Biologia Computacional - 2004/2

11/23/04

Aula 3: Alinhamento Local

Instrutor: Berilhes Borges Garcia Escriba: Suelen Marconsini Loureiro

1 Introdução

Alinhamento global é muito utilizado para comparar membros de uma mesma família de proteínas:

- frequentemente de tamanho similar (ex: globulinas).
- de modo a inferir a história evolutiva.

Por outro lado, alinhamento local é mais útil para comparar sequências de DNA de espécies diferentes e comparar proteínas de famílias diferentes.

O problema do alinhamento local com relação a duas strings $S_1[1...n]$ e $S_2[1...m]$ pode ser resolvido em tempo O(nm) (Smith & Waterman 1981). Note que existem $\theta(n^2m^2)$ pares possíveis de substrings!

Suposição útil: a similaridade de duas strings vazias é zero.

2 Alinhamento local de sufixos

Considere primeiro uma versão mais restrita do problema:

Dado índices $i \leq n$ e $j \leq m$, o problema do alinhamento local de sufixos consiste em encontrar um sufixo α de $S_1[1...i]$ e um sufixo β de $S_2[1...j]$ de similaridade máxima (que nós denotamos por v(i,j)).

Exemplo: Assuma que os escores são s(x,y)=2 quando x=y, e s(x,y)=-1 quando $x\neq y$ (para qualquer $x,y\in \sum'$).

Considere as strings:

Então:

•
$$v(3,4) = 2 \ (\alpha = \beta = c)$$

•
$$v(4,5) = 1 \ (\alpha = cf, \beta = cd)$$

•
$$v(5,5) = 3 \ (\alpha' = f_{-}d, \beta = fcd)$$

Denote o alinhamento local ótimo por v^* .

Teorema 1.

$$v^* = \max\{v(i,j)|i \le n, j \le m\}$$

$$\tag{1}$$

Proof. 1. $v^* \ge \max\{v(i,j)|i\le n, j\le m\}$ (alinhamento local de sufixos é um caso especial do alinhamento local).

- 2. Assuma que v^* é a similaridade das substrings α e β terminando nas posições i^* e j^* , respectivamente. Isto implica que α e β são sufixos de $S_1[1...i^*]$ e $S_2[1...j^*]$, respectivamente. Portanto, $v^* \leq \max\{v(i,j)|i\leq n,j\leq m\}$.
- 3. (1) e (2) implicam o teorema.

Corolário 1. Se $v(i^*, j^*) = \max\{v(i, j)|i \leq n, j \leq m\}$, então sufixos α de $S_1[1...i^*]$ e β de $S_2[1...j^*]$, cuja similaridade é $v(i^*, j^*)$, formam uma solução para o problema do alinhamento local.

• Como determinar $i^*, j^*, \alpha \in \beta$?

Por programação dinâmica.

2.1 Recorrências para o alinhamento local de sufixos

Caso base: v(i,0) = v(0,j) = 0 (você sempre pode escolher a string vazia)

Caso indutivo: (i, j > 0)

Como os sufixos α de $S_1[1...i]$ e β de $S_2[1...j]$ podem ser alinhados de forma ótima? Existem 4 possibilidades.

- 1. Eles poderiam ser strings vazias \rightarrow escore v(i,j)=0
- 2. $S_1[i]$ contra $S_2[j] \rightarrow$ escore $v(i-1,j-1)+s(S_1[i],S_2[j])$
- 3. $S_1[i]$ contra espaço \rightarrow escore $v(i-1,j)+s(S_1[i],_)$
- 4. $S_2[j]$ contra espaço \rightarrow escore $v(i,j-1)+s(_,S_2[j])$

O ótimo para v(i,j) é obtido escolhendo-se o máximo das possibilidades acima.

$$v(i,j) = \max \begin{cases} 0 \\ v(i-1,j-1) + s(S_1[i], S_2[j]) \\ v(i-1,j) + s(S_1[i], _) \\ v(i,j-1) + s(_, S_2[j]) \end{cases}$$
 (2)

A tabela de v(i, j), com ponteiros, pode ser construída utilizando-se esra recorrência, exatamente como antes.

O valor máximo v^* é encontrado procurando todas as células da tabela, digamos que seja a célula (i^*, j^*) . Substrings α e β com similaridade v^* são encontradas seguindo-se os ponteiros da célula (i^*, j^*) para uma célula (i^i, j^i) com $v(i^i, j^i) = 0$. Então $\alpha = S_1[i^i...i^*]$ e $\beta = S_2[j^i...j^*]$.

Teorema 2. O problema do alinhamento local entre as strings $S_1[1...n]$ e $S_2[1...m]$ pode ser resolvido em tempo O(nm).

Observações:

- Ao invés de um par (α, β) de substrings, um certo número de substrings similares, digamos com similaridade acima de um certo valor, podem ser encontrados de forma semelhante.
- Note que esquemas de pontuação apropriados são necessários para encontrar alinhamentos locais significativos.

3 Gaps

Um gap é uma sequência consecutiva de espaços em um alinhamento.

Alinhamentos com gaps correspondem melhor a alguns fenômenos biológicos que nós tentamos modelar.

- Uma deleção ou inserção de uma substring de DNA "frequentemente" ocorre como um evento mutacional único.
- Gaps podem algumas vezes representar características importantes para inferir a história evolutiva de um conjunto de strings.

Como penalizar os gaps?

Existem várias possibilidades de atribuição de custos aos gaps em um alinhamento: constante, afim, convexo e arbitrário.

O modelo constante é o mais simples.

Ajuste s(x, x) = s(x, x) = 0 para todo caracter x, e a cada gap atribua um peso W_g (independente do tamanho do gap).

Assim nós temos que encontrar um alinhamento que maximize

$$\sum_{i=1}^{l} (s(S_1'[i], S_2'[i])) - G.W_g$$

onde G é o número total de gaps.