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Abstract. In this work we evaluate the performance of space-time adaptive finite ele-
ment simulations to obtain to steady-state 2D viscous flows using the 11bMesh framework.
We investigate a timestep selection technique based on feedback control theory in reducing
the total computational effort when Adaptive Mesh Refinement (AMR) is utilized. First,
we evaluate the efficiency of the timestep selection when fixed meshes are used. Then,
we investigate the behavior of the AMR solution with the timestep selection algorithm.
Numerical studies are conducted using the object oriented AMR software system 1ibMesh
with the PETSc library. Two standard test cases for transient Navier-Stokes computa-
tions are used for comparison purposes, the lid-driven cavity flow and the flow over a
backward-facing step.



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey

1 INTRODUCTION

With the evolution of finite element methodology and its extension to more complex
classes of coupled problems there has been an increasing need for improved algorithms and
other enhancements such as adaptive grid refinement and coarsening (AMR) (2, 4, 11, 25,
24]. Several adaptive timestepping selection strategies have been studied as a means to
provide stable accurate transient (and steady state) solutions more efficiently 19, 20, 17].
This adaptive timestepping selection process is usually approached by means of local
truncation error analysis. In the same way, the adaptive grid schemes use feedback from
the computed solution on a given intermediate grid to ascertain where the grid should be
locally refined. This brings us to the main objective of the present work - the utilization
of feedback control algorithms for timestep selection in conjunction with AMR process of
finite element analysis in the simulations of steady-state 2D viscous flow.

There are many works in the literature that deal with spatial and time adaptivity
[22, 18, 17]. Controlling the numerical error gives a better solution and also gives to the
user the knowledge of the reliability of the results. In this work we use the same approach
presented in [16, 13, 23] that splits the error in two parts: one part coming from the spatial
discretization and another coming from the temporal discretization. An adaptive strategy
is developed to drive the refinements, controlling the element size and distribution, and
to control the timestep size. For the space discretization error we choose an a-posteriori
error indicator similar to the classical indicator proposed by Kelly et al. [11], based on
interface derivative jumps. There is an extensive literature devoted to obtaining more
relialible a-posterior: estimates and accompanying errors indicators but, in practice, this
jump indicators have proved to be broadly applicable. For the time discretization we
use a proportional-integral-derivative (PID) control to select the timestep size, based on
controlling normalized changes in the variables of interest [20]. Since in this work we
are interested in the steady-state solution, this simple error indicator is very efficient and
the computational overhead of the selection procedure is insignificant compared to solver
operations |21].

Both timestep control and AMR offer means to accelerate simulation and analysis for
design and rapid prototyping: timestep control reduces the CPU time to reach steady-
state solution and likewise AMR permits a solution to be achieved to comparable accuracy
on a coarser but better designed mesh than with standard fixed meshing. In this work, to
reduce the amount of work involving in the implementation of an AMR process, we use
the open-source, C++ finite element library, 1ibMesh |[12|. A major goal of 1ibMesh is
to provide a platform for parallel, adaptive, multiphysics finite element simulations in a
reliable, reusable way [3]. Users can focus on the specifics of a given application without
considering the additional complexities of adaptive mesh computing. In this way 1ibMesh
has proved a valuable testbed for a wide range of physical applications. Moreover, the
available adaptive mesh refinement and coarsing scheme utilizes simple interface derivative
jump (or flux jump) indicators that are essentially independent of the physics [11]. This
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allows the library to be more flexibly applied in diverse applications.

In particular 1ibMesh is suitable for testing our control algorithm for timestep selection
[19, 20] when applied to an AMR scheme for finite element simulation. Computations
of two standard test cases for transient Navier-Stokes computations are performed to
compare the efficiency of the adaptive processes in reducing the total computational effort
and to verify the behavior of AMR process with the timestep control. In the next section,
we describe the governing equations and discrete formulation with the PID and AMR
schemes and show the solution algorithm implemented. Then results are compared for
fixed and variable timestep schemes, and with fixed and adaptive grid refinement and
coarsening, for two benchmark problems, lid driven cavity and flow over a backward-
facing step.

