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A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey1 INTRODUCTIONWith the evolution of �nite element methodology and its extension to more omplexlasses of oupled problems there has been an inreasing need for improved algorithms andother enhanements suh as adaptive grid re�nement and oarsening (AMR) [2, 4, 11, 25,24℄. Several adaptive timestepping seletion strategies have been studied as a means toprovide stable aurate transient (and steady state) solutions more e�iently [19, 20, 17℄.This adaptive timestepping seletion proess is usually approahed by means of loaltrunation error analysis. In the same way, the adaptive grid shemes use feedbak fromthe omputed solution on a given intermediate grid to asertain where the grid should beloally re�ned. This brings us to the main objetive of the present work - the utilizationof feedbak ontrol algorithms for timestep seletion in onjuntion with AMR proess of�nite element analysis in the simulations of steady-state 2D visous �ow.There are many works in the literature that deal with spatial and time adaptivity[22, 18, 17℄. Controlling the numerial error gives a better solution and also gives to theuser the knowledge of the reliability of the results. In this work we use the same approahpresented in [16, 13, 23℄ that splits the error in two parts: one part oming from the spatialdisretization and another oming from the temporal disretization. An adaptive strategyis developed to drive the re�nements, ontrolling the element size and distribution, andto ontrol the timestep size. For the spae disretization error we hoose an a-posteriorierror indiator similar to the lassial indiator proposed by Kelly et al. [11℄, based oninterfae derivative jumps. There is an extensive literature devoted to obtaining morerelialible a-posteriori estimates and aompanying errors indiators but, in pratie, thisjump indiators have proved to be broadly appliable. For the time disretization weuse a proportional-integral-derivative (PID) ontrol to selet the timestep size, based onontrolling normalized hanges in the variables of interest [20℄. Sine in this work weare interested in the steady-state solution, this simple error indiator is very e�ient andthe omputational overhead of the seletion proedure is insigni�ant ompared to solveroperations [21℄.Both timestep ontrol and AMR o�er means to aelerate simulation and analysis fordesign and rapid prototyping: timestep ontrol redues the CPU time to reah steady-state solution and likewise AMR permits a solution to be ahieved to omparable aurayon a oarser but better designed mesh than with standard �xed meshing. In this work, toredue the amount of work involving in the implementation of an AMR proess, we usethe open-soure, C++ �nite element library, libMesh [12℄. A major goal of libMesh isto provide a platform for parallel, adaptive, multiphysis �nite element simulations in areliable, reusable way [3℄. Users an fous on the spei�s of a given appliation withoutonsidering the additional omplexities of adaptive mesh omputing. In this way libMeshhas proved a valuable testbed for a wide range of physial appliations. Moreover, theavailable adaptive mesh re�nement and oarsing sheme utilizes simple interfae derivativejump (or �ux jump) indiators that are essentially independent of the physis [11℄. This2



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careyallows the library to be more �exibly applied in diverse appliations.In partiular libMesh is suitable for testing our ontrol algorithm for timestep seletion[19, 20℄ when applied to an AMR sheme for �nite element simulation. Computationsof two standard test ases for transient Navier-Stokes omputations are performed toompare the e�ieny of the adaptive proesses in reduing the total omputational e�ortand to verify the behavior of AMR proess with the timestep ontrol. In the next setion,we desribe the governing equations and disrete formulation with the PID and AMRshemes and show the solution algorithm implemented. Then results are ompared for�xed and variable timestep shemes, and with �xed and adaptive grid re�nement andoarsening, for two benhmark problems, lid driven avity and �ow over a bakward-faing step.2 GOVERNING EQUATIONS AND DISCRETE FORMULATIONThe system of equations onsidered is the unsteady Navier-Stokes equations for low-speed inompressible �uid �ow, in the veloity-pressure formulation. The nondimensionalform of the Navier-Stokes equations is
∂u

∂t
+ u · ∇u −

1

Re
∇2u + ∇p = f in Ω × (0, T ) (1)

