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Summary: This work presents a finite element implementation of incompressible miscible dis-
placements in porous media. Through a predictor-multicorrector finite difference discretization
in time, we use a sequentially implicit time-stepping algorithm that uncouples the system at each
time-step. The Galerkin method is employed to approximate the pressure, and accurate velocity
approximations are calculated using a post-processing technique taking into account a regularized
initial solution for the concentration. A stabilized finite element (SUPG) method is applied to the
convection-diffusion concentration equation. Numerical simulations of tracer injection processes
and miscible displacements with high adverse mobility ratios in two dimensions are reported.
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1. Introduction

Reservoir simulation have been studied extensively for a number of authors in the last three
decades. Miscible displacements which model enhanced oil recovery and tracer injection pro-
cesses have been used for formulation, development and testing numerical since the early be-
ginning of reservoir engineering. Different numerical methods were employed in miscible dis-
placement simulations. Finite differences and control volume methods are the most used in
commercial reservoir simulation, despite of their difficulties to solve complex geometries or the
high costs to handle unstructured grids. Early finite element solutions for this problem are
studied using different formulations. The concentration of the injected fluid in the mixture is
the main variable. However, the calculation of Darcy’s velocity, responsible for the transport,
deserves special attention, since it has a strong influence on the stability and accuracy of the
concentration approximation.

It has been proved through numerical analysis and computational simulations that the post-
processing technique proposed in [4, 5, 6], computes accurate velocity fields when compared to
those obtained by the usual methods found in the literature. Post-processing consists basically
in solving the elliptic problem for pressure and then computing velocity considering residual
forms of Darcy’s law with the known pressure, the mass balance and irrotationality condition.
Recently, many works revisited numerical methods for Darcy’s flow. In particular, new stabilized
mixed finite element formulations appear in many references, as in [1, 7]. However, differently
from the mixed methods, which have a high computational cost due to the simultaneous solution
of pressure and velocity, post-processing techniques are naturally segregated [5]. In this work
we use the Galerkin method to approximate the pressure, and accurate velocity approxima-
tions are calculated using a post-processing technique taking into account a continuous initial



solution for the concentration. A stabilized finite element (SUPG) method is applied to the
convection-diffusion concentration equation. Numerical simulations of tracer injection processes
and miscible displacements with high adverse mobility ratios in two dimensions are reported.

2. Finite Element Approximations and Solution Algorithm

The mathematical model consists of an elliptic system coming from the conservation of
mass, the Darcy’s law and the conservation of the injected fluid. The governing equations for
the miscible displacement of one incompressible fluid by another [8], in a porous medium Ω ∈ R2

at an instant t ∈ [0, T ], can be described by

∇.v = q in Ω × [0, T ] (1)

v = −A(c)∇p = −
K

µ(c)
∇p in Ω × [0, T ] (2)

φ
∂c

∂t
+ ∇.(cv − D(v)∇c) = ĉq in Ω × [0, T ] (3)

with boundary and initial conditions

v.n = 0 on ∂Ω × [0, T ] (4)

D∇c.n = 0 on ∂Ω × [0, T ] (5)

c(x, 0) = c0(x) in Ω (6)

where v = (v1, v2)
T is the total Darcy velocity of the fluid mixture, p is the fluid pressure, c is the

concentration of the fluid mixture, φ and K are, respectively, the porosity and the permeability
tensor of the porous medium, n denotes the outward unit normal to ∂Ω, q is the source and
sink terms and ĉ is the injected concentration at injection wells and the resident concentration
at production wells. The pressure equation is defined considering Eq. (2) into Eq. (1)

−∇.(A(c)∇p) = q in Ω × [0, T ] (7)

Using the Leibniz rule, we can write ∇(cv) = v.∇c + c∇.v = v.∇c + qc. The non-divergence
form of the concentration equation (3) considering the Leibniz rule can be rewritten as

φ
∂c

∂t
+ v.∇c −∇.(D(v)∇c) + q̂c = ĉq̂ in Ω × [0, T ] (8)

where q̂ = max(q, 0) is nonzero only at the injections wells. The diffusion-dispersion tensor D

is considered as in [8] for the 5-spot experiments

D = φ
(

αmI + |v|
(

αlE(v) + αtE
I(v)