2 GOVERNING EQUATIONS AND DISCRETE FORMULATION

The system of equations considered is the unsteady Navier-Stokes equations for low-
speed incompressible fluid flow, in the velocity-pressure formulation. The nondimensional
form of the Navier-Stokes equations is

a—u—i—u~Vu—RLV%—FVQD = f in Qx(0,7) (1)
€

ot
Viu = 0 in Qx(0,7) (2)

where 2 is the flow domain, u is the velocity vector, p is the pressure, Re is the Reynolds
number and f is an applied body force. In addition, we require Dirichlet boundary data
on 02 x [0,7], u = up, and initial data at ¢ = 0 to complete the specification of the
evolution problem. Here we use a mixed finite element formulation as developed in [6].

Let us consider the spatial discretization of the viscous flow equation. Introducing a
finite element discretization and basis for the velocity components and for the pressure
on a discretization €2, the semidiscrete projection of the variational formulation of the
Navier-Stokes equations (1), (2) reduces to: find the pair (uy, py) with u;, € V" satisfying
the initial condition with u, = ug on 9, and p, € P", such that

B, 1
/Qh((%‘l'(uh'v)uh)'vh + e VunVvi — pV - v) dO
— / f.v, dQ (3)
Qp
/ (V . llh) an d) = 0 (4)
Qp,

for all admissible v, € V},, with vi, = 0 on 0€,, and p;, € P,. Here Vu,:Vvy is the dyadic
product. Introducing expansions for u;, and p, and finite element test bases for v; and
¢ into the variational statements (3) and (4) and integrating, we obtain the following
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nonlinear semidiscrete system of ordinary differential equations

du 1
— +D(U)+ AU -BP = 5
M—r+DU) + - AU =B F (5)
B'U =0 (6)
where UT = [uTul], ul = [ul ---uiy], i = 1,2, for N nodal velocities and P? = [p; - - - pp]

for M nodal pressures. The matrices M, A and B correspond to the respective mass,
viscous and pressure terms on the left in (5), F corresponds to the source term on the right
and D(U) is a nonlinear function of the nodal velocities corresponding to the advective
term. The resulting semidiscrete system (5) is integrated implicitly using a standard
f-method, 0 < 0 < 1. At each timestep, we have a nonlinear system of the form

U — Ut n 1 n n
M= + 0[D(U") + - AU" — BP"]
L (-0 DU+ éAU"—l _ BpY]
= 0F"+(1-6)F! (7)
B'uU" = o0 (8)

where n denotes the timestep index. In the numerical studies, we are using the implicit
Euler method (6 = 1) even though it is only first-order accurate in time. The reason for
this decision is that the second-order Crank-Nicolson method is notoriously oscillatory
for problems with discontinuous initial data such as the lid-driven cavity problem shown
later. We therefore, sacrifice accuracy in time for stability. Later we compare the steady-
state solution with fixed and adaptive meshes for the Navier-Stokes equations (1)-(2). We
assume that the steady-state occurs when the kinetic energy at two consecutive timesteps
reaches a relative difference less than a specified tolerance, tolg;.

The nonlinear system (7),(8) is solved by Newton’s method in the present study. Writ-
ing the nonlinear system formally as

g(r") =0, with (r")" =[U")", (P")] (9)
and given rj, we solve the linear Jacobian system

Iy —1f) = —glr}), where J=(Ty) = (5%), (10
J

fori,j=1,2,--- (2N + M) and iterate k = 0,1,2,..., at each timestep. The resulting
linear system of equations is solved using GMRES method with the Incomplete LU-
decomposition preconditioner ILU(1). In the numerical tests described later we consider
30 basis vectors for the GMRES method and a linear tolerance of 107%. For the Newton
method, the non-linear tolerance is 107%.
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2.1 Adaptive mesh refinement and coarsing (AMR/C)

Adaptive mesh refinement (h refinement) has been used to generate optimal grids and
there is a extensive literature devoted to obtain a posterior: estimates and accompanying
error indicators [11, 25, 2, 4]. In this work, we use the error indicator as implemented
in the 1ibMesh library [12]|, which employs a simple interface derivative jump (or flux
jump) error indicator similar to the classical indicator proposed by Kelly et al. [11] to
drive the h-refinement process. The adaptive technology utilizes element subdivision to
locally refine the mesh and thereby resolve different scales such as boundary layers and
interior shock layers. The focus in 1libMesh is on local subdivision (h refinement) with
local coarsening by h restitution of subelements and the local indicators are essentially

independent of the physics. The interface jump error indicator for a given element a is
defined by

fLUX = (h/ |(Vuy, — Vuy,) - n\2ds) , (11)

where element b shares an edge (face) with cell a in the finite element mesh, h is the
length of this face and 7 is the outward unit normal for element a. In regions of rapidly
changing solution gradients, the jump error (11) will be large and hence refinement will
be triggered in such zones.