∇ · u = 0 in Ω × (0, T ) (2)where Ω is the �ow domain, u is the veloity vetor, p is the pressure, Re is the Reynoldsnumber and f is an applied body fore. In addition, we require Dirihlet boundary dataon ∂Ω × [0, T ], u = u0, and initial data at t = 0 to omplete the spei�ation of theevolution problem. Here we use a mixed �nite element formulation as developed in [6℄.Let us onsider the spatial disretization of the visous �ow equation. Introduing a�nite element disretization and basis for the veloity omponents and for the pressureon a disretization Ωh, the semidisrete projetion of the variational formulation of theNavier-Stokes equations (1), (2) redues to: �nd the pair (uh, ph) with uh ∈ V h satisfyingthe initial ondition with uh = u0 on ∂Ωh and ph ∈ P h, suh that
∫

Ωh

((
∂uh

∂t
+ (uh · ∇)uh) · vh +

1

Re
∇uh:∇vh − ph∇ · vh) dΩ

=

∫

Ωh

f · vh dΩ (3)
∫

Ωh

(∇ · uh) qh dΩ = 0 (4)for all admissible vh ∈ Vh, with vh = 0 on ∂Ωh, and ph ∈ Ph. Here ∇uh:∇vh is the dyadiprodut. Introduing expansions for uh and ph and �nite element test bases for vh and
qh into the variational statements (3) and (4) and integrating, we obtain the following3



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careynonlinear semidisrete system of ordinary di�erential equations
M

dU

dt
+ D(U) +

1

Re
AU − BP = F (5)

BTU = 0 (6)where UT = [uT
1 uT

2 ], uT
i = [ui

1 · · ·u
i
N ], i = 1, 2, for N nodal veloities and PT = [p1 · · ·pM ]for M nodal pressures. The matries M, A and B orrespond to the respetive mass,visous and pressure terms on the left in (5), F orresponds to the soure term on the rightand D(U) is a nonlinear funtion of the nodal veloities orresponding to the advetiveterm. The resulting semidisrete system (5) is integrated impliitly using a standard

θ-method, 0 ≤ θ ≤ 1. At eah timestep, we have a nonlinear system of the form
M

Un − Un−1

∆t
+ θ [D(Un) +

1

Re
AUn − BPn]

+ (1 − θ) [D(Un−1) +
1

Re
AUn−1 − BPn−1]

= θFn + (1 − θ)Fn−1 (7)
BT Un = 0 (8)where n denotes the timestep index. In the numerial studies, we are using the impliitEuler method (θ = 1) even though it is only �rst-order aurate in time. The reason forthis deision is that the seond-order Crank-Niolson method is notoriously osillatoryfor problems with disontinuous initial data suh as the lid-driven avity problem shownlater. We therefore, sari�e auray in time for stability. Later we ompare the steady-state solution with �xed and adaptive meshes for the Navier-Stokes equations (1)-(2). Weassume that the steady-state ours when the kineti energy at two onseutive timestepsreahes a relative di�erene less than a spei�ed tolerane, tolst.The nonlinear system (7),(8) is solved by Newton's method in the present study. Writ-ing the nonlinear system formally as
g(rn) = 0, with (rn)T = [(Un)T , (Pn)T ] (9)and given rn

0 , we solve the linear Jaobian system
J(rn

k+1 − rn
k) = −g(rn

k), where J = (Jij) = (
∂gi

∂rj

), (10)for i, j = 1, 2, · · · , (2N + M) and iterate k = 0, 1, 2, . . ., at eah timestep. The resultinglinear system of equations is solved using GMRES method with the Inomplete LU-deomposition preonditioner ILU(1). In the numerial tests desribed later we onsider30 basis vetors for the GMRES method and a linear tolerane of 10−6. For the Newtonmethod, the non-linear tolerane is 10−4. 4



