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SUMMARY

A proportional-integral-derivative (PID) control approach is developed, implemented and investigated
numerically in conjunction with continuation techniques for nonlinear problems. The associated algorithm
uses PID control to adapt parameter stepsize for branch—following strategies such as those applicable
to turning point and bifurcation problems. As representative continuation strategies, incremental Newton,
Euler–Newton and pseudo-arclength continuation techniques are considered. Supporting numerical exper-
iments are conducted for finite element simulation of the ‘driven cavity’ Navier–Stokes benchmark over
a range in Reynolds number, the classical Bratu turning point problem over a reaction parameter range,
and for coupled fluid flow and heat transfer over a range in Rayleigh number. Computational performance
using PID stepsize control in conjunction with inexact Newton–Krylov solution for coupled flow and heat
transfer is also examined for a 3D test case. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Continuation techniques are fundamental to successful numerical simulation of many nonlinear
problems. Of particular interest are steady-state problems where one is seeking to construct approx-
imate solutions of problems that may exhibit multiple solutions for given parameter values and
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where the solution behavior is of interest across a wide parameter range. In such cases, it is a
common practice to employ some form of incremental continuation, usually in a physical parameter
of interest such as the Reynolds number (Re) in viscous flow problems, a reaction parameter (�) in
the Bratu problem or the Rayleigh number (Ra) in coupled fluid flow and heat transfer considered
later. For example, in viscous incompressible Navier–Stokes simulations one may begin at Re=0
and compute the simpler linear problem solution for Stokes flow. Then, using this starting solution,
the Reynolds number can be incremented and the nonlinear Navier–Stokes problem solved. In
turn, this solution becomes the starting iterate for the next incremental step and, so on to deter-
mine solutions along a continuation path. Such a set of solutions is also said to define a ‘solution
branch’. At each step in Re the solution obtained at the end of the previous step provides the
starting iterate for, say, Newton iterative solution at the next value of Re. Provided the step in
Re is not too large, this procedure assists in providing a starting iterate, that is, in the domain of
attraction of Newton’s method for each successive nonlinear solve along the path. This type of
approach is generally referred to as incremental continuation in the physical parameter. A standard
scheme is to select a fixed step size in the parameter and a simple modification is to repeat the
step at half the parameter increment if Newton iteration fails. Similarly, one can elect to double
the step size if Newton converges in very few iterations. Another extension of this continuation
algorithm is obtained by differentiating the nonlinear problem with respect to the parameter, and
then integrating numerically with respect to this ‘time-like’ parameter using, for instance, an Euler
integration scheme. This is referred to as an Euler–Newton variant of the continuation scheme. The
Euler integration step provides a better starting iterate for Newton iteration at the next parameter
level. Once again, the step size can be adjusted adaptively as integration proceeds. This concept
is very similar to that used in time integration of evolution problems where the timestep during
integration is varied similarly. Of course, there are strategies for estimating time truncation error
to adjust the timestep or the order of the time integrator. Moreover, feedback control concepts may
be applied to adjust the timestep [1–3]. A key goal in the present study is to extend this feedback
control idea to investigate the use of PID control algorithms for parameter step size adaption in
continuation approaches for nonlinear problems.

There are other complications, however, that also must be considered in parameterized branch-
following algorithms. These include accommodation of multiple solutions for the same parameter
values and the corresponding existence of stable and unstable solution branches. Along such
branches certain singular turning and bifurcation points may arise and require special treatment.
In the representative model Bratu problem considered later, there is a stable solution branch for
increasing parameter value that passes through a turning point to become an unstable branch,
which can be traversed as the parameter now decreases. The Jacobian matrix in the Newton solver
becomes increasingly ill-conditioned as the singular turning point is approached. This has led
numerical analysts to devise special algorithms for treating the singularity such as regularizing the
problem by introducing a new parameter such as an abstract arclength [4–6] that restores Jacobian
rank at the cost of solving a bordered system [7, 8]. Other special algorithms have been devised to
improve performance at and near the singular point [7–10]. There are also algorithms that do not
solve the bordered system but instead use this form to construct a pseudo-arclength algorithm that
also enables monotone step size adjustment. An example of the latter is the algorithm of Keller
[4]. This scheme is implemented here in later algorithms and then demonstrated in conjunction
with PID control schemes for adaptive continuation of the Bratu turning point problem. This type
of algorithm still involves the abstract arclength construction and, hence, the branch behavior is
monotone in the new parameterization (distance along the branch). Our main algorithmic approach
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then entails the following: abstract parameter continuation in a pseudo-arclength parameterization
to have a monotone increasing parameter as the path is traced out and use of PID control strategies
to adjust step size along the path even at isolated points such as turning and bifurcation points
where the step size is automatically reduced to enable passage over the singular point.

The outline of the paper is as follows. In the next section, we consider a representative nonlinear
steady-state elliptic partial differential equation (PDE) problem with a parameter and introduce
the incompressible viscous flow, reactive transport and coupled viscous flow and heat transfer
problem classes to be considered in later numerical experiments. The weak integral formulation
and associated Galerkin finite element approximation then are used to construct corresponding
nonlinear parameterized sparse algebraic systems. Next, in Section 3, continuation schemes applied
in this study are defined. PID feedback control approaches are introduced in Section 4 and algo-
rithms combining PID control with parameterized continuation are developed. More specifically,
incremental continuation in the physical parameter is first described with an accompanying algo-
rithm for PID step size control. The arclength and pseudo-arclength parameterizations are then
constructed and the PID control scheme for this form is also given. Numerical results for solutions
obtained using incremental and pseudo-arclength control solutions of the application problems are
presented and performance discussed in Section 5. The main ideas and results are summarized in
the concluding remarks.

