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SUMMARY

This work investigates partitioned iterative solution of coupled multiphysics systems including subcycling
time-stepping strategies for decoupled subsystems in conjunction with a proportional-integral-derivative
feedback control algorithm for adaptive time-step selection. Some basic algorithms are proposed and the
total computational effort to integrate to steady state is compared for a representative coupled flow and
heat transfer problem to illustrate the approach and assess performance efficiency. Copyright  2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

There is a growing interest in analysis and efficient simulation of coupled multiphysics prob-

lems. This is enabled by continuing increases in computing power. As a result, both steady-

state and transient calculations of coupled systems are increasingly sought. Algorithms may now

exploit partitioning and iterative decoupling of the systems for various reasons. For instance,
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this enables higher resolution simulations because a sequential computation may be less memory

intensive than fully coupled analysis of a larger system. Furthermore, decoupled iterative solu-

tion may be less expensive than fully coupled solution, especially if the coupling between the

subsystems is weak. In this weakly coupled situation, the nonlinear solution of the decoupled

system and the use of related subsystem block preconditioning techniques can be more effi-

cient and robust than the most standard fully coupled approaches. Finally, there is a considerable

investment in software developed for complex single-physics applications in so-called ‘legacy

codes’, and this provides a strong case for linking such software with more efficient decou-

pled algorithms rather than attempting to redesign and recode a new fully coupled multiphysics

formulation.

In this work, we examine a class of algorithms for decoupled subsystem simulation and consider

the following scenarios: (1) Decoupling of the steady-state (stationary) coupled subsystems;

(2) decoupling of the time-dependent coupled systems within each time step; (3) subcycling physics

subsystems based on transient behavior; (4) integration of the time-dependent problem to a steady

state using subcycle schemes that are not necessarily time accurate; and (5) the extension of these

ideas to parameter continuation techniques.

The scheme for decoupling steady-state subsystems is described first and the ideas here are then

exploited for decoupling within a time step. Even when a solution to the stationary problem is

the objective, transient schemes are still relevant. For example, the strategy of solving stationary

problems by time stepping an associated transient problem to steady state can be an effective

alternative to the more common approach of solving the stationary equations by iterative algo-

rithms. This is particularly the case for nonlinear problems since convergence of such iterative

algorithms is often an issue and may necessitate special continuation strategies. In fact, algo-

rithms that employ time stepping to the steady state may be interpreted as a type of continuation

scheme in this context. In these cases time-accurate solutions are not sought and this implies

further that adaptive time stepping that leads to quite large time steps may be effective. For some

related work involving explicit time integration schemes that exploit large time steps see, for

instance, [1, 2].

For coupled multiphysics systems such as those encountered in fluid–thermal–structure inter-

action, the stability restrictions will differ for respective subsystems and one can accordingly use

different respective time steps in a form of subcycling [3–5]. Even in the case where time-accurate

solutions are needed, such adaptive time stepping and subcycling may be beneficial. Here we

explore this idea further and in the context of combining subcycling with adaptive time stepping

and proportional-integral-derivative (PID) feedback control algorithm strategies. Coupled fluid flow

and heat transfer is selected as a representative dual-physics test case [6, 7] and some forms of the

algorithms are implemented to assess the approach. The goal is to demonstrate the efficiency of

the combined approach in reducing the total computational effort to obtain a steady-state numer-

ical solution and to investigate some elementary variants of the algorithm. In this work, we will

focus on implicit integrator schemes but remark that the decoupling strategies and especially the

subcycling approach apply similarly for explicit integration schemes.

In the next section, we describe the decoupled partitioning approach and the basic strategy

and algorithms for a generic multiphysics problem class. Then some variants of the algorithms

are implemented, results verified and performance assessed for coupled fluid flow and heat

transfer as a representative coupled dual-physics system. Results are compared for fixed and vari-

able time-step schemes, and with subcycling. PID control feedback is used to determine step

size.
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2. MULTIPHYSICS DECOUPLED ITERATIVE ALGORITHMS