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey2.1 Adaptive mesh re�nement and oarsing (AMR/C)Adaptive mesh re�nement (h re�nement) has been used to generate optimal grids andthere is a extensive literature devoted to obtain a posteriori estimates and aompanyingerror indiators [11, 25, 2, 4℄. In this work, we use the error indiator as implementedin the libMesh library [12℄, whih employs a simple interfae derivative jump (or �uxjump) error indiator similar to the lassial indiator proposed by Kelly et al. [11℄ todrive the h-re�nement proess. The adaptive tehnology utilizes element subdivision toloally re�ne the mesh and thereby resolve di�erent sales suh as boundary layers andinterior shok layers. The fous in libMesh is on loal subdivision (h re�nement) withloal oarsening by h restitution of subelements and the loal indiators are essentiallyindependent of the physis. The interfae jump error indiator for a given element a isde�ned by
ηFLUX

a =

(

h

∫

Ωa

|(∇uhb
−∇uha

) · η|2ds

)
1

2

, (11)where element b shares an edge (fae) with ell a in the �nite element mesh, h is thelength of this fae and η is the outward unit normal for element a. In regions of rapidlyhanging solution gradients, the jump error (11) will be large and hene re�nement willbe triggered in suh zones.In this work, we employ a statistial approah to �ag individual elements for re�ne-ment and oarsening, and the element error is treated as an approximately log-normaldistribution. This kind of �agging sheme have been used with good suess [1℄ and is anextension of one tehnique desribed in [14℄. As shown in Figure 1, the solution error hasan approximately normal distribution about its mean value µ with standard deviation
σ. The user has to supply the re�nement and oarsening frations rf and cf . Observethat elements with errors greater than µ+ σrf are �agged for re�nement while elementswith errors less than µ − σcf are �agged for oarsening. The �nal deision for re�ne-ment/oarsening an still be onstrained by speifying a maximum-allowable re�nementlevel and by ompatibility onditions suh as a gradual transition in ell size. The numberof re�nement levels per time step and the maximum-allowable re�nement level are impor-tant AMR ontrol parameters whih in�uene the auray and e�ieny of the method,and the hoie of cf and rf is also problem-dependent and a�ets the overall outome [1℄.This sheme is bene�ial in evolution problems where, at early times, the error is smalland equidistributed and no elements are �agged for re�nement. Later, as interesting fea-tures develop, the statistial distribution spreads and re�nement and oarsing begins. Asthe steady-state solution is approahed, the distribution of the error reahes a steady-stateas well, e�etively stopping the AMR/oarsening proess. Here, for the statistial shemein the AMR proess, we onsider the following parameters: the initial mesh (initial-mesh), the number of uniform re�nement steps (uniform-re�nement), the error perent-age to re�ne (re�ne-perentage), the error perentage to oarse (oarsen-perentage) andthe number of maximum re�nements levels (re�nement-levels). In the numerial experi-5



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careyments presented later, an AMR proedure is identi�ed by the 5-tuple AMR (initial-mesh,uniform-re�nement, re�ne-perentage, oarsen-perentage, re�nement-levels).

Figure 1: Graphial desription of the re�nement/oarsening sheme.2.2 PID timestep seletionMost timestep shemes are based on ontrolling auray as determined by trunationerror estimates (e.g. Predition-Modi�ation-Corretion). The objetive of timestep se-letion is to minimize the omputational e�ort to onstrut an approximate solution of agiven problem in aordane with a desired auray. Gustafsson at. al. [9℄ and Hairerand Wanner [10℄ viewed the problem of automati timestep seletion as examples of aproportional-integral-derivative (PID) ontroller de�ned as
△tn+1 = (

en−1

en

)kP (
tol

en

)kI (
en−1

2

enen−2

)kD △tn, (12)where tol is some input tolerane, en is the measure of the hange of the quantities ofinterest in time tn, and kP , kI and kD are the PID parameters. In the present work, weuse the hanges in nodal veloities and pressure to ompute en taking,
en =

‖rn − rn−1‖

‖rn‖
, (rn)T = [(Un)T , (Pn)T ] (13)The algorithm for ontrolling the timestep has two main parts. First, a step size isassumed, and using the newly omputed solution, an a posteriori estimate is made of theerror in the step. Seond, this error measure is used to aept or rejet the solution andmodify the timestep aordingly. If the error is unaeptable, the new solution is disardedand we restart the time integration in the previous step with a redued step size. If theerror is aeptable, a new timestep is alulated using equation (12) and we proeed withthe time integration. In the algorithm, we have to de�ne the ontrol data: the minimum6