2. PARAMETERIZED NONLINEAR PROBLEMS

For generality, let us denote the nonlinear parameterized boundary value problem for the steady-
state behavior of a physical system in operator form as

B(u,�)=0 (1)

where B corresponds to the operator for the nonlinear boundary value problem, u∈V is the solution
and �∈ Rm is a finite dimensional vector of parameters. Since u depends on the parameters �, there
is a continuum of solutions parameterized by �, which is usually referred to as a solution branch.
Strategies that progressively trace out the solution along a branch as the parameters change are
referred to as continuation techniques. Even when the solution is sought for a desired parameter
value, continuation along the branch may be a preferable solution strategy because this approach
may be more robust than iterating from some fixed starting iterate and multiple solution states
may be more readily determined. Moreover, if the continuation step can be controlled reliably then
such a step size selection algorithm will also enhance efficiency. Accordingly, here the focus is
on automated step size control and PID control is investigated for parameter adaption applied to
incremental continuation in branch-following algorithms. Three representative problem classes are
selected as test cases: incompressible Navier–Stokes problems with Reynolds number as parameter,
reaction–diffusion problems with reaction parameters and viscous flow coupled with heat transfer,
where the parameter is the Rayleigh number.

For the first class, the steady Navier–Stokes equations for viscous flow of an incompressible
fluid [11, 12] can be written as

B(u(�),�)=
⎛
⎝u ·∇u− 1

�
∇2u+∇p−f

∇·u

⎞
⎠=0 (2)
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where u is the velocity vector, p is the pressure, f is an applied body force and � is the Reynolds
number. Numerical approximations of (2) may be computed using a variety of discretization
methods, including the finite element methods considered here. The continuation and control strate-
gies are clearly independent of this choice. The systems of nonlinear equations arising from these
approximation schemes are usually solved using an iterative method such as successive approxima-
tion or Newton iteration. These methods converge readily from a starting iterate obtained from the
solution of the linear Stokes problem for flows at low Reynolds numbers (for which the nonlinear
effects are not pronounced). For moderate and high Reynolds numbers, the Stokes solution may not
lie in the domain of attraction of the iterative scheme and iteration fails with this starting iterate.
The Reynolds number is a logical choice of parameter for formulating a simple incremental contin-
uation method to alleviate this convergence problem. The essential idea is to compute solutions at
progressively increasing Reynolds number. The solution at a given intermediate Reynolds number
Re becomes the starting iterate at the next value of Re. Other parameterizations and incremental
algorithms are possible, as considered later. In this way continuation techniques provide a means
of extending the range of flows for which a solution can be computed.

The model transport equation simplifies in the absence of convection to the stationary reaction–
diffusion problem subclass

B(u(�),�)=−∇·(k∇u)+�c(u)− f =0 (3)

where k is the diffusion tensor, c(u) is a nonlinear reaction source/sink term, f is a generic source
term and � is the reaction parameter. For example, � is the Thiele modulus in the catalytic reactions
considered in [13]. Such reaction–diffusion equations arise in models of many physical problems
of interest in science and engineering, including chemical or biological catalysis, combustion and
electrochemistry [8, 9, 14]. In this application class, the reaction functions c(u) are often highly
nonlinear, due to the nature of the heat transfer, adsorption, enzymatic or electrochemical effects.
Moreover, they may be non-monotone and can have sharp gradients. As a result, multiple solutions
often arise for certain ranges of the associated parameters.

The final problem class corresponds to coupled viscous fluid flow and heat transfer, the flow is
modeled by the Navier–Stokes equations with temperature-dependent source term characterizing
buoyancy effects through a Boussinesq assumption. This in turn is further coupled to the heat
transfer equation with convection now entering due to the fluid motion. For example, the resulting
coupled system in dimensionless form for the stationary problem becomes

B(u(�),T,�)=

⎛
⎜⎜⎜⎜⎜⎝
u ·∇u−∇2u+∇p− �

Pr
Tg

∇·u
u ·∇T − 1

Pr
∇2T

⎞
⎟⎟⎟⎟⎟⎠=0 (4)

where u is the velocity vector, p is the pressure, � is the Rayleigh number, Pr is the Prandtl
number, T is the temperature and g is the gravity vector. No slip and no penetration are assumed
at wall boundaries. At a free surface, thermocapillary effects generate surface shear stresses that
contribute to flow and heat transfer [15–17]. Specified temperature, flux or mixed thermal boundary
conditions are applied on appropriate segments of the boundary as in later 2D natural convection
simulations. We also consider 3D Rayleigh–Benard simulations using transient computation to a
steady state.
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2.1. Finite element approximations and solution algorithm

In this work, numerical approximations are computed using the Galerkin finite element method.
This finite-dimensional approximate problem can be conveniently expressed in the form