Let us consider typical coupling between multiphysics subsystems. This usually enters through

the dependence of the source terms and coefficients in the respective subsystems on primary

solution variables associated with other subsystems. As a specific example in the numerical tests

described later we consider coupling via a Boussinesq heat source contribution in a viscous

flow subsystem (identified as the Physics 1 subsystem) together with coupling via the convective

velocity in the heat transfer subsystem (identified as the Physics 2 subsystem). The extension to

include further subsystems with similar types of coupling such as additional reactive mass transport

subsystems, thermal stress subsystems, etc. is evident. After discretization, this coupling persists in

the coupled semidiscrete ordinary differential equation system for evolution problems as well as in

the corresponding coupled steady-state problem. In the stationary case, one may seek to solve the

coupled nonlinear algebraic systems by either a fully coupled or iteratively decoupled approach.

Success here depends on the choice of the starting iterate, the strength of any nonlinearities and

whether the coupling is weak or strong. Clearly, the decoupled strategy will be more appealing if

the coupling is weak.

Similar reasoning applies in the transient problem. Here we will assume for the moment

that an implicit integrator is implemented. Then in each time step, a coupled system must be

solved and the same approaches as in the stationary problem apply. Synchronization occurs at

the end of a time step. Clearly, adaptive time stepping with a common step for each subsystem

is easy to implement in such a strategy. However, depending on the nonlinearities and compu-

tational costs of solving respective subsystems, one may elect to improve efficiency by subcy-

cling with smaller time steps on one or more of the subsystems. For example, if some subsys-

tems are more expensive to solve and have solutions that are relatively less sensitive to the

other variables, then subcycling time steps on the subsystems with rapidly fluctuating solutions

will generally improve the efficiency. Partial data transfers may be needed along the subcy-

cling path and full synchronization with data transfer at the end of each set of subcycling

steps.

In this work adaptive time-step selection is implemented via a PID control algorithm, but this

is independent of the main ideas on decoupling algorithms discussed here. Adaptive time stepping

can be invoked either with or without subcycling as indicated in the representative algorithms

and numerical studies described later. Remark: Note that these decoupling/iteration/subcycling

concepts all apply easily to explicit time integration in an analogous manner. The main distinction

is that the time-step selection is limited by single-physics subsystem nonlinearity and stiffness.

This may also dictate the subcycling synchronization. We will focus here on the implicit case, the

explicit case being a straightforward modification.

To describe the main ideas and algorithms, it suffices that we consider a coupled dual-physics

problem of the type indicated previously, where the source term of Physics 1 subsystem depends

weakly on the solution of Physics 2 subsystem and a coefficient of Physics 2 subsystem depends

more strongly on the solution of Physics 1 subsystem. This is precisely the type of coupled

application considered in the coupled flow and heat transfer problem computed in subsequent tests.

The extension to a larger number of subsystems is obvious. In the case where there is a rapidly

fluctuating source term or similar feature in a subsystem, then subcycling may be appropriate in

integrating this subsystem. A basic dual-physics scheme for the stationary problem is described

first and then embedded in the transient cases. The familiar direct decoupled approach for the

stationary case follows easily as shown below.
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Basic Algorithm Cycle for dual-physics subsystems:

1. Select (or generate) starting iterates for solutions to both physics.

2. For each decoupled sweep, s=1,2, . . . .

(a) Solve the nonlinear Physics 1 subsystem numerically (lagging the Physics 2 variable) to

tolerance tol1.

(b) Solve the nonlinear Physics 2 subsystem numerically (using the recently computed

Physics 1 variable) to tolerance tol2.

(c) Return to step (a) until convergence to a specified tolerance or iteration limit.

In this base algorithm there are two nonlinear subsystem solves per decoupled sweep. The

scheme may be interpreted as a form of block Gauss–Seidel iteration on physics for the fully

coupled system, since the most recently computed iterates are used in the subsystem solves. Block

preconditioners can also be introduced for the subsystem solves to accelerate iterative convergence

of these subsystems. Note that convergence of the coupled subsystem sweeps relies on the weak

coupling assumption. Data transfers occur between respective subsystem solves and if different

meshes are used for different physics, then this implies a further level of complexity for these

projections. In the subsequent numerical work, the same mesh is used for both physics.

The scheme extends immediately to the transient problem with the same base algorithm applied

within each time step. That is, we simply add a time stepping loop around the base algorithm.

