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Abstract: We examine Proportional-Integral-
Derivative (PID) feedback control to enhance
algorithm performance via parameter adap-
tion. Of particular interest is use in branch-
following algorithms applicable to turning point
and bifurcation problems. Results of numeri-
cal experiments are described for finite element
approximation of a benchmark Navier-Stokes
problem and for the classical Bratu reaction-
diffusion problem.

Continuation techniques provide a means
of extending the range of flows for which
a solution can be computed using a given
nonlinear iterative method [5, 10, 2, 12]. A
variety of finite difference and finite element
methods has been developed for approxi-
mate solution of nonlinear applications. The
system of nonlinear equation resulting from
the approximation is usually solved using an
iterative method such as Picard, successive
approximations or Newton. In the vicinity
of a solution, Newton’s method converges
quadratically and the method can produce
results very efficiently. However, the range of
convergence is small for many flows considered
on important applications, so that the benefits
of a high rate of convergence are difficult to
obtain [4]. To solve this problem, we need
an appropriate starting guess which can be
obtained using some kind of continuation
technique. An simple continuation technique

is to incrementally increase the parameter (e.g.
the Reynolds (Re) number in the stationary
Navier-Stokes equations) from zero to the final
value of interest, using successive intermediate
solutions as starting iterates for the next
problem in sequence (incremental Newton).
The essential idea is to compute solutions to a
sequence of problems as a parameter is varied
along a continuation path [4]. Such a set of
solutions is also said to define a “solution
branch”. Provided the step in Re is not larger
this procedure assists in providing a starting
iterate that is in the domain of attraction of
Newton method for each successive nonlinear
solve along the path. A bad initial guess for
the Newton method may not converge or may
converge to the wrong solution (i.e. a solution
on a different branch). By differentiating
the nonlinear problem with respect to the
continuation parameter, we can construct an
associated initial-value problem which may be
integrate numerically with an Euler scheme to
determine the solution at successive values of
the parameter [4]. This scheme is an variant
of the continuation scheme defined a Euler-
Newton method. However, although these
methods works well when the continuation
path consists of regular points, they may fail
when turning and bifurcation points lie on
the path. In this case, the Jacobian matrix
in the Newton solver becomes increasingly



ill conditioned as the singular point is ap-
proached. One method to circumvent this
problem is to use arc length as an alternative
parameterization for the continuation method.
One popular method of this type is the
arclength continuation technique described
by Keller [10]. Now one must solve a larger
“bordered” Jacobian system at each Newton
iteration. Splitting this system alleviates this
difficulty, but the singularity then persists,
necessitating adaption of the arclength step
near the singular point [5, 9, 1, 2]. To adapt
the arclength for overall efficiency of the
continuation techniques and to maintain
convergence near the singular point, a PID
feedback control algorithm is introduced based
on controlling accuracy as determined by
truncation error estimates [15, 13, 16]. Of
particular interest is use in branch-following
algorithms applicable to turning point and
bifurcation problems. Results of numerical
experiments are described for finite element
approximation of the lid driven cavity pro-
blem and the Bratu reaction-diffusion problem.

Method

Consider the nonlinear parameterized boun-
dary value problem for the steady-state beha-
vior of a physical system in an abstract nota-
tion as

G(u, λ) = 0 (1)

where G is the residual operator for the boun-
dary value problem, u ∈ V is the state variable
solution and λ ∈ Rm is a vector of parameters.
In this work, we focus on two classes of stati-
onary problems: incompressible Navier-Stokes
problems for different values of the Reynolds
number (Re) and the Bratu reaction-diffusion
problem with parameter continuation along a
solution branch. A finite element discretiza-
tion is introduced in the weak formulation of
the problem and a Newton method is then for-
mulated for the resulting nonlinear system. For
the viscous flow equation we use a penalty fi-
nite element formulation and for the reaction-
diffusion problem we use a Galerkin formula-
tion.

The implicit function theorem specifies suffi-
cient criteria guaranteeing that a branch can be
parameterized by λ. For a specific stationary
solution of (1) the criterion basically requires

nonsingularity of the Jacobian matrix Gu. If
a path consists of regular points, we can use
the incremental Newton method to increase the
parameter, using successive intermediate solu-
tions as starting iterates for the next problem
in sequence. By differentiating the nonlinear
system (1) with respect to the continuation pa-
rameter, we obtain the linear system

Gu
∂uh

∂λ
= −Gλ (2)

to be solved for ∂uh

∂λ
. Equation (2) involves the

calculation of Jacobian matrix Gu as for the
original Newton’s method, but has a different
right-hand side. The benefit of solving this ex-
tra system of equations is an improved initial
guess for the finite element solution uh. This
solution can be used in the forward integration
rule (Euler’s method),

uh(λ + dλ) = uh(λ) + dλ
∂uh

∂λ
(λ) (3)

to obtain a good starting vector in Newton ite-
ration of the nonlinear system (1). This scheme
is termed Euler-Newton continuation method
and is suitable provided that there are no li-
mit points. If this is not the case, the problem
may parameterized with respect to arclength
than λ, as suggested by Keller. In the arclength
continuation method, (1) is augmented with a
constrained equation as