G(U,�)=0 (5)

where G denotes the discretized nonlinear algebraic residual andU is a vector of finite element solu-
tion coefficients. Certain smoothness properties of G are assumed in later discussion on nonlinear
convergence of solver algorithms. For the viscous flow equation (2), a penalty finite element formu-
lation is introduced to enforce incompressibility. Introducing a finite element discretization and
basis on the approximate domain �h , the reduced integration penalty finite element approximation
problem becomes: for 0<��1, find u�

h ∈V h such that∫
�h

(
1

�
∇u�

h :∇vh+(u�
h ·∇)u�

h ·vh
)
d�+ 1

�
I(∇ ·u�

h)(∇ ·vh)d�=
∫
�h

f·vh d� (6)

for all vh ∈V h , where I denotes reduced numerical integration and � is the penalty parameter [11].
This leads to the following nonlinear system of algebraic equations:

G(U,�)= 1

�
AU+N(U)+ 1

�
BU−F=0 (7)

where U is the vector of velocity finite element coefficients, A, N, B correspond to the respective
viscous, inertial and penalty terms on the left in (6) and F corresponds to the source term.

The formulation for the model steady scalar transport problem (3) with linear diffusion and
nonlinear reaction is constructed similarly: find uh ∈Wh such that∫

�h

(k∇uh ·∇wh+�c(uh)wh− f wh)d�=0 (8)

for all wh ∈Wh . The resulting nonlinear system of equation is given accordingly as

G(U,�)=KU+�C(U)−F=0 (9)

where U is the vector of finite element solution coefficients.K, C(U) corresponds to the respective
diffusive and reactive terms on the left in (8) and F corresponds to the source term. In the above
applications, the nonlinear systems (7) and (9) are solved using Newton iteration and one or more
of the continuation techniques described in the next section.

The discretized finite element formulation for the coupled flow and transport problem (4) follows
similarly from the above two representations and can be treated in the same manner as the above
two cases. However, here a different iterative scheme is constructed to solve the stationary problem
at each parameter continuation step by implicitly timestepping an associated transient problem to
steady state. A real or artificial transient form may be used and Newton iteration is again used
within each real or pseudo-timestep. This approach can be an effective alternative to the more
common approach of solving the stationary equations by iterative algorithms or using Euler–Newton
acceleration if the continuation step is large. In fact, algorithms that employ timestepping to the
steady state may be interpreted as another type of continuation scheme in this context. In these
cases time-accurate solutions are not sought and this implies further that adaptive timestepping
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that leads to quite large timesteps may be effective. For some related-work involving explicit time
integration schemes that exploit large timesteps see, for instance [18, 19].

Within each timestep, a coupled nonlinear algebraic system associated with the discretized
flow and transport equations is to be solved. The main coupling between the flow and transport
subsystems enters weakly through the dependence of the source term in the flow equations on
the temperature and the convective velocities in the temperature transport. Since the class of
applications here does not involve high speed flow, a corresponding iterative block decoupling of
the subsystems within each timestep will be effective [3, 20]. That is, the respective discretized
flow and transport systems may be decoupled by a successive approximation scheme in which
the source term is ‘lagged’ in the flow equation and the computed velocity iterate is then used in
the discretized transport subsystems. This successive approximation iteration is then repeated until
convergence. The resulting decoupled flow sub-problem is nonlinear due to the inertial term u ·∇u.
Here, a penalty method is again implemented to enforce the incompressibility constraint in the 2D
flow simulations and pressure stabilization is used in the 3D SUPG stabilized Rayleigh–Benard
simulations [21]. The 2D nonlinear sparse systems are solved using successive approximation or
Newton’s method with sparse elimination of the linearized subsystems whereas the 3D nonlinear
systems are solved using inexact Newton–Krylov iteration [22].

3. CONTINUATION TECHNIQUES

The implicit function theorem [23] specifies sufficient criteria guaranteeing that a branch can be
parameterized by � [24]. For a specific stationary solution (U�1,�1) of (5) the criterion basically
implies nonsingularity of the Jacobian matrix Gu(U�1,�1). Then there is an interval around �1 such
that for all � in that interval Equation (5) has a solution U� close to U�1 . However, in applications
having the form (5) turning points and bifurcations may occur on the branches in question. At
these points, the stability may be lost or the Jacobian Gu may be singular or the structures of the
state may change drastically. More specifically, a bifurcation with respect to � corresponds to a
specific point (solution at some �0) on the branch where there is no neighborhood around �0 such
that in this neighborhood the branch can be uniquely extended [4, 24, 25].

Obviously, only a finite selection of the infinitely many solutions (U,�) of (5) can be calculated.
That is, the continuous curves in the branching diagrams are approximated by sets of discrete points
that are interpolated to approximate the actual curves. The process of tracing a branch by calculating
representative solutions (U j ,� j ) on that branch for j =0,1,2, . . . with certain distances apart is
called continuation or path following. If a path consists of regular points, the simple continuation
technique in the physical parameter described earlier may be applied with some confidence for
determining nearby solutions on a branch. In the vicinity of such a solution, Newton’s method
converges quadratically and the method can produce results very efficiently, albeit at the cost of
smaller parameter step size. A complication, however, is that the radius of convergence shrinks
as the nonlinearity becomes more pronounced and the method deteriorates as singular points are
approached. For instance, iteration may not converge or may converge to a solution on a different
branch.