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careytimestep size △tmin, the maximum timestep size △tmax, the PID parameters kP , kI , kD,and the tolerane tol for hanges in nodal veloities and pressure. The e�ieny of theontrol was demonstrated by Valli et al. [19, 20℄ in numerial simulations of Rayleigh-Benard-Marangoni problems, �ow over a bakward-faing step and unsteady �ow past aylinder. Further, the omputational overhead of the seletion proedure is insigni�antompared to solver operations, sine timestep seletion involves only storing a few extravetors and omputation of assoiated norms. As in [19, 20℄, we �x the values of thePID parameters equal to kP = 0.075, kI = 0.175 and kD = 0.01 in all the numerialexperiments performed subsequently.2.3 Solution shemeThe solution sheme used is designed to arrive at faster steady-state solutions using thePID timestep ontrol algorithm ombined with adaptive mesh re�nement (AMR). Fig-ure 2 provides a shemati desription of the main alulations to obtain the steady-statesolution using PID and AMR shemes. As shown in the �owhart, after seleting initialvalues and generi parameters (Re, ∆t, initial mesh, initial veloities, et.), apply a �xednumber of uniform re�nement steps in the initial mesh. At eah timestep (Time Loop),perform one (or more) h-adaptive re�nement/oarsening steps (AMR Loop) using the�ux-based indiator of (11) and the statistial �agging sheme mentioned in Setion 2.1,alulate the new timestep using (12), test for the steady-state and exit or repeat for thenext time step. Inside the AMR Loop, the PID error estimate (13) is alulated usingtwo onseutive solutions at the same mesh to avoid further level of omplexity. Notealso that the mesh is re�ned inside the AMR loop only if the timestep is not rejeted. Inthe numerial experiments presented later we onsider four algorithm ombinations foromparison: �xed mesh and onstant timestep (ase 1.1), �xed mesh and PID (ase 1.2),AMR and onstant timestep (ase 2.1) and AMR and PID (ase 2.2). In other words,we onsider the ases of no adaptation, spae adaptation only, time adaptation only andsimultaneous spae-time adaptation.3 NUMERICAL RESULTS3.1 Lid driven avity problemThe lid-driven avity �ow is a standard test ase for steady Navier-Stokes omputationsand there are numerous published results that an be used for omparison purposes [5, 7℄.The domain of analysis is a unit square and both veloity omponents are presribed tobe zero, exept at the top boundary (the lid) where the horizontal veloity omponent ispresribed as in [15℄
u(x) =