Two variants of the decoupled time stepping ‘pattern’ are described graphically in Figure 1 and

incorporating subcycling with smaller time steps for Physics 2 subsystem in Figure 2. The top

diagram in Figure 1 depicts a basic decoupled solution scheme with constant fixed common time

step. Here Physics 1 subsystem is first solved lagging the dependence on the solution variable

associated with Physics 2 subsystem in the forcing term. Then Physics 2 subsystem is solved

with the recently computed Physics 1 subsystem solution as coefficient input. This decoupled

process-linking subsystem in a given time step can be characterized by a ‘Z’ pattern through a

horizontal time step and across an embedded decoupled physics sweep. Iteration is usually repeated

to convergence of both subsystem solution variables within the time step and then continued to

successive time steps as shown in the figures by the repeated ‘Z’. Subsystem solves are represented

by horizontal arrows and the decoupling by the diagonal arrow between physics subsystems.

Remark: Note that each ‘Z’ in the pattern is usually repeated to convergence within the time step

as described in the basic algorithm. However, in cases of time stepping to steady state where

time-accurate solutions are not sought this is relaxed to yield a more efficient algorithm as seen

later. The lower diagram in Figure 1 corresponds to a scheme that begins with a fixed time step

and then adapts with a variable but again common time step across the coupled multiphysics. We

refer to these schemes as algorithm 1.1 and algorithm 1.2, respectively. PID feedback controls the

step size in algorithm 1.2 but any adaptive time step approach could be applied. Figure 2 illustrates

the use of subcycling in Physics 2. The schemes again are initiated with a few constant fixed time

steps and no subcycling. The first scheme, algorithm 2.1 in the upper diagram, shows two constant

subcycle time steps applied to Physics 2 subsystem integration for each fixed coarse time step in

the Physics 1 subsystem computation. Adaptive time stepping with the PID controller (for both

subsystems) is applied in conjunction with similar subcycling for Physics 2 subsystem in the lower

diagram (algorithm 2.2).

The generalization of these schemes to more subsystems, to variable number of nonlinear

iterations in each subsystem, and to variable number and size of subcycle steps is obvious. The
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Figure 1. Solution sequence using fixed time-step sizes (algorithm 1.1, upper) and with adaptive PID
time-step controller (algorithm 1.2, lower).

Figure 2. Subcycling in Physics 2 subsystem (algorithm 2.1, upper) and with adaptive PID
time stepping (algorithm 2.2, lower).

most effective strategy will depend on the strength of the coupling, the subsystem nonlinearities

and subsystem stiffness. Hence, the best combination will be application dependent. For example,

one may even elect to integrate one subsystem explicitly and another implicitly and use different

meshes for each subsystem. Such ideas are common in practical large-scale applications employing

sophisticated ‘legacy’ codes like those used in the DoE laboratories and for DoD applications such

as fluid–structure interactions and analyzing the effects of blast waves on buildings. In the next
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section, we consider coupled flow and heat transfer as a representative dual-physics application

class to be implemented and used to assess the decoupled algorithm ideas proposed here.

3. FLUID–THERMAL SYSTEM AND ALGORITHM

The dimensionless equations describing the coupled fluid–thermal applications of interest have the

form [8]

Lu

Lt
+u·∇u−∇2u+∇p=

Ra

Pr
T g+f(t) in X× I (1)

∇ ·u= 0 in X× I (2)

LT

Lt
+u·∇T−

1

Pr
∇2T = s(t) in X× I (3)

where X is the flow domain, I =[0, t̄] is the time interval, u is the velocity vector, p is the pressure,

T is the temperature, g is the gravity vector, f(t) is a specified time-dependent body force, s(t)

is a time-dependent heat source that may be rapidly fluctuating, Ra is the Rayleigh number and

Pr is the Prandtl number. Boundary conditions and initial conditions for temperature and velocity

complete the mathematical statement of the problem. Note that we can decouple at the continuous

operator level or at the algebraic level [6, 7].

