

The BoxLayout class puts

components in a single row

or column.

It respects the components‘

requested maximum sizes.

CIS 068

Layouts

FlowLayout

FlowLayout is the default layout manager for every JPanel.

It simply lays out components from left to right, starting new

rows if necessary

CIS 068

Layouts
GridBagLayout

GridBagLayout is the most sophisticated, flexible layout manager the

Java platform provides. If you really want to use it, go to java.sun.com …

CIS 068

Layouts
GridLayout

GridLayout simply makes a bunch of components equal in size and

displays them in the requested number of rows and columns .

CIS 068

Using Components

Examples:

• Using a JButton
• Using a JSlider
• Using a JCheckBox

CIS 068

Using a JButton

Some Constructors:

Creates a button with initial text and
an icon

JButton(String text,

Icon icon)

Creates a button with textJButton(String text)

Creates a button with an iconJButton(Icon icon)

Creates a button with no text or iconJButton()

CIS 068

Using a JButton

Some Methods:

Used to specify button if listener is

registered to multiple buttons (see

ActionEvent.getActionCommand())

setActionCommand

(String text)

Sets background color

Inherited from JComponent

setBackground(

Color color)

Specifies Font (Type, Style, Size)

Inherited from JComponent

setFont(Font font)

Registers ActionListener to JButton
Inherited from AbstractButton

addActionListener(
ActionListener a)

CIS 068

Using a JSlider

Some Constructors:

Creates a slider with the specified

orientation and the specified minimum,
maximum, and initial values.

JSlider(
Int orientation

int min, int max,

int value)

Creates a horizontal slider using the

specified min, max and value.
JSlider(
int min, int max,

int value)

Creates a horizontal slider with the
range 0 to 100 and an initial value of 50

JSlider()

CIS 068

Using a JSlider

Some Methods:

Sets the slider’s valuesetValue(int value)

Returns the slider’s valueint getValue()

Registers ChangeListener to slideraddChangeListener
(ChangeListener cl)

CIS 068

Using a JCheckBox

Some Constructors:

Creates a check box with text and icon,
and specifies whether or not it is initially

selected.

JCheckBox(

String text,

Icon icon,
boolean selecte

d)

Creates an initially unselected check box
with text.

JCheckBox(

String text)

Creates an initially unselected check box
button with no text, no icon.

JCheckBox()

CIS 068

Using a JCheckBox

Some Methods:

Gets the state of checkbox.
calling method often saves from registering to the

checkbox !

boolean
getSeleted()

Sets the state of checkbox

Inherited from AbstractButton

setSelected(

boolean select)

Registers ItemListener to checkbox

Inherited from AbstractButton

addItemListener
(ItemListener il)

CIS 068

Custom Painting

creating your own graphics:

Custom Painting

CIS 068

Custom Painting
Decide which superclass to use, for example:

• JPanel: Generating and displaying graphs in top of a
blank or transparent background

• JLabel: Painting on top of an image

• JButton: custom button

• …

Every class derived from JComponent can be used
for custom drawing !

(Recommended: JPanel)

CIS 068

Custom Painting

The Graphics Object
• provides both a context for painting and

methods for performing the painting.
• Example of methods

– drawImage
– drawString

– drawRect

– fillRect
– setColor

– …

• passed as argument to the
paintComponent - method

CIS 068

Custom Painting

The paintComponent method

• Method of class JComponent
• Inherited to all subclasses, e.g. JPanel,

JButton,…
• The place where all custom painting

belongs !
• Invoked by the event-scheduler or by the

repaint() - method

CIS 068

Using Swing

(demo program)

CIS 068

At last...
This was a BRIEF overview and introduction to SWING.

SWING has MUCH more to offer, see

• http://java.sun.com/docs/books/tutorial/uiswing/
• http://java.sun.com/j2se/1.4.1/docs/api/

CIS 068

Part II

JAVA I/O:

Streams and Files

CIS 068

I/O
• Usual Purpose: storing data to ‘nonvolatile‘

devices, e.g. harddisk

• Classes provided by package java.io

• Data is transferred to devices by ‘streams‘

Program Device
output - stream

Program Device
input - stream

CIS 068

Streams
JAVA distinguishes between 2 types of streams:

• Text – streams, containing ‘characters‘

I ‘ M A S T R I N G \nProgram Device

•Binary Streams, containing 8 – bit information

01101001Program Device11101101 00000000

CIS 068

Streams
Streams in JAVA are Objects, of course !

Having

• 2 types of streams (text / binary) and

• 2 directions (input / output)

results in 4 base-classes dealing with I/O:

1. Reader: text-input

2. Writer: text-output

3. InputStream: byte-input

4. OutputStream: byte-output

CIS 068

Streams
InputStream

OutputStream

Reader

Writer

binary

text

CIS 068

Streams

• InputStream, OutputStream, Reader, Writer are
abstract classes

• Subclasses can be classified by 2 different
characteristics of sources / destinations:

– For final device (data sink stream)
purpose: serve as the source/destination of the
stream
(these streams ‘really’ write or read !)