P (u, λ, s) =

[

G(u, λ)
N(u, λ, s)

]

= 0 (4)

where s is the arclength parameter, defined as
the distance along the solution branch (i.e. s
is non-decreasing even if λ is decreasing along
the branch). In this work we use a linearized
arclength constrained or a “pseudo arclength”
given by

N(u, λ, s) = (u − u(si))
t ∂u

∂s
|si

+

(λ − λ(si))
∂λ

∂s
|si

−

(s − si) = 0 (5)

where si is some arbitrary point in the path.
Now we must to consider the augmented Jaco-
bian system associated with the nonlinear sys-
tem (4) to obtain the solution (u, λ) via Newton
method
[

Gu Gλ

N t
u Nλ

]k [

δu
δλ

]k+1

=

[

−G
−N

]k

(6)



where k = 0, 1, · · ·. Here for convenience (in
terms of reuse of existing computational tools)
we use a two-solve procedure. At each Newton
step, we need to perform the following compu-
tations:

1. Solve Guy = Gλ (first solve).

2. Solve Guz = −G (second solve).

3. Calculate δλ = −N−Nt
u z

Nλ−Nt
u y

.

4. Calculate δu = z − (δλ)y.

Note that this algorithm is roughly twice as ex-
pensive as a normal Newton solve, and there-
fore only attractive to use near turning points
or regions of rapid change in the solution re-
lative to the parameter λ. Observe also that
the initialization of the arclength continuation
algorithm requires the solution and parameter
derivatives with respect to s from the previous
step, since we are using the linearized arclength
constrained (5). So, we assume that two previ-
ous solutions, {u0, λ0} and {u1, λ1}, have been
computed without requiring arclength continu-
ation, but the incremental Newton with small
increments of the parameter λ.

To generate an initial guess for the Newton
iterations we use an extension of the Euler-
Newton approach described before. The main
idea is to assume in (4) that the “derivative”
of P (x(s)), x = [u, λ], with respect to s is the
zero vector. By chain-differentiation of P one
arrives at

[

Gu Gλ

N t
u Nλ

] [

∂u
∂s

∂λ
∂s

]

=

[

0
−Ns

]

(7)

which is an equation for determining the tan-
gent vector. Then a predictor or initial guess
for Newton’s method can be obtained by

u∗

2 = u1 +
∂u

∂s
∆s, λ∗

2 = λ1 +
∂λ

∂s
∆s (8)

Observe that (7) conveniently involves the
same matrix as the augmented Jacobian sys-
tem of (6). So, to estimate the initial guess
we also use the same two-step algorithm des-
cribed before. This retains monotonicity in the
continuation variable and greatly simplifies the
implementation, because of the close similarity
to the incremental scheme for non-singular pro-
blems. To adapt the arclength for overall effi-
ciency and to maintain convergence near the

singular point, a PID feedback control algo-
rithm is introduced based on controlling accu-
racy as determined by truncation error estima-
tes. More specifically, the arclength stepsize
can be defined as follows

△sn+1 =

(

en−1

en

)kP
(

1

en

)kI

(

en−1
2

enen−2

)kD

△sn

(9)
where

en =
e∗n
tol

e∗n =
‖∂u

dλ
|n − ∂u

dλ
|n−1‖

‖∂u
dλ
|n‖

(10)

kP , kI and kD are the PID parameters and tol
is a supplied tolerance corresponding to the
normalized changes of the most recent solution
tangents with respect to the parameter λ.
For the incremental Newton, a similar PID
algorithm is used to choose the parameter
increment, based on controlling the changes
in the variables of interest between two con-
secutive solutions in the continuation process.
The efficiency of this kind of control was
demonstrated by Valli, Carey and Coutinho
in [15, 13, 16]. Further, the computational
overhead of the selection procedure is insig-
nificant compared to solver operations, since
the arclength stepsize selection involves only
storing a few extra vectors and computation
of associated norms.

Numerical Results

Numerical experiments were conducted for
the “lid driven cavity” problem for a range
of Reynolds (Re) numbers and for the Bratu
reaction-diffusion problem with parameter
continuation along a solution branch.