The decoupled flow subproblem is obtained by iteratively ’lagging’ temperature for the

Boussinesq term in Equation (1). The resulting single-physics problem (Physics 1 subsystem)

is nonlinear due to the inertial term u·∇u and the subsystem for a time step can be solved

by successive approximation, Newton iteration, or a similar strategy. Here, since we are only

interested in the velocity solution and the associated coupled transport process, we use a penalty

method to enforce the incompressibility constraint. The nonlinear systems are solved using

successive approximations and integrated in time using the Crank–Nicolson mid-step method.

The resulting approximate velocity field is then used to compute a convection coefficient for

Equation (3). This linear equation is then discretized using a stream upwind Petrov–Galerkin

(SUPG) scheme and integrated through the time step also using the Crank–Nicolson method.

Remark: Note that (1)–(2) is a nonlinear vector subsystem and (3) is a linear scalar subsystem

under the decoupling strategy. It follows that solving the decoupled viscous flow problem is

computationally much more intensive than the heat transfer solve. Moreover, if the source term

for the heat transfer equation is fluctuating rapidly, subcycling the second subsystem will be an

efficient strategy since large steps can be taken on the flow solver with shorter subcycle steps to

accommodate the source on the heat transfer calculation. This sequence of subsystem solves and

data transfer is repeated to a desired convergence level.

A brief comment on PID control of time step size is warranted. To adapt the time step, a feedback

control algorithm may be introduced based on controlling accuracy as determined by truncation

error estimates. More specifically, Gustafsson [9, 10] and Gustafsson et al. [11] show that stepsize

selection can be viewed as an automatic control problem with a PID controller defined as

Dt=

(

en−1

en

)kP
(

1

en

)kI
(

en−1
2

enen−2

)kD

Dtprev (4)
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with

en=max(eu,eT ) (5)

where

eu =
e∗u

tolu
, e∗u=

‖Un−Un−1‖

‖Un‖
(6)

eT =
e∗T

tolT
, e∗T =

‖Tn−Tn−1‖

‖Tn‖
(7)

and Dt represents the new time-step size, Dtprev is the time-step size at the previous step, en is

the measure of the change of the quantities of interest in time tn , kP, kI, and kD are the PID

parameters and tolu and tolT are user supplied tolerances corresponding to the normalized changes

in velocities and temperature vectors, respectively. The efficiency of the control was demonstrated

by Valli et al. [6, 7] in numerical simulations of Rayleigh–Benard–Marangoni problems, flow over

a backward-facing step and unsteady flow past a cylinder. Further, the computational overhead of

the selection procedure is insignificant compared with solver operations, since time-step selection

involves only storing a few extra vectors and computation of associated norms.

4. RESULTS

Several numerical experiments were conducted to confirm time accuracy of the PID variable time-

step approach for representative model problems of increasing complexity and corresponding to:

1. scalar transport with specified convective velocity field;

2. incompressible Navier–Stokes;

3. coupled Navier–Stokes and transport.

The common strategy of constructing the source function to correspond to a pre-assigned solution

function (more recently termed the ‘method of manufactured solutions’) was used to construct

each problem. Tolerances for the time integration were selected together with an allowable range

of step size. Results of numerical simulations with the PID strategy were compared for each of

the above cases with those obtained using standard fixed time-step integration. The simulations

with the present scheme confirm comparable accuracy at the final time and over the time period of

integration with fewer time steps and therefore greater efficiency as anticipated. For instance, for

the representative model problem 3 (coupled Navier–Stokes and transport), we obtain values for

the velocity and temperature errors in the L2-norm less than 10−8 and 10−4, respectively, using

fixed and adaptive time steps using PID selection. Using the PID controller, we can reduce the total

computational cost by 13%. Time accuracy of the algorithm was maintained using an approach

similar to that in [12] and based on a scheme in [13].

We remark that one can design problems that would be more demanding, but both integration

strategies would fare similarly on these problems since the same integration schemes are used. Once

again the PID control would be anticipated to be more accommodating through the variable time-

step option. More sophisticated error indicators may be constructed and other time-step selection

strategies based on these error indicators could be applied. Depending on the quality of these error

indicators, time accuracy may be superior to the simple control strategy used here, but would no
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doubt involve additional calculations. A better strategy may be to combine the present control

approach with supplementary error indicator calculations that ‘run in the background’. We are

investigating the accuracy and efficiency of such hybrid strategies as part of our continuing work

in this area. This will be part of a larger study that includes the details of the verification tests for

the transport, Navier–Stokes, and coupled flow and transport problems mentioned above [14].