The incremental continuation process above may be improved in some situations as suggested
in the Introduction. For example, differentiating the nonlinear system (5) with respect to the
continuation parameter, leads to an associated ‘initial-value’ problem with the parameter as the
‘time-like’ variable. This may be numerically integrated to give an improved strategy and adaptive
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timestepping concepts can be applied to vary the step size and obtain a more robust algorithm.
A simple approach is to apply explicit Euler forward difference integration to predict the starting
iterate for Newton’s method at the next parameter level. For example, consider the discretized
nonlinear problem (5). Differentiating with respect to the parameter �

dG

d�
=Gu

�U
��

+G� =0 (10)

This defines the linear system

Gu
�U
��

=−G� (11)

to be solved for �U/��. Equation (11) involves the calculation of Jacobian matrix Gu as for the
original Newton’s method, but has a different right-hand side. The benefit of solving this extra
system of equations is an improved initial guess for U. This solution can be used in the forward
integration rule (Euler’s method)

U(�+��)=U(�)+��
�U
��

(�) (12)

to obtain a good starting vector in Newton iteration of the nonlinear system (1) for U(�+��).
This scheme is termed as the Euler–Newton continuation in the physical parameter and is suitable
provided that there is no limit points, that is, points where Gu in (11) is singular.

The problem of singular points and of reversal of the branch direction at a turning point leads
to consideration of more abstract parameter transformations, the best known being the arclength
along the branch. Since the distance along the branch curve monotonically increases, this implies
the reversal problem through a turning point is circumvented at the cost of adding an additional
arclength equation to the system. The effect of the additional equation is also to restore the rank
deficiency in the Jacobian at the singular point. Pseudo-arclength forms such as the scheme due
to Keller [4] are implemented here and preserve the monotonicity, but require step adjustment to
cross the singular point.

In an arclength continuation method, (5) is augmented with a constraint equation to obtain the
expanded nonlinear system

P(U,�,s)=
[

G(U,�)

N(U,�,s)

]
=0 (13)

where the arclength s is defined as the distance along the solution branch. It follows that s is
non-decreasing even if � is decreasing along the branch.

In the present work, a linearized arclength form is used that has been termed a ‘pseudo-arclength’
scheme and is given by

N(U,�,s)= (U−U(si))
t �U

�s

∣∣∣∣
si

+(�−�(si ))
��
�s

∣∣∣∣
si

−(s−si )=0 (14)

where si corresponds to the pseudo-arclength distance from the starting point to the current step at
point i along the path. The corresponding augmented Jacobian system for the expanded system (13)
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is then used to obtain the increment in the solution pair (U,�) at each arclength step via Newton’s
method as follows: for iterate k=0,1,2, . . . until stopping criteria, solve

[
Gu G�

Nt
u N�

]k [
�U

��

]k+1

=
[−G

−N

]k
(15)

where �U, �� are the solution increments corresponding to the specified step in pseudo-arclength.
Several schemes are available in the literature for solving (15) efficiently by direct or iterative
schemes as a sparse, bordered system. Here, for convenience (in terms of reuse of existing compu-
tational tools) the following two-solve procedure is applied. At each Newton step, the following
computations are performed:

Algorithm:

1. Solve Guy=G� (first solve).
2. Solve Guz=−G (second solve).

3. Calculate ��= −N−Nt
uz

N�−Nt
u y

.
4. Calculate �U= z−(��)y.

The algorithm must be employed at each Newton step. To see how the algorithm arises, multiply
the first ‘row’ of Equation (15) by G−1

u

�U+(��)G−1
u G� =−G−1

u G (16)

Observe that the inverse Jacobian is not explicitly computed. Instead one computes its action.
Using the definitions of y and z given in the algorithm (steps 1 and 2),

�U+(��)y= z (17)

or the expression of �U (step 4). Now, from the second ‘row’ of Equation (15),

Nt
u(z−(��)y)+(��)N� =−N (18)

which can be rearranged to obtain the scalar equation for �� (step 3). Here the systems are solved
with two different right-hand size vectors G� and −G. In this context the two-step algorithm
is roughly as expensive as a normal Newton solve and, therefore, attractive to use near turning
points or regions of rapid change in the solution relative to the parameter �. Observe also that the
initialization of the arclength continuation algorithm requires the solution and parameter derivatives
with respect to s from the previous step, since the linearized arclength form (14) is used. Hence,
it is assumed that two previous solutions, {U0,�0} and {U1,�1}, have been computed using the
incremental Newton scheme with small increments of the parameter �.

An extension of the Euler–Newton approach may again be used to generate an initial guess
for Newton iteration with the arclength parameterization. The main idea is to assume that the
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‘derivative’ of P(x(s)), x =[U,�], with respect to s is the zero vector. Chain-differentiation of P
in (13) yields

[
Gu G�

Nt
u N�

]⎡⎢⎢⎣
�U
�s
��

�s

⎤
⎥⎥⎦=

[
0

−Ns

]
(19)

and determines the tangent vector. Then a predictor or initial guess for Newton’s method can be
obtained from

U∗
2 =U1+ �U

�s
�s, �∗

2 =�1+ ��

�s
�s (20)

where �s is the step in arclength. Observe that (19) conveniently involves the same matrix as
the augmented Jacobian system of (15). Therefore, to estimate the initial guess, the previous
‘two-solve’ algorithm is again applied. This retains monotonicity in the continuation variable and
also simplifies the implementation, because of the close similarity to the incremental scheme for
non-singular problems. To adapt the arclength step size for overall efficiency and to maintain
convergence near the singular point, a PID feedback control algorithm is introduced. The step
selection criterion is based on controlling accuracy using truncation error estimates for integration
of (19) with respect to the continuation variable as discussed next.