Lid Driven Cavity Problem: The lid-
driven cavity flow is a standard test case for ste-
ady Navier-Stokes computations and there are
numerous published results that can be used
for comparison purposes [6, 14, 8]. The do-
main of analysis is a unit square. Both velocity
components are prescribed to be zero, except at
the top boundary (the lid) where the horizontal
velocity component has a unit value. However,
this problem is complicated by the presence of
two corner singularities. As described in [6] and
[11], this problem can be regularized. Prabha-
kar and Reddy [11] specify a hyperbolic tangent



u-velocity distribution on the top wall:

u(x) =

{

tanh(βx), 0 ≤ x ≤ 0.5,
−tanh(β(x − 1)), 0.5 < x ≤ 1.0

(11)
with β > 0. In the present study β = 100
is used, which give a smooth but at the same
time sharp transition form u = 0.0 to u = 1.0
near the walls of the driven surface. For re-
presentative problems with Reynolds numbers
of moderate order (up to 103), solutions can
be achieved in few iterations using successive
approximations or Newton-Raphson iterations.
Figure 1 (top) shows how successive approxi-
mation and Newton iterations perform as pro-
blem Reynolds number increases. Results are
for bilinear elements on a fixed uniform mesh
(h = 1

16
) with initial zero velocities. As we

can see, Newton iterations fail to converge for
Re > 103. As the Re increases the convective
term becomes more significant and the mesh
size must be reduced accordingly to prevent
oscillations and retain accuracy and conver-
gence. To obtain a solution for much higher
Re numbers we need an appropriate starting
guess which can be obtained using some kind
of continuation technique.
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Figura 1: Total number of iterations as Re
increases using successive approximations and
Newton iterations.

For Re = 12500, we compare incremental
Newton for fixed and adaptive Re number in-
crements using bilinear elements on a 128×128
grid. For fixed step sizes, the initial Re num-
ber is 500 (the maximum Re number that we
can achieved convergence) and then we use fi-
xed increments of 1000. For the PID approach,
the minimum and maximum Re increments
are 500 and 3, 000, respectively, and the tole-
rance for changes in two consecutive velocities

in the continuation process is tol = 1. Figure 2
(bottom) shows the number of total iterations
when the Re number increases using fixed and
adaptive increments. For Re > 103 standard
Newton iteration from zero velocity fails to
converge whereas PID continuation techniques
permit more efficient solution for much higher
Re numbers. The PID incremental solution for
Re = 12500 is obtained in 46 Newton iterati-
ons, reducing the computational cost by about
31% when compared with fixed increments of
Re = 1000. Figure 3 shows the horizontal ve-
locity u along the vertical centerline (left) and
the vertical velocity v along the horizontal cen-
terline (right) for the lid driven cavity problem
with Re = 12500 and the agreement is favora-
ble when compared with the results in [3, 7].
We also compare the value of the stream func-
tion at the primary vortex center and the result
shows difference of 5.e-3 with [3]. The method
used there is a p-type finite element scheme for
the fully coupled stream function-vorticity for-
mulation and for Re = 12, 500 they use a high
resolution mesh h = 1/32, p = 8.
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Figura 2: Total number of Newton itera-
tions using incremental Newton and PID-
incremental Newton.

Bratu Problem: The Bratu reaction-
diffusion problem [5],

−∇2u = λeu (12)

u = 0 (13)

defined at the unit square domain, has a tur-
ning point near to the parameter λ = 6.81. The
arclength approach with PID control is applied
to follow the main branch of solutions with mi-
nimum and a maximum arclength stepsizes of
0.5 and 1.0 respectively and a tolerance of 0.1
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Figura 3: Computed u-velocity along the ver-
tical centerline (top) and v-velocity along the
horizontal centerline (bottom) for Re = 12500.

in the changes of the solution tangents with res-
pect to the parameter λ. We consider 4-node
isoparametric quadrilateral elements on a uni-
form 32 × 32 mesh. The algorithm uses the
Newton-Euler approach to generate an initial
guess for the Newton iterations, the maximum
number of Newton iterations allowed is 20 and
the Newton tolerance is 10−10. Figure 4 shows
the main branch of solutions and the arclength
stepsize variation. With PID feedback, the ar-
clength stepsize rapidly grows from the initial
value to the maximum value until λ reaches ap-
proximately 5 (corresponding to an arclength
parameter greater than 10). Following this, the
PID controller reduces the arclength step to the
minimum value to follow the solution branch
through the turning point and then allows the
stepsize to increase again. Using the PID con-
trol we are also able to estimate the turning
point as λ = 6.81278399. Figure 5 shows the
concentration solutions for two values of the
parameter: λ = 5.704 and λ = 0.904 after the
turning point.
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Figura 4: The main brach of the solutions (top)
and the arclength stepsize variation (bottom).
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Figura 5: The concentration for the Bratu pro-
blem: λ = 5.704 (top) and λ = 0.904 (bottom)
after the turning point.



Conclusion

Continuation methods with a PID con-
trol algorithm are developed to adapt the
parameter stepsize and the arclength for
branch tracing algorithms and are applied
to representative flow and reaction-diffusion
problems. The improved performance of
the PID algorithm is verified in numerical
experiments for the driven cavity problem and
the Bratu reaction-diffusion problem. The
PID continuation techniques permit more
efficient solution for much higher Re numbers
in the driven cavity problem, reducing the
the computational cost by about 31% when
compared with fixed increments. The PID
feedback control algorithm is also a good
technique to adapt the arclength for overall
efficiency and to maintain convergence near
the singular point in the Bratu problem.
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