– for intermediate process (processing stream)
Purpose: alters or manages information in the stream
(these streams are ‘luxury’ additions, offering methods for convenient

or more efficient stream-handling)

CIS 068

I/O: General Scheme

In General:
Reading (writing):

– open an input (output) stream

– while there is more information

read(write) next data from the stream

– close the stream.

In JAVA:
– Create a stream object and associate it with a disk-file

– Give the stream object the desired functionality

– while there is more information

read(write) next data from(to) the stream

– close the stream.

CIS 068

Example 1

Writing a textfile:

– Create a stream object and

associate it with a disk-file

– Give the stream object the

desired functionality

– write data to the stream

– close the stream.

CIS 068

Writing Textfiles

Class: FileWriter

Frequently used methods:

CIS 068

Writing Textfiles

Using FileWriter

• is not very convenient (only String-output
possible)

• Is not efficient (every character is written in
a single step, invoking a huge overhead)

Better: wrap FileWriter with processing streams

• BufferedWriter

• PrintWriter

CIS 068

Wrapping Textfiles

BufferedWriter:

• Buffers output of FileWriter, i.e. multiple
characters are processed together,
enhancing efficiency

PrintWriter

• provides methods for convenient
handling, e.g. println()

(remark: the System.out.println() – method is a method of the
PrintWriter-instance System.out !)

CIS 068

Wrapping a Writer

A typical codesegment for opening a
convenient, efficient textfile:

FileWriter out = new FileWriter("test.txt");

BufferedWriter b = new BufferedWriter(out);

PrintWriter p = new PrintWriter(b);

Or with anonymous (‘unnamed‘) objects:

PrintWriter p = new PrintWriter(

new BufferedWriter(

new FileWriter("test.txt")));

CIS 068

Reading Textfiles

Class: ReadText

Frequently used Methods:

(The other methods are used for

positioning, we don’t cover that here)

CIS 068

Wrapping a Reader
Again:

Using FileReader is not very efficient. Better

wrap it with BufferedReader:

BufferedReader br =

new BufferedReader(

new FileReader(“name“));

Remark: BufferedReader contains the method readLine(), which is
convenient for reading textfiles

CIS 068

EOF Detection

Detecting the end of a file (EOF):

• Usually amount of data to be read is not known

• Reading methods return ‘impossible‘ value if
end of file is reached

• Example:
– FileReader.read returns -1

– BufferedReader.readLine() returns ‘null‘

• Typical code for EOF detection:
while ((c = myReader.read() != -1){ // read and check c

...do something with c

}

CIS 068

Example 2: Copying a Textfile
import java.io.*;

public class IOTest

{

public static void main(String[] args)

{

try{

BufferedReader myInput = new BufferedReader(new
FileReader("IOTest.java"));

BufferedWriter myOutput = new BufferedWriter(new
FileWriter("Test.txt"));

int c;

while ((c=myInput.read()) != -1)

myOutput.write(c);

myInput.close();

myOutput.close();

}catch(IOException e){}

}

}

CIS 068

Binary Files

• Stores binary images of information
identical to the binary images stored in
main memory

• Binary files are more efficient in terms of
processing time and space utilization

• drawback: not ‘human readable‘, i.e. you
can‘t use a texteditor (or any standard-
tool) to read and understand binary files

CIS 068

Binary Files

Example: writing of the integer ’42‘

• TextFile: ‘4‘ ‘2‘ (internally translated to 2
16-bit representations of the characters
‘4‘ and ‘2‘)

• Binary-File: 00101010, one byte

(= 42 decimal)

CIS 068

Writing Binary Files

Class: FileOutputStream

... see FileWriter

The difference:

No difference in usage, only in output format

CIS 068

Reading Binary Files

Class: FileInputStream

... see FileReader

The difference:

No difference in usage, only in output format

CIS 068

Binary vs. TextFiles

Not efficientHuman readable,
contains redundant

information

Text

Preinformation
about data needed
to understand
content

Efficient in terms of
time and space

Binary

conpro

CIS 068

Binary vs. TextFiles

When use Text- / BinaryFiles ?

• ALWAYS use TextFiles for final results if

there’s no imperative reason to favor efficiency against readability.

Example: SIP - Standard

• Binary Files might be used for non-final
interchange between programs

• Binary Files are always used for large
amount of data (images, videos etc.), but

there’s always an exact definition of the meaning of the bytestream

Example: JPG, MP3, BMP

CIS 068

... outlook
Next time:

• Exception handling

• Other types than Files (Console,
Serializing)