In this work, we employ a statistical approach to flag individual elements for refine-
ment and coarsening, and the element error is treated as an approximately log-normal
distribution. This kind of flagging scheme have been used with good success [1]| and is an
extension of one technique described in [14]. As shown in Figure 1, the solution error has
an approximately normal distribution about its mean value p with standard deviation
o. The user has to supply the refinement and coarsening fractions ry and c;. Observe
that elements with errors greater than p + ory are flagged for refinement while elements
with errors less than p — ocy are flagged for coarsening. The final decision for refine-
ment /coarsening can still be constrained by specifying a maximum-allowable refinement
level and by compatibility conditions such as a gradual transition in cell size. The number
of refinement levels per time step and the maximum-allowable refinement level are impor-
tant AMR control parameters which influence the accuracy and efficiency of the method,
and the choice of ¢y and 7y is also problem-dependent and affects the overall outcome [1].

This scheme is beneficial in evolution problems where, at early times, the error is small
and equidistributed and no elements are flagged for refinement. Later, as interesting fea-
tures develop, the statistical distribution spreads and refinement and coarsing begins. As
the steady-state solution is approached, the distribution of the error reaches a steady-state
as well, effectively stopping the AMR /coarsening process. Here, for the statistical scheme
in the AMR process, we consider the following parameters: the initial mesh (initial-
mesh), the number of uniform refinement steps (uniform-refinement), the error percent-
age to refine (refine-percentage), the error percentage to coarse (coarsen-percentage) and
the number of maximum refinements levels (refinement-levels). In the numerical experi-
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ments presented later, an AMR procedure is identified by the 5-tuple AMR (initial-mesh,
uniform-refinement, refine-percentage, coarsen-percentage, refinement-levels).

elemenis flagged
for refinement

) u-o Cs
elements flagged

for coarsening

Figure 1: Graphical description of the refinement/coarsening scheme.

2.2 PID timestep selection

Most, timestep schemes are based on controlling accuracy as determined by truncation
error estimates (e.g. Prediction-Modification-Correction). The objective of timestep se-
lection is to minimize the computational effort to construct an approximate solution of a
given problem in accordance with a desired accuracy. Gustafsson at. al. [9] and Hairer
and Wanner [10] viewed the problem of automatic timestep selection as examples of a
proportional-integral-derivative (PID) controller defined as

Atpiy = Pk (2= ke A 12
o= (R (12)

where tol is some input tolerance, e, is the measure of the change of the quantities of
interest in time t,, and kp, k; and kp are the PID parameters. In the present work, we
use the changes in nodal velocities and pressure to compute e,, taking,

" — x|

o e

, ()" = (UM, (P™)"] (13)
The algorithm for controlling the timestep has two main parts. First, a step size is
assumed, and using the newly computed solution, an a posterior: estimate is made of the
error in the step. Second, this error measure is used to accept or reject the solution and
modify the timestep accordingly. If the error is unacceptable, the new solution is discarded
and we restart the time integration in the previous step with a reduced step size. If the
error is acceptable, a new timestep is calculated using equation (12) and we proceed with
the time integration. In the algorithm, we have to define the control data: the minimum
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timestep size At,im,, the maximum timestep size At,,.., the PID parameters kp, k;, kp,
and the tolerance tol for changes in nodal velocities and pressure. The efficiency of the
control was demonstrated by Valli et al. [19, 20| in numerical simulations of Rayleigh-
Benard-Marangoni problems, flow over a backward-facing step and unsteady flow past a
cylinder. Further, the computational overhead of the selection procedure is insignificant
compared to solver operations, since timestep selection involves only storing a few extra
vectors and computation of associated norms. As in [19, 20|, we fix the values of the
PID parameters equal to kp = 0.075, k; = 0.175 and kp = 0.01 in all the numerical
experiments performed subsequently.