{

tanh(βx) for 0 ≤ x ≤ 0.5,

−tanh(β(x− 1)) for 0.5 < x ≤ 1.0.
(14)7
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Figure 2: Flowhart for the adaptive solution sheme.with β > 0. In this work we assume β = 100. The domain is disretized by quadratitriangular elements (TRI6) for veloity and by linear triangular elements (TRI3) for pres-sure. We infer experimentally that the steady-state is reahed when the di�erene betweenthe kineti energy is less than 10−4. We use a 80×80 �xed mesh and an adaptive mesh re-�nement de�ned by the 5-tuple AMR (20×20, 2, 0.3, 0.01, 2) with onstant and adaptivetimesteps. The numerial results will be ompared with the result presented by Erturket al. [7℄ for Re = 1000. Figure 3 shows the horizontal veloity u along the vertialenterline and the vertial veloity v along the horizontal enterline for the four algorithmombinations. The agreement for all ases is favorable when ompared with the resultsin [7℄.Next, we ompare the omputational e�ort to alulate the solution using the four al-gorithm ombinations onsidered here. For the PID experiments, we de�ne △tmin = 1.0,8
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Figure 3: Horizontal veloity u along the vertial enterline (left) and the vertial veloity v along thehorizontal enterline (right) for the lid driven avity problem with Re = 1000.
△tmax = 5.0 and tol = 0.1. Table 1 shows the number of nonlinear iterations (NLI),the number of linear iterations (LI), the CPU time in seonds to alulate the lineariterations (CPUgmres), the CPU time in seonds to perform the re�nement (CPUref), theomputational e�ort (CPUeffort) and the maximum value of the streamlines (ψmax). Theomputational e�ort is measured by the (CPUgmres) using onstant steps divided by the(CPUgmres) using the PID ontroller for timestep seletion. Observe that the omputa-tional e�ort to alulate the solutions in all ases is redued using the PID ontroller. Forboth the �xed and adapted meshes, the solutions are obtained approximately 1.5 timesfaster using the PID ontroller and the maximum value of the streamlines are loser tothe value alulated in [7℄, whih orresponds to 0.118585 for a mesh with 401× 401 ellsusing �nite di�erenes seond order auray. The re�nement CPU time (CPUref) orre-sponds to 0.34 % of the GMRES CPU time (CPUgmres) using onstant steps. However,using the PID ontroller this e�ort orresponds to only 0.25% of the GMRES CPU time.The evolution of timesteps is shown in Figure 4 for both �xed and AMR meshes. Thebehavior of the PID for both spatial meshes are similar for this example, stepping fromthe initial timestep size to the maximum timestep size of 5.0 after 40 time units.The �nal AMR meshes using onstant and adaptive steps are the same, as shown inFigure 5 together with the streamlines. The �nal number of nodes in both AMR meshes,ases 2.1 and 2.2, is equal to 6710. The steady-state using onstant steps and the PIDontroller are ahieved at approximately 80 and 120 time units respetively, as shown bythe nondimensional kineti energy versus time in Figure 6.
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A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. CareyTable 1: Lid driven problem with Re = 1000.Fixed mesh 80 × 80
NLI LI CPUgmres CPUref CPUeffort ψmaxConstant Step (ase 1.1) 218 6627 964.12 - 1.0 0.11877PID (ase 1.2) 102 6280 664.09 - 0.69 0.11869AMR (20 × 20, 2, 0.3, 0.01, 2)
NLI LI CPUgmres CPUref CPUeffort ψmaxConstant Step (ase 2.1) 292 2531 110.28 37.92 1.0 0.11877PID (ase 2.2) 152 2408 80.79 20.05 0.68 0.11879
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Figure 4: The lid driven avity: timestep variation for �xed mesh and AMR.3.2 Flow over a bahward-faing step problemThe seond numerial experiment is the two-dimensional bakward-faing step problem.Here we ompare our results with those presented by Gartling in [8℄. The standard stepgeometry was simpli�ed by exluding the hannel upstream of the step (see Figure 7). Theboundary onditions for the step geometry inlude the usual no-slip veloity spei�ationfor all solid surfae walls as shown in Figure 7. The inlet veloity �eld is spei�ed as aparallel �ow given by u(y) = 24y(0.5− y) and v(y) = 0 for 0 ≤ y ≤ 0.5. This produes amaximum in�ow veloity of umax = 1.5 and an average in�ow veloity of uavg = 1.0. Weonsider homogeneous natural out�ow boundary onditions as shown in Figure 7. Theproblem is solved for a Reynolds number of Re = 800.In this example the domain is also disretized by quadrati triangular elements (TRI6)for veloity and by linear triangular elements (TRI3) for pressure. The �xed mesh usedomprises 128 × 16 ells with two elements per ell resulting in 8481 nodes and 2048elements. For the adaptive mesh we onsider the parameter tuple AMR (64 × 8, 1, 0.3,0.01, 1) and the PID parameters are: ∆tmin = 0.025, ∆tmax = 0.5 and tol = 0.25 × 10−310