4. PID STEP SIZE CONTROL

Feedback control strategies such as PID controllers are extensively used in traditional control
applications. They have recently become a research topic of interest in timestep control for transient
PDE integration and are introduced in the present work for parameter control in continuation
algorithms. Such PID control methods provide a means of timestep selection in artificial transient
algorithms [3, 26] and here for extending the range of steady parameterized flows for which a
solution can be computed. A number of viable control forms are possible. For illustrative purposes
here, a single PID control form is presented below for both timestep selection and adaptive
continuation. More specifically, the step size can be defined as follows:

�[ · ]stage+1=
(
estage−1

estage

)kP ( 1

estage

)kI
(

e2stage−1

estageestage−2

)kD

�[ · ]stage (21)

where

1. For timestep selection, �[ · ]=�t represents the timestep size (or a related quantity, such as
Courant–Friedrichs–Lewy (CFL)) and estage=en is the measure of the normalized change of
the quantities of interest in time tn . For example, in the natural convection problem considered
later, the control uses the normalized changes in velocities (U) and temperature (T)

en =max

(
eu
tolu

,
eT
tolT

)
, eu = ‖Un−Un−1‖

‖Un‖ , eT = ‖Tn−Tn−1‖
‖Tn‖ (22)
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and can be motivated based on the need to control accuracy with respect to time in the
specific solution variables. Here the controller uses two supplied tolerances, tolu and tolT ,
corresponding to the normalized changes in velocities and temperature vectors, respectively.

2. For incremental continuation, �[ · ]=�� represents the physical parameter increment and
estage=e� j is the measure between two consecutive solutions on the branch with certain
distance apart. For example, in the lid-driven cavity problem presented later, the Reynolds
number (�=Re) is incremented based on the changes of two consecutive steady-state veloci-
ties in the continuation process and the controller uses one supplied tolerance, tol�, as shown
below

e� j =
e∗
� j

tol�
, e∗

� j
= ‖U� j −U� j−1‖

‖U� j ‖ (23)

3. For arclength continuation, �[ · ]=�s represents the arclength parameter increment and
estage=esk is the measure of the normalized changes of the most recent solution tangents
with respect to the parameter �,

esk = e∗
sk

tols
, e∗

sk =

∥∥∥∥∥ �u
d�

∣∣∣∣
sk

− �u
d�

∣∣∣∣
sk−1

∥∥∥∥∥∥∥∥∥∥ �u
d�

∣∣∣∣
sk

∥∥∥∥∥
(24)

where tols is a user-supplied tolerance. The motivation is to control the size of the arclength
step size along the branch as the solution changes with respect to the parameter �. In turn,
controlling the arclength step size leads to a more robust nonlinear iterative behavior. This is
particularly important near bifurcation and turning points, since the character of the solution
typically changes rapidly in these regions and the transition from one solution regime to
another is often of special interest.

The efficiency of this form of PID control for timestep selection was demonstrated in [1, 3, 20].
The computational overhead in (21)–(24) is insignificant compared with solver operations, since
the step size selection involves only storing a few extra vectors and computation of associated
norms. To prevent an excessive growth or reduction of the step in the controller, extreme values
[ · ]min and [ · ]max are set, which limit the control signal (anti-windup effect [27]). The effect of the
anti-windup is to reduce both overshoot and the control effort in the feedback system. Parametric
studies were performed for different values of PID parameters (kP,kI,kD) for two test problems, to
verify that the PID controller is robust [3]. Although feedback control theory provides techniques
to choose PID parameters, robustness is required when a general method is used for a wide range of
different situations. The controller was found to be very robust, allowing us to fix the values of the
PID parameters, kP=0.075, kI=0.175 and kD=0.01, for all the numerical experiments described
in the following section. Note that PID control in both timestep and parameter or arclength can
be combined into a hybrid PID selection process as illustrated in the natural convection problem
considered later. Moreover, one can combine such adaptive continuation procedures with inexact
Newton–Krylov and other solver strategies to further enhance performance.
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5. NUMERICAL STUDIES

5.1. The lid-driven cavity problem

The two-dimensional lid-driven cavity flow is a standard test case for steady Navier–Stokes compu-
tations and there are numerous published results that can be used for comparison purposes [28–30].
The domain of analysis is a unit square. Both velocity components are prescribed to be zero, except
at the top boundary (the lid) where the horizontal velocity component has a unit value. However,
this problem is complicated by the presence of two corner singularities, which may be regularized
in various ways (e.g. see [28, 31]). Here, the latter continuous hyperbolic tangent approximation

u(x)=
{
tanh(�x), 0�x�0.5

− tanh(�(x−1)), 0.5< x�1.0
(25)

is used for the horizontal velocity component on the upper boundary of the domain with regular-
ization parameter �=100 chosen to give a sharp transition from u=0.0 to u=1.0 near the corners.
For representative problems with low Reynolds numbers (e.g. 300), solutions can be achieved in
few iterations using successive approximation or Newton–Raphson iteration starting from Stokes
flow. Figure 1 (left) shows how these two nonlinear iterative schemes perform at several Reynolds
numbers for solution with a coarse uniform mesh of bilinear elements (h= 1

16 ). As anticipated, the
schemes fail to converge as the convective nonlinearity becomes more pronounced with increasing
Re (Re�1000 or log(Re)�3 as shown in Figure 1 (left)). In the vicinity of a solution, Newton’s
method converges quadratically and the method can produce results very efficiently. However, the
domain of attraction is small for the flows considered here. To obtain solutions at higher Reynolds
numbers, an appropriate starting guess in the domain of attraction of the desired root can often be
obtained using a continuation strategy as indicated in Figure 1 (right).