Following the previous time-accuracy tests on ‘manufactured’ problems with known analytic

solutions, we next examine performance of the decoupled ‘Z’ algorithm on the familiar coupled

problem of natural convection in a unit square X=[0,1]×[0,1] with normalized temperatures

T =1, T =0 on the left and right walls, respectively, adiabatic top and bottomwalls (no free surface),

with Pr=0.71 and Rayleigh numbers, Ra, of 103, 104 and 105. As a representative algorithm from

the class of possible decoupled schemes described earlier, we implement the implicit mid-step

transient formulation to step to steady state. This can be applied in various ways. For example, later

we compare the steady-state results with various time-stepping combinations, including subcycling,

and using one decoupled sweep per time step with successive approximation to convergence for the

viscous flow problem (1)–(2). For these verification tests, the simulations repeating each decoupled

cycle ‘Z’ in the pattern to convergence were also carried out for comparison purposes and gave

the same steady-state solution with the same total number of successive approximations. Since

time-accurate solutions are not sought in this fluid–thermal system example and the fluid system

is more expensive to solve, the subcycling algorithm is implemented here in a manner similar to

that described in Figure 2 previously.

Numerical results at steady state for Nusselt number at the left wall (Nu0=
∫ 1
0 q dy, where

q is the heat flux) and for the stream function at the midpoint (wmid) are compared with the

results from [15–17]. The approximate velocities and temperatures are calculated with 9-node

isoparametric quadrilateral elements on a uniform 16×16 mesh at Ra=103 and on a 32×32

mesh at Ra=104,105. The initial time-step sizes in all cases is chosen small enough to allow

convergence of the successive approximation solution iterations for viscous flow equations (1), (2)

at the beginning of the process. For instance, we start with time-step size 0.01 at Ra=103,104 and

0.001 at Ra=105. The kinetic energy of the system has been used to characterize global behavior

such as rapid ramp-up in early time, oscillatory intermediate solutions with respect to time, and

final steady-state behavior. In this work, we assume that the steady state occurs when the kinetic

energy at two different time steps reaches a relative difference less than a specified tolerance, tolst.

By experiment, we infer that the steady state occurs when tolst=10−4 for all Reynolds numbers.

For all Ra numbers, we set the ratio of fluid time step to subcycling thermal step as 1:3. The

results using fixed time steps (algorithm 1.1), the PID controller (algorithm 1.2), subcycling without

stepsize adaption (algorithm 2.1), and subcycling with the PID stepsize controller (algorithm 2.2)

are shown in Table I. The agreement for all cases is favorable when compared with a benchmark

Table I. Comparison of specific results to benchmark case.

Algorithm 1.1 Algorithm 1.2 Algorithm 2.1 Algorithm 2.2 Benchmark [17]

Ra Nu0 wmid Nu0 wmid Nu0 wmid Nu0 wmid Nu0 wmid

103 1.118 1.175 1.118 1.175 1.117 1.174 1.118 1.176 1.117 1.174

104 2.247 5.075 2.246 5.070 2.247 5.076 2.241 5.059 2.238 5.071

105 4.551 9.083 4.549 9.059 4.549 9.115 4.547 9.115 4.509 9.111
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Figure 3. Stream functions contours for Ra=103 (left), Ra=104 (center) and Ra=105 (right) using
algorithm 1.1 (top) and algorithm 2.2 (bottom).

Table II. Computational effort for the natural convection problem.

Algorithm 1.1 Algorithm 1.2 Algorithm 2.1 Algorithm 2.2

Ra nsa ceffort nsa ceffort nsa ceffort nsa ceffort

103 58 1.0 32 0.55 25 0.43 21 0.36

104 91 1.0 80 0.88 41 0.45 41 0.45

105 416 1.0 388 0.93 143 0.34 118 0.28

result [17]. Corresponding quantities differ by less than 1.0%. Figure 3 shows the streamlines for

Ra=103, 104 and 105 obtained with fixed time steps (algorithm 1.1) and subcycling with the PID

controller (algorithm 2.2). The streamlines obtained by the two algorithms agree very well and

they also show good agreement with the results presented in [17].