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey

(a) AMR with onstant steps (b) AMR with PID

() AMR with onstant steps (d) AMR with PIDFigure 5: The lid driven avity: �nal meshes (top) and streamlines (bottom).
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Figure 6: The lid driven avity: kineti energy using onstant steps (left) and PID (right).for hanges in nodal veloities. Table 2 ompares the PID performane for �xed and AMRmeshes, using the same notation of the quantities de�ned in the last example. For the�xed mesh, the CPU time was redued about 50% using the PID ontrol even with ainreased number of linear iterations. For the AMR mesh, with referene to CPU time weare able to alulate the solution 3.6 times faster using the PID ontroller and the totalnumber of linear and non-linear iterations was redued.11
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Figure 7: Bakward-faing step geometry with hannel dimensions and boundary onditions.Table 2: Bakward faing-step problem with Re = 800.Fixed mesh 128 × 16

NLI LI CPUgmres CPUref CPUeffortConstant Step (ase 1.1) 9474 34106 6432.78 - 1.0PID (ase 1.2) 1936 30650 4004.21 - 0.62AMR(64 × 8,1,0.3,0.01,1)
NLI LI CPUgmres CPUref CPUeffortConstant Step (ase 2.1) 13208 53608 7576.38 2803.11 1.0PID (ase 2.2) 3390 34649 2097.15 593.48 0.26The timestep size variation given by the PID ontroller for ases 1.2 and 2.2 are pre-sented in Figure 8. For the �xed mesh algorithm (ase 1.2), the PID solution presents asmooth variation of the timesteps when onfronted with the AMR algorithm (ase 2.2).At the beginning of the proess, the PID ontroller keeps the timestep value at minimum,but as soon as the solution evolves, the PID ontroller inreases the timestep size towardsits maximum value. For ase 2.2, the stepsize size osillates beause of the hanges inthe mesh size and the limitation of the maximum timestep size. However, there was norejeted steps during the proess.Now we ompare the �nal AMR meshes using onstant timesteps and PID ontroller,Figures 9(a) and 9(b). Observe that the �nal meshes are di�erent but they have similarfeatures. The mesh is re�ned only on the upstream region of the hannel and oarsenedin the streamwise diretion. The AMR mesh with onstant steps begins with 8481 nodesand at the end of the adaptive proess has 3745 nodes. In Figure 10 we show the evolutionof the �nal number of nodes for both solutions. The �nal AMR mesh with PID has 3639nodes, i.e., 106 nodes less than the �nal AMR mesh with onstant steps. Note also thatin the beginning of the solution proess the number of nodes in the mesh osillates but asthe solution approahes steady state this number dereases. This is due to the oarseningproess in the regions of the domain where the interfae derivative jumps are small.Although there is a di�erene between the two �nal AMR meshes, the �nal solution12
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Figure 8: Bakward faing-step problem - timestep variation for �xed mesh (left) and AMR (right).
(a) Constant step(b) PIDFigure 9: Bakward-faing problem for Re = 800 - mesh for AMR(64 × 8,1,0.3,0.01,1)obtained using the PID ontroller presents good auray as ompared with the solutionwith �xed steps. This an be veri�ed by the horizontal veloity omponents alulatedat x = 7.5 and x = 15.0 using both onstant and adaptive timesteps, shown in Figure11. Note that the steady-state horizontal veloities are pratially oinident. The basifeatures of the bakward-faing step �ow at Re = 800 is illustrated in the stream funtionontour plots of Figure 12 for ases 2.1 and 2.2. The plot shows only part of the hannelsine few phenomena of interest our downstream of this point. The maximum streamlinevalues obtained in the numerial experiments for ases 2.1 and 2.2 are 0.24668 and 0.24667respetively. Our results are in good agreement with the results obtained by Gartling in[8℄. In this example the steady-state was reahed for all ases around time 100 time units.4 CONCLUSIONSWe have investigated the use of a PID timestep ontrol algorithm in onjution withan AMR proess for simulation of 2D visous �ow problems using the libMesh library.We have suggested an algorithm for the time-spae adaptive proess to obtain steady-state solutions of the problems. Uniform and adaptive �nite element solutions have beenomputed for lid driven avity and �ow over a bakward-faing step problems using �xed13
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Figure 12: Streamlines using onstant steps (top) and PID (bottom) using AMR.14
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