2.3 Solution scheme

The solution scheme used is designed to arrive at faster steady-state solutions using the
PID timestep control algorithm combined with adaptive mesh refinement (AMR). Fig-
ure 2 provides a schematic description of the main calculations to obtain the steady-state
solution using PID and AMR schemes. As shown in the flowchart, after selecting initial
values and generic parameters (Re, At, initial mesh, initial velocities, etc.), apply a fixed
number of uniform refinement steps in the initial mesh. At each timestep (Time Loop),
perform one (or more) h-adaptive refinement/coarsening steps (AMR Loop) using the
flux-based indicator of (11) and the statistical flagging scheme mentioned in Section 2.1,
calculate the new timestep using (12), test for the steady-state and exit or repeat for the
next time step. Inside the AMR Loop, the PID error estimate (13) is calculated using
two consecutive solutions at the same mesh to avoid further level of complexity. Note
also that the mesh is refined inside the AMR loop only if the timestep is not rejected. In
the numerical experiments presented later we consider four algorithm combinations for
comparison: fixed mesh and constant timestep (case 1.1), fixed mesh and PID (case 1.2),
AMR and constant timestep (case 2.1) and AMR and PID (case 2.2). In other words,
we consider the cases of no adaptation, space adaptation only, time adaptation only and
simultaneous space-time adaptation.

3 NUMERICAL RESULTS
3.1 Lid driven cavity problem

The lid-driven cavity flow is a standard test case for steady Navier-Stokes computations
and there are numerous published results that can be used for comparison purposes |5, 7|.
The domain of analysis is a unit square and both velocity components are prescribed to
be zero, except at the top boundary (the lid) where the horizontal velocity component is
prescribed as in [15]

() = {tanh(ﬁx) for 0<x<0.5, (14)
—tanh(B(x — 1)) for 0.5 <z <1.0.
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Set initial parameters

Perform uniform refinement

TIME LOOP
-
AMR LOOP hJ
I=12,..
A NONLINEAR LOOP

Solve the linear Jacobian system (10) e

Y

convergence
2

Calculate PID error (13) |—e

4{ Adaptively refine/coarsen the grid

no advy
steady- Calculate new /At (12)
state?

* yes

Figure 2: Flowchart for the adaptive solution scheme.

reject step?
or | > lmax?

no

with # > 0. In this work we assume § = 100. The domain is discretized by quadratic
triangular elements (TRI6) for velocity and by linear triangular elements (TRI3) for pres-
sure. We infer experimentally that the steady-state is reached when the difference between
the kinetic energy is less than 10~%. We use a 80 x 80 fixed mesh and an adaptive mesh re-
finement defined by the 5-tuple AMR (20 x 20, 2, 0.3, 0.01, 2) with constant and adaptive
timesteps. The numerical results will be compared with the result presented by Erturk
et al. [7] for Re = 1000. Figure 3 shows the horizontal velocity u along the vertical
centerline and the vertical velocity v along the horizontal centerline for the four algorithm
combinations. The agreement for all cases is favorable when compared with the results
in [7].

Next, we compare the computational effort to calculate the solution using the four al-
gorithm combinations considered here. For the PID experiments, we define At,,;, = 1.0,

co
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Figure 3: Horizontal velocity u along the vertical centerline (left) and the vertical velocity v along the
horizontal centerline (right) for the lid driven cavity problem with Re = 1000.