Here, as Re increases the convective term becomes more significant, thus the mesh size must
be reduced accordingly to prevent oscillations and retain accuracy and convergence. The present
studies at Re=12500 (or log(Re)≈4.1) are computed on a 128×128 grid of bilinear elements in
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Figure 1. Total number of iterations from a Stokes flow initial iterate as Re increases using successive
approximation and Newton iteration (left), total number of Newton iterations using uniform incremental

and adaptive PID-incremental continuation (right).
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Figure 2. Computed horizontal velocity component along the vertical centerline (left) and vertical velocity
component along the horizontal centerline (right) for Re=12500.

all cases. For fixed continuation step sizes in Reynolds number, the first step Re is 500 (close to
the maximum Re value for convergence from Stokes flow) and, subsequently, fixed increments of
1000 are taken. For the PID adaptive step size approach, the minimum and maximum allowable
increments for Re are 500 and 3000, respectively, and the tolerance for allowable changes between
two consecutive steady state velocities in the continuation process is tol� =1. Since the size of
the steady-state velocities increases as the Reynolds number increases in the continuation process,
we can choose the tolerance in this example to be even bigger than 1. Figure 1 (right) shows the
number of total iterations when the Re number increases using fixed and adaptive increments. For
Re>1000 standard Newton iteration from zero velocity fails to converge whereas PID continuation
techniques permit more efficient solution for much higher Reynolds numbers. The computational
effort here is measured by the total number of Newton iterations needed to calculate the target
solution using the PID incremental approach divided by the number of Newton iterations obtained
using a fixed increment size. Clearly this measure is essentially independent of the choice of iterative
or elimination solver for the linearized Jacobian subsystem solves provided these subsystems are
accurately solved. In the present 2D calculations, relatively small Jacobian subsystems are solved
thus sparse elimination solvers are suitable. Here, the PID incremental solution for Re=12500 is
obtained in 46 Newton iterations, reducing the computational cost by about 31% when compared
with fixed increments of Re=1000. Figure 2 shows the horizontal velocity u along the vertical
centerline (left) and the vertical velocity v along the horizontal centerline (right) for the lid-
driven cavity problem with Re=12500. The agreement is favorable when compared with results
in [32, 33]. The value of the stream function at the primary vortex center differs by order 5×10−3

from that of the p-type finite element scheme with h= 1
32 , p=8 in a fully coupled stream function-

vorticity formulation used in [32].

5.2. Bratu problem

The Bratu reaction–diffusion problem [7, 8]
−∇2u−�eu = 0 on (0,1)×(0,1) (26)

u = 0 on �� (27)
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Figure 3. The main branch of the solution (left) and the arclength step size variation (right).

has a turning point near �=6.81. The arclength approach with PID control is applied here to
follow the main branch of solutions with minimum and a maximum arclength step sizes of 0.5 and
1.0, respectively, and a tolerance of 0.1 in the change of the solution tangents with respect to the
parameter �. Isoparametric four-node quadrilateral elements on a uniform 32×32 mesh are used.
The Euler–Newton approach is used with the maximum number of Newton iterations allowed set
to 20 and a Newton tolerance of 10−10. Figure 3 shows the main branch of solutions and the
arclength step size variation. With PID feedback, the arclength step size rapidly grows from the
initial value to the maximum value until � reaches approximately 5 (corresponding to an arclength
parameter greater than 10). Following this, the PID controller reduces the arclength step to the
minimum value to follow the solution branch through the turning point and then allows the step
size to increase again. Using the PID control, the turning point is estimated to be �=6.81278399.

5.3. Natural convection

The next case study involves natural convection in a unit square �=[0,1]×[0,1] with temperatures
T =1, T =0 on the left and right side walls, respectively, adiabatic top and bottom walls, Prandtl
number Pr=0.71. Incremental continuation in the Rayleigh number Ra is applied. The computed
Nusselt number at the left wall, Nu0=∫ 10 q dy, where q is the heat flux and the stream function
at the midpoint, �mid, are compared with benchmark computations in [34, 35]. The benchmark
case reports the quantities to four significant figures, and the reported accuracy is within 1%
for all Rayleigh numbers used in the experiments. Here, the solutions are compared with Ra=
100000 for calculations with 9-node isoparametric quadrilateral elements on a uniform 32×32
mesh.

First, the associated transient formulation of the coupled problem (4) is solved to steady state
for Ra=100000 using fixed timestep sizes of 10−3, tolst =10−4 from an initial state: u(x, y,0)=0,
T (x, y,0)=1−x , in domain �. This solution is time accurate and the transient response is oscil-
latory especially in the early stages. There is a slow final asymptotic approach to the steady state
as transients decay. This scheme does not use the continuation techniques and will be denoted in
the experiments as the baseline approach. The problem is next solved with parameter continuation
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Table I. Computational effort for the natural convection problem.