))

E(v) =
1

|v|2
vvT EI(v) = I − E(v) (9)

where αm, αl, and αt are, respectively, molecular diffusion, longitudinal, and transverse disper-
sion coefficients. Normally dispersion is physically more important than the molecular diffusion;
also, αl is usually considerably larger than αt. In equation (2) µ = µ(c) is the local viscosity
of the mixture which depends on the concentration c of the injected fluid. In the reservoir
simulation the empirical relation is usually adopted

µ(c) = µ(0)
(

1 − c + M1/4c
)

−4

, c ∈ [0, 1] (10)

where M = µ(0)/µ(1) is the mobility ratio. It is important to note that when M > 1 nonlinear
effects associated to the coupling of equations and the convective term strongly influence stability
and accuracy of numerical approximations. Since p(x, t) is determined up to an arbitrary additive
constant, we normalize it by imposing the condition

∫

Ω
p(x, t) dx = 0, t ∈ [0, T ].



Introducing a standard finite element discretization for the domain Ω into subdomains Ωe

and a set of piecewise trial and weighting finite element spaces, the Galerkin formulation for the
pressure equation (7) is

∫

Ω

∇wh
p .A(ch)∇phdΩ =

∫

Ω

wh
p q dΩ (11)

where wh
p is the discrete weighting function for pressure, and ch and ph are discrete counterparts

of c and p. It is well known that computing the velocities directly from Darcy’s law yields a
low accuracy field, satisfying only weakly the no-flow boundary condition (see Eq. (4)). To
improve the quality of the velocity approximation and still using standard Lagrangian bases
we use here the global post-processing technique from [6], which can be summarized as follows.
Given the Galerkin solution of the pressure ph, the post-processed velocities vh are obtained
from the variational statement as write in [2]

∫

Ω

wh
v(A(ch)−1vh + ∇ph)dΩ +

nel
∑

e=1

∫

Ωe

νe∇.wh
v(q −∇.vh) dΩ = 0 (12)

where wh
v is the weighting function for post-processed velocities, νe a mesh dependent parameter

of the magnitude O(h) and nel is the number of elements in the mesh. The global post-
processing technique numerical analysis presented by [6], indicates a gain of O(h0.5) in the rates
of convergence for velocity over mixed methods of Raviart-Thomas type.

The concentration equation (8) is predominantly advective and may exhibit sharp concen-
tration fronts. Thus, we adopt the well known Streamline Upwind Petrov-Galerkin (SUPG)
formulation enriched with the discontinuity operator CAU, that is given by

B(wh
c , ch) +

nel
∑

e=1

∫

Ωe

τ vh.∇wh
c L(ch) dΩ +

nel
∑

e=1

∫

Ωe

δ∇wh
c .∇chdΩ =

∫

Ω

wh
c ĉ q̂ dΩ (13)

with

B(wh
c , ch) =

∫

Ω

wh
c L(ch)dΩ and L(ch) = φ

∂ch

∂t
+ vh.∇ch −∇.(D(vh)∇ch) + q̂ch (14)

where wh
c is the weighting function for concentration and δ is the CAU discontinuity-capturing

operator defined as in [3].
The spatial discretization of the pressure equation (11), the post-processing technique for

velocities (12) and the concentration equation (13) lead to a set of coupled non-linear ordinary
differential equation, as written in [2]:

Kp = Q, M̄v = FG + Fq, M̃ċ + C̃c = F̃ (15)

where p, v, c and ċ are the vector of unknown for the nodal values of the pressure, velocities,
concentration and time derivative of the concentration, respectively. The matrix K is symmetric,
positive definite and depends on the concentration (K = K(c)). The right hand side vector Q

contains the flows rates and boundary conditions for the pressure equation. The post-processing
matrix M̄ can be split in two matrices, M̄ = Mw +Mdiv, where Mw represents the contribution
of the first integral of Eq. (12) and Mdiv represents the part corresponding to the divergence
weighting of the second integral of Eq. (12). The right hand side vectors FG and Fq are
respectively the weighting of the pressure gradients and the divergence weighting of the flow
rates. The matrices M̃ and C̃ represent, respectively, time-dependent, convective and diffusive
terms of the concentration equation. The matrix C̃ depends on the velocity field (C̃ = C̃(v)).
The right hand side vector F̃ is due to the boundary conditions. To solve the non-linear systems
of ordinary differential equations (15) we employ a predictor-multicorrector finite difference
discretization in time. For brevity, we present here only the block-iterative algorithm for the
predictor-multicorrector method. To move from step n to n + 1, we need to solve the following
steps:



Block 1: Solve the pressure equation

K(ci
n+1)p

i+1
n+1 = Qn+1 (16)

Block 2: Compute the velocity field

M̄(ci
n+1)v

i+1
n+1 = FG(pi+1

n+1) + Fq (17)

Block 3: Solve the concentration equation

M∗

n+1 ∆ċi+1
n+1 = F̃n+1 − M̃(ċi

n+1) ċ
i
n+1 − C̃(vi+1

n+1,p
i+1
n+1, c

i
n+1) c

i
n+1 (18)

where M∗

n+1 = M̃ + α ∆t C̃ is the non-symmetric effective matrix.

Update:
ci+1

n+1 = ci
n+1 + α ∆t ∆ċi+1

n+1 and ċi+1
n+1 = ċi

n+1 + ∆ċi+1
n+1. (19)

In the expressions (16)-(19), i is the non-linear iteration count, ∆t is the time step and
α is a parameter that controls stability and accuracy of the time integration. We adopt here
α = 0.5, which is second-order accurate in time. The iterative process continues up to the i-th
iteration where some convergence criteria are satisfied. The major computational tasks of the
block-iterative algorithm are generation of the coefficient matrices and right hand side vectors.
All matrices involved are built from element contributions. We consider linear triangles and
one-point quadrature for integration. The element matrices computation can be carried out in
closed form and all element matrices can be evaluated in a single loop.

3. Numerical Studies

To illustrate the efficiency of our numerical methodology, we solved a five-spot problem with
two different mobility ratios: M = 1 and M = 20. The numerical experiments were performed
in a quarter of a repeated five-spot pattern consisting of a square domain (unit thickness) with
side L = 1000.0 ft. The injector well is located at the lower-left corner (x = y = 0) and the
producer well at the upper-right corner (x = y = L). In the experiments we use the Conjugate
Gradient (CG) method to obtain the pressure solution in (16) and the Generalized Minimal
Residual Method (GMRES) to solve the resulting non-symmetric systems for velocity field (17)
and concentration (18). The tolerances for CG and GMRES(50) were taken as 10−6 and the tol-
erance for the predictor-multicorrector algorithm was set equal to 10−1. All computations were
performed on a Dell OptiPlex 740, with AMD Athlon 64 Dual-Core processor and a 1 MB Cache.

3.1 Tracer injection simulations (M = 1)

Firstly, in order to show the accuracy of our implementation we present simulation results for
the tracer injection simulation [8]. To do this, a homogeneous porous medium with permeability
k = 100 mD, porosity φ = 0.1, longitudinal dispersion αl = 1.0 ft, transverse dispersion
αt = 0.0 ft and molecular diffusion αm = 0.0 is considered. The viscosity of the resident fluid
is µ(1) = 1.0 cP and the mobility ratio is M = 1 (i.e. injected and resident fluids have the
same properties). We consider a regular mesh with 80 × 80 squares, with each square divided
into two linear triangles and time steps ∆t = 1.0 day. The flow rates are f = 250ft2/day;
thus, the tracer slug is 250ft3 corresponding 0.25% of the porous volume. Figure 1 shows the
tracer configuration at t = 800 and t = 1200 days. As we have sharp concentration fronts,
the prescribed boundary condition for the velocity field (see Eq. (4)) on the post-processing
velocity block part (17) is crucial to determine an acceptable right solution, without spurious
oscillations.