Next, we compare the computational effort to calculate the solution using four variants of the

algorithm strategies considered here. The computational effort, ceffort, is measured by the ratio of

the total number of successive approximations, nsa, needed to calculate the velocity field to the

number of successive approximations obtained using a fixed time-step size. Table II confirms that
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Table III. Computational effort for the Rayleigh–Benard problem.

Algorithm 1.1 Algorithm 1.2 Algorithm 2.1 Algorithm 2.2

nsa 1013 782 606 528
ceffort 1 0.77 0.60 0.52

Figure 4. Streamlines for the flow in a container using fixed time-step sizes (algorithm 1.1, top) and the
subcycling with PID controller (algorithm 2.2, bottom).

all approaches reduce the number of successive approximations needed to obtain the solution, but

subcycling with the PID controller (algorithm 2.2) gives the best result in all cases. For example,

with reference to CPU time we are able to calculate the solution 2.22 times faster than using

algorithm 2.2 for Ra=104.

The last test case is Rayleigh–Benard flow in a rectangular container of length 4 times the height

with Pr=0.72 and Ra=30000. The normalized temperatures on the bottom surface and top surface

are Th=1 and Tc=0, respectively. The approximate velocity and temperature are calculated using

a grid of 32×8 biquadratic elements. For algorithm 1.1, the steady state is assumed when the

velocities and temperatures at two different time steps reach relative difference less than tolerance,

tolst=0.002. For the other algorithms, the kinetic energy is used to characterize the final steady-

state behavior. In the PID controller, a tolerance of 0.01 is set for changes in nodal velocities and

temperatures. The initial time-step size is 0.001, and the ranges of minimum and maximum time

steps are 0.001 and 0.5, respectively. This starting time step is the largest for which we obtained

convergence in the successive approximation iterations for viscous flow from quiescent startup.

The ratio of fluid to thermal time step is again taken to be 1:3.
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As seen from Table III, using the PID controller with subcycling (algorithm 2.2) gives the best

result. With a fixed time-step size of 0.001, the scheme requires 1013 iterations but only 528

iterations are needed when algorithm 2.2 is applied. In this case, the solution is obtained 1.9 times

faster with respect to CPU time. Figure 4 compares the streamlines obtained with fixed time steps

(algorithm 1.1) and subcycling with the PID controller (algorithm 2.2). There are six recirculation

cells, and both solutions are in good agreement and are comparable to those in [18].

5. CONCLUSION

We investigate some concepts concerning decoupled algorithms for coupled multiphysics appli-

cations. The algorithms are described for coupled subsystems and diagrammed for a generic

dual-physics pattern. The strategy is then applied to coupled fluid–thermal interaction to assess

performance. The efficiency of subcycling and the PID time-step controller were investigated in

this decoupled setting for the numerical simulation of natural convection and similar benchmark

problems. The general approach covers the gamut of decoupled multiphysics strategies from one-

way coupling where there is no feedback from Physics 2 to two-way coupling for stationary and

transient problems. Acceleration techniques including subcycling strategies, adjusting time step-

ping, and continuation approaches are included. Inevitably, these schemes must be considered in

developing coupling strategies linking different physics in ‘legacy codes’. In this case, the meshes

and discretization methods will usually also be different, so some care has to be taken here (e.g. see

Carey et al. [19] for an example involving solution of a shallow-water subsystem on a finite element

mesh with projection of the velocity field (in one-way coupling) to a different mesh using control

volume approximation for transport simulation). We mention the relevance to grid computing, but

conclude by noting that grid latency is the key factor here. Nevertheless, decoupled algorithms

that involve (say) solving Physics 1 on one computer system with data transfer to and from a

Physics 2 subsystem are practical, provided the communication is not excessive. For example,

if only parameter extraction is returned then communication becomes negligible. In the viscous

flow/heat transfer problem, the communication is reasonable for stationary problem or for implicit

solves. The respective grid computer systems would influence the physics decompositions. Also

note that in the parallel grid setting, the Physics 1 and Physics 2 simulations are not sequential,

hence instead of the ‘Z’ pattern we imply both physics start in concert with lagged values and

exchange data simultaneously at the end of the solve.
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