PID-Ra-time
PID-Ra

Baseline tol� =1.0 tol� =1.0 tol� =1.5

nsa 416 396 462 390
Nu0 (error) 4.551 (0.93%) 4.552 (0.95%) 4.547 (0.84%) 4.552 (0.93%)
�mid (error) 9.083 (0.31%) 9.081 (0.33%) 9.111 (0.00%) 9.080 (0.34%)

using the PID control algorithm to select Ra increment size, dRa and with fixed timestep size.
This yields a sequence of intermediate steady-state solutions in the continuation process, each
solution initiated from the previous steady state in the sequence. This second solution strategy is
termed the PID-Ra approach and can be viewed as a continuation iterative scheme for computing
steady states at a sequence of Ra values of interest. Finally, the problem may be solved using
PID control to select both the Ra increments for continuation and to adapt the timestep size. This
last solution type is referred to as the PID-Ra-time approach. For brevity and convenience, in
the following numerical results we invoke PID timestep adaption only in the last (largest) step
of the Ra-continuation scheme. This allows us to examine use of PID-Ra through a sequence of
steady states followed by a single PID timestep adaption stage to approach the final steady state
at Ra=100000. Obviously, other combined strategies to study acceleration to steady states may
be considered.

Table I shows the total number of successive iterations, nsa, �mid, Nu0 and the percentage
errors compared with the benchmark solution [34, 35] (�mid=9.111 and Nu0=4.509), calculated
using the three approaches for two parameter tolerances, tol� =1.0,1.5. In this application, the
PID continuation process controls changes in two consecutive velocities and temperature. In both
PID-Ra and PID-Ra-time approaches, the minimum and maximum parameter increments allowed
are dRamin=1000 and dRamax=50000, respectively. Fixed timestep sizes of 10−2 are used to
calculate the solution for Ra<104 and then the timestep size is set equal to 10−3. The respective
steady-state tolerances are of the order of tolst =10−1 and 10−4. In the PID timestep selection,
the minimum and maximum timestep sizes allowed are htmin=10−3 and htmax=10−1, respec-
tively, and tolT =10−3 and tolu =5×10−3 for tol� =1.0 and tolT =5×10−2 and tolu =10−1 for
tol� =1.5.

Observe from Table I that the PID continuation solutions are in good agreement with the target
benchmark steady-state solution for all cases, with percentage errors no more than 1% in all
quantities. For the PID-Ra-time approach with tol� =1.0, the �mid percentage error is zero but
more successive approximation iterations are needed to obtain the steady-state solution. This is
expected since smaller PID tolerances were prescribed for timestep selection in this particular
experiment. Nevertheless, the PID performance is competitive. For the other cases, the target
solution is obtained with almost the same precision as in the baseline approach, but using a smaller
number of successive iterations. Of course, the goals for the respective strategies may be quite
different—e.g. time accurate solution to a single target steady state versus rapid computation of a
sequence of steady states.

This natural convection example also demonstrates the PID concepts for a familiar coupled
physics problem of practical interest. The post-processed kinetic energy is a quantity of interest
for this problem class [36] and allows convenient visualization of the approach to steady state.
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Figure 4. Transient kinetic energy for the target solution, at Ra=105 using the baseline approach
and continuation path through 13 dRa stages and intermediate ‘timestep’ iterates using the

PID-Ra approach with tol� =1.0.

The kinetic energy is defined here as

K =
∫
�

(u∗2+v∗2)
2

d� (28)

where u∗ and v∗ are the nondimensional x-and y-components of the velocity. In particular, the
associated transient dynamics can be characterized conveniently for different parameter regimes
using this post-processed quantity [3, 20]. Figure 4 shows results from two approaches: (1) the
oscillatory, time accurate, transient kinetic energy that eventually decays to the target solution
value using the baseline approach and (2) a sequence of intermediate steady-state continuation
solutions computed using the PID-Ra approach with tol� =1.0. The PID-Ra algorithm starts from
initial data u(x, y,0)=0 and T (x, y,0)=1−x and the PID control chooses Ra increments toward
the target value Ra=100000. In the present calculation 13 monotonically increasing steps are
taken with incremental values of dRa selected by the PID control ranging from 1000 to 20 707.
Both the 13 steady-state values and intermediate ‘timestep’ iterates are shown in the figure.

5.4. 3D Rayleigh–Benard problem

In the last test case we consider the combined use of PID control for both continuation step size
and timestep adaption to steady state. The underlying sparse linearized subsystem solver for these
2D decoupled subsystems employed frontal elimination in serial computations. Clearly, the PID
control strategies that are the focus of the present paper are equally applicable using elimination
and iterative solution algorithms. If one computes using, say, a preconditioned Krylov iterative
solver or an elimination solver to high accuracy in a step then the PID behavior will be approx-
imately the same for both linear sub-solvers. Of course, the total central processing unit (CPU)
time will depend on the number of solves resulting from the step size selection and the number
of nonlinear iterations needed for each solve. There will be some tradeoff here since a larger
step size will require more Newton iterations from the same starting iterate. However, near a
root, Newton converges quadratically thus this enhances the adaptive step size selection strategy.
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The cost of repeated Jacobian construction, relaxing the iterative tolerance on intermediate solu-
tions and inexact Newton strategies with Krylov iterative subsystem solves can also be exploited
to improve overall CPU efficiency. Again, these ideas are to some extent independent of the
adaptive step size control aspect. The relative CPU cost would also depend on the problem class,
preconditioner effectiveness, size of the discretized algebraic systems and computer hardware. For
large-scale problems memory constraints suggest using the Krylov schemes with an appropriate
preconditioner. E.g. one of our ongoing collaborations involves large-scale parallel AMR simula-
tions with PID continuation using libMesh with Petsc [37] to provide the iterative solver library.