Atpmae = 5.0 and tol = 0.1. Table 1 shows the number of nonlinear iterations (NLI),
the number of linear iterations (LI), the CPU time in seconds to calculate the linear
iterations (C'PUypyes), the CPU time in seconds to perform the refinement (CPU,.y), the
computational effort (C'PU.s,¢) and the maximum value of the streamlines (¢,,4,). The
computational effort is measured by the (C'PUges) using constant steps divided by the
(CPUgpmyes) using the PID controller for timestep selection. Observe that the computa-
tional effort to calculate the solutions in all cases is reduced using the PID controller. For
both the fixed and adapted meshes, the solutions are obtained approximately 1.5 times
faster using the PID controller and the maximum value of the streamlines are closer to
the value calculated in |7|, which corresponds to 0.118585 for a mesh with 401 x 401 cells
using finite differences second order accuracy. The refinement CPU time (C'PU,.f) corre-
sponds to 0.34 % of the GMRES CPU time (CPUges) using constant steps. However,
using the PID controller this effort corresponds to only 0.25% of the GMRES CPU time.
The evolution of timesteps is shown in Figure 4 for both fixed and AMR meshes. The
behavior of the PID for both spatial meshes are similar for this example, stepping from
the initial timestep size to the maximum timestep size of 5.0 after 40 time units.

The final AMR meshes using constant and adaptive steps are the same, as shown in
Figure 5 together with the streamlines. The final number of nodes in both AMR meshes,
cases 2.1 and 2.2, is equal to 6710. The steady-state using constant steps and the PID
controller are achieved at approximately 80 and 120 time units respectively, as shown by
the nondimensional kinetic energy versus time in Figure 6.
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Table 1: Lid driven problem with Re = 1000.

Fixed mesh 80 x 80
NLI | LI | CPUgypres | CPUpes | CPUcsfort | Umaa
Constant Step (case 1.1) | 218 | 6627 | 964.12 - 1.0 0.11877
PID (case 1.2) 102 | 6280 664.09 - 0.69 0.11869
AMR (20 x 20, 2, 0.3, 0.01, 2)
NLI | LI | CPUgypres | CPUpes | CPUcffort | Umaa

Constant Step (case 2.1) | 292 | 2531 | 110.28 37.92 1.0 0.11877
PID (case 2.2) 152 | 2408 80.79 20.05 0.68 0.11879
6 Fixed Mesh(80x80) —
AMR(20x20,2,0.3,0.01,2)
5 e e o <+
/
2 b //
0 2‘0 4‘0 E;O éO 1‘00 1‘20 140

time

Figure 4: The lid driven cavity: timestep variation for fixed mesh and AMR.

3.2 Flow over a bachward-facing step problem

The second numerical experiment is the two-dimensional backward-facing step problem.
Here we compare our results with those presented by Gartling in [8]. The standard step
geometry was simplified by excluding the channel upstream of the step (see Figure 7). The
boundary conditions for the step geometry include the usual no-slip velocity specification
for all solid surface walls as shown in Figure 7. The inlet velocity field is specified as a
parallel flow given by u(y) = 24y(0.5 — y) and v(y) = 0 for 0 < y < 0.5. This produces a
maximum inflow velocity of %, = 1.5 and an average inflow velocity of u,,, = 1.0. We
consider homogeneous natural outflow boundary conditions as shown in Figure 7. The
problem is solved for a Reynolds number of Re = 800.

In this example the domain is also discretized by quadratic triangular elements (TRI6)
for velocity and by linear triangular elements (TRI3) for pressure. The fixed mesh used
comprises 128 x 16 cells with two elements per cell resulting in 8481 nodes and 2048
elements. For the adaptive mesh we consider the parameter tuple AMR (64 x 8, 1, 0.3,
0.01, 1) and the PID parameters are: At = 0.025, At,q, = 0.5 and tol = 0.25 x 1073

10
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Figure 5: The lid driven cavity: final meshes (top) and streamlines (bottom).
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Figure 6: The lid driven cavity: kinetic energy using constant steps (left) and PID (right).

140

for changes in nodal velocities. Table 2 compares the PID performance for fixed and AMR
meshes, using the same notation of the quantities defined in the last example. For the
fixed mesh, the CPU time was reduced about 50% using the PID control even with a
increased number of linear iterations. For the AMR mesh, with reference to CPU time we
are able to calculate the solution 3.6 times faster using the PID controller and the total
number of linear and non-linear iterations was reduced.

11
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Figure 7: Backward-facing step geometry with channel dimensions and boundary conditions.

Table 2: Backward facing-step problem with Re = 800.