(a) t = 800 days (b) t = 1200 days

Figure 1: Concentration contours for the tracer injection problem.

3.2 Continuous injection simulations (M > 1)

In our second experiment we consider an adverse mobility problem with a continuous in-
jection of the solvent at a flow rate of 200 ft2/day. The same domain and properties of the
previous example are considered, but the longitudinal and transverse dispersions are, respec-
tively, αl = 10.0 ft and αt = 1.0 ft. Thus, a pore volume of solvent is injected in 2000 days.
The mobility ratio is M = 20 (the viscosity of the injected fluid is 20 times smaller than the
viscosity of the resident one), the mesh is the same of the first experiment and ∆t = 1 day. The
situation now is totally different from the first case (M = 1), the problem is completely non-
linear and, for example, some discontinuity of the initial condition can effect all the approximate
solution, as we see in the study below. We will consider two different initial solutions (c0(x))
for the concentration. Firstly, we set the concentration c = 1 at the injector well and c = 0
everywhere else, i.e., we employ a discontinuous initial function. Secondly, in order to remove
this singularity on the injected well, we regularized the function considering a linear variation
of the concentration for c = 1 to c = 0 on the radial direction close to the well.

We illustrate the efficiency of this proposal via the results presented in Figure 2, where
iso-concentration curves at 500 and 1000 days are plotted. Figure 2 (top) shows the use of
the discontinuous initial solution for the concentration and the post-processing technique for
the velocity field. Thus, it is possible to see the very unstable concentration approximation
due to the singularity on the injected well. A small improvement on the results are obtained
when we combined the regularized initial solution with the Galerkin approximation for velocity
field. However, some non-physical results still remain since the velocity approximation is very
poor, as exhibited in Figure 2 (middle). Finally, Figure 2 (bottom) presents the most stable
approximation for the concentration (physical acceptable) when the velocity field is given by the
post-processing technique combined with the regularized initial solution.

To comment on the computational efficacy of our numerical approach, we show in Table
1 the average linear iteration numbers to solve pressure, CG, velocity field and concentration,
GMRES(50), for the tracer injection problem (M = 1) along 1200 days and for the continuous
injection problem (M = 20) along 1000 days. As we can see the number of linear iterations
for pressure at M = 20 is much bigger than at M = 1. This follows directly from the strong
non-linear character of the continuous injection problem.

4. Concluding Remarks
Numerical experiments for tracer injection (M = 1) and continuous injection with adverse mo-
bility (M > 1) where performed to verify the accuracy of our finite element implementation
of incompressible miscible displacements in porous media. We employ a second-order accu-



Figure 2: Iso-concentration curves at t = 500 days (left) and t = 1000 days (right): discontinuous
initial solution combined with the post-processing technique (top); continuous initial solution
combined with the Galerkin approximation for the velocity field (middle); and continuous initial
solution combined with the post-processing technique (bottom).

Table 1: Average iteration numbers for tracer injection (M = 1) and continuous injection
(M = 20) problems.

Mobility Ratio Pressure Velocity Concentration Time (Sec)

M = 1 189 72 30 1.934

M = 20 1594 85 15 4.246

rate in time predictor-multicorrector finite difference discretization to uncoupled the resulting
non-linear finite element systems of ordinary differential equations. The Galerkin method is em-
ployed to approximate the pressure, and accurate velocity approximations are calculated using a
post-processing technique taking into account a regularized initial solution for the concentration.
A stabilized finite element (SUPG) method is applied to the convection-diffusion concentration
equation. In the tracer injection problem was possible to observe the good agreement of the con-
centration contours. In the second problem, the numerical formulation was tested for a problem



with high nonlinearity with success. We showed in the experiments how some discontinuity of
the initial concentration condition can effect all the approximate solutions even combined with
the post-processing technique. However, stable approximation for the concentration (physical
acceptable) can be obtained using a regularized initial solution and the velocity field given by
the post-processing technique. We also verify that some non-physical results still remain when
we combined the regularized initial solution with the Galerkin approximation for velocity field.
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