A related study of 3D Rayleigh–Benard convection with PID control of timestep selection has
been carried out to investigate the performance of the PID strategy in conjunction with inexact
Newton using Krylov subsystem solves. The test case corresponds to a rectangular 3D domain of
aspect ratio 4:1:1 aligned with the Cartesian axes and subjected to a temperature gradient [38].
Simulations are made on a mesh of 93 925 tetrahedral elements using an edge-based Galerkin
SUPG scheme with pressure stabilization. Further details of the finite element formulation are
provided in [39, 40]. A converged stationary solution, shown in Figure 5, with four convective
rolls is obtained at Rayleigh number Ra=30000 and Prandt number Pr=0.71 [41].

Performance results for this simulation with PID timestep control using inexact Newton–Krylov
solution for simulation to steady state are given in Table II. We control here a CFL condition and
investigate the interplay between choosing adaptively the timestep and the tolerance for an inexact
Newton solution of flow equations. For more details on the inexact Newton method used here,
see [42]. The inner iterative driver is an edge-based preconditioned GMRES method. A nodal
block-diagonal preconditioner is used for the Navier–Stokes equations while a simple diagonal
preconditioning is employed for the temperature equation. GMRES tolerance for the temperature
is fixed at 10−3 while maximum tolerances for the inexact Newton method vary as indicated in
Table II. For both flow and transport, the number of Krylov vectors is fixed in 25. We may observe
in this table that the smallest CPU time (wall time) is achieved when we choose a maximum
inexact Newton tolerance of 0.01 and CFL chosen adaptively between two and five. In this case

Figure 5. 3D Rayleigh–Benard solution at Ra=30000 and Pr=0.71.
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Table II. Computational effort for the 3D Rayleigh–Benard problem.

Max IN tol CFLmin CFLmax Timesteps Wall time

0.001 2 10 109 1110.49
5 90 855.42
2 171 1184.81

0.01 2 10 108 803.89
5 90 637.71
2 172 1017.02

0.99 2 10 142 1652.06
5 90 991.96
2 171 1501.97

steady state is reached in 90 timesteps. We consider here that steady state is achieved when the
relative velocity increment differs by less than 10−5. Note that the best performances are obtained
by setting the maximum tolerance for the inexact Newton method to moderate values, indicating
that a too thigh value will result in over solving and too loose values will result in bigger timesteps
leading in both cases to comparatively bigger computational efforts.

6. CONCLUDING REMARKS

Continuation techniques are fundamental to successful numerical simulation of many nonlinear
problems. Of particular interest here are steady-state problems where one is seeking to construct
approximate solutions of problems exhibiting multiple solutions at given parameter values and
where the solution behavior is of interest across a wide parameter range. A continuation strategy in
physical and arclength parameter form employing PID control for parameter step size adjustment
is developed and applied to incompressible Navier–Stokes, a reaction–diffusion problem with a
turning point and two coupled viscous flow and heat transfer problems. The advantageous perfor-
mance of the PID strategy as compared with simpler incremental continuation is demonstrated.
The PID continuation techniques permit more efficient solution for much higher Re numbers in the
driven cavity problem, reducing the computational cost by about 31% when compared with fixed
increments. In the natural convection problem, the adaptive PID continuation approach generates
a sequence of intermediate steady-state solutions approaching the target steady-state solution at
Ra=100000, leading to a more robust and efficient strategy for this coupled system. The contin-
uation solutions are in good agreement with the benchmark solution for all cases, with percentage
errors no more than 1% in the computed Nusselt number and stream function at the midpoint.
The PID feedback control algorithm is also seen to be a good technique for adapting the pseudo-
arclength for overall efficiency and to maintain convergence near the singular point in the Bratu
problem. The arclength approach with PID control is applied to automatically follow the main
branch of solutions and to enable passage over the turning point.

Clearly, the PID control strategies are equally applicable using elimination and iterative solution
algorithms. PID offers a different form of adaptive control along the branch or with respect to
time in the present context and changes in the solution behavior influence continuation step size
selection. The relative performance enhancement will depend on the reduction in the number of
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nonlinear solves and on any net increase in the number of nonlinear iterations for each solve.
We have provided a comparison with uniform stepping to indicate representative performance.
The total solution time will also depend on the efficiency of the linear subsystem solver. If one
computes using, say, a preconditioned Krylov iterative solver [43–45] or an elimination solver
to high accuracy in a step then the PID behavior will be approximately the same for both linear
sub-solvers. The CPU time would be different of course. This aspect is not a focal point of the
present study but clearly is important in practice. The relative CPU cost would depend on the
problem class, preconditioner effectiveness, size of the discretized algebraic systems and computer
hardware. Most of the test cases considered here are 2D and some involve decoupled physics.
Hence, they are not large-scale and elimination solvers are competitive. For very large-scale
problems, memory constraints suggest using Krylov schemes with an appropriate preconditioner.
To illustrate this point, we have included some tabulated performance results from a 3D Rayleigh–
Benard simulation using PID control with inexact Newton–Krylov solution. Other ongoing work
involves further large-scale parallel AMR simulations with PID continuation using libMesh with
Petsc [37] for the iterative solver library.
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