Fixed mesh 128 X 16
NLI | LI | CPUgpes | CPUyes | CPUcyfont
Constant Step (case 1.1) | 9474 | 34106 | 6432.78 - 1.0
PID (case 1.2) 1936 | 30650 | 4004.21 - 0.62
AMR(64 x 8,1,0.3,0.01,1)
NLT | LI | CPUgpes | CPUpes | CPUsysrore
Constant Step (case 2.1) | 13208 | 53608 | 7576.38 | 2803.11 1.0
PID (case 2.2) 3390 | 34649 | 2097.15 093.48 0.26

The timestep size variation given by the PID controller for cases 1.2 and 2.2 are pre-
sented in Figure 8. For the fixed mesh algorithm (case 1.2), the PID solution presents a
smooth variation of the timesteps when confronted with the AMR algorithm (case 2.2).
At the beginning of the process, the PID controller keeps the timestep value at minimum,
but as soon as the solution evolves, the PID controller increases the timestep size towards
its maximum value. For case 2.2, the stepsize size oscillates because of the changes in
the mesh size and the limitation of the maximum timestep size. However, there was no
rejected steps during the process.

Now we compare the final AMR meshes using constant timesteps and PID controller,
Figures 9(a) and 9(b). Observe that the final meshes are different but they have similar
features. The mesh is refined only on the upstream region of the channel and coarsened
in the streamwise direction. The AMR mesh with constant steps begins with 8481 nodes
and at the end of the adaptive process has 3745 nodes. In Figure 10 we show the evolution
of the final number of nodes for both solutions. The final AMR mesh with PID has 3639
nodes, i.e., 106 nodes less than the final AMR mesh with constant steps. Note also that
in the beginning of the solution process the number of nodes in the mesh oscillates but as
the solution approaches steady state this number decreases. This is due to the coarsening
process in the regions of the domain where the interface derivative jumps are small.

Although there is a difference between the two final AMR meshes, the final solution

12
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Figure 8: Backward facing-step problem - timestep variation for fixed mesh (left) and AMR (right).

(a) Constant step

(b) PID

Figure 9: Backward-facing problem for Re = 800 - mesh for AMR(64 x 8,1,0.3,0.01,1)

obtained using the PID controller presents good accuracy as compared with the solution
with fixed steps. This can be verified by the horizontal velocity components calculated
at x = 7.5 and x = 15.0 using both constant and adaptive timesteps, shown in Figure
11. Note that the steady-state horizontal velocities are practically coincident. The basic
features of the backward-facing step flow at Re = 800 is illustrated in the stream function
contour plots of Figure 12 for cases 2.1 and 2.2. The plot shows only part of the channel
since few phenomena of interest occur downstream of this point. The maximum streamline
values obtained in the numerical experiments for cases 2.1 and 2.2 are 0.24668 and 0.24667
respectively. Our results are in good agreement with the results obtained by Gartling in
[8]. In this example the steady-state was reached for all cases around time 100 time units.

4 CONCLUSIONS

We have investigated the use of a PID timestep control algorithm in conjuction with
an AMR process for simulation of 2D viscous flow problems using the 1ibMesh library.
We have suggested an algorithm for the time-space adaptive process to obtain steady-
state solutions of the problems. Uniform and adaptive finite element solutions have been
computed for lid driven cavity and flow over a backward-facing step problems using fixed
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Figure 10: Backward-facing problem for Re = 800 - number of nodes.
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Figure 12: Streamlines using constant steps (top) and PID (bottom) using AMR.
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and adaptive timesteps to test the approach. The computational effort was measured
considering the cases of no adaptation, space adaptation only, time adaptation only and
simultaneous space-time adaptation. Based on the numerical studies, it was concluded
that the computational effort to calculate the solutions is reduced using the PID controller.
For example, the solutions in the lid driven cavity problem are obtained approximately
1.5 times faster using the PID controller for both uniform and adaptive grids without any
significant loss of accuracy. Moreover, the final adaptive meshes using fixed and adaptive
timesteps are the same. For the second example, with reference to CPU time we are
able to calculate the solution 3.6 times faster using the simultaneous adaptive of mesh
and time steps (PID controller and AMR). We also observe that the final AMR mesh
obtained with the PID control had less nodes than the the uniform mesh. However, the
basic features of the mesh was not lost and the final solutions agree very well.
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