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t. In this work we evaluate the performan
e of spa
e-time adaptive �nite ele-ment simulations to obtain to steady-state 2D vis
ous �ows using the libMesh framework.We investigate a timestep sele
tion te
hnique based on feedba
k 
ontrol theory in redu
ingthe total 
omputational e�ort when Adaptive Mesh Re�nement (AMR) is utilized. First,we evaluate the e�
ien
y of the timestep sele
tion when �xed meshes are used. Then,we investigate the behavior of the AMR solution with the timestep sele
tion algorithm.Numeri
al studies are 
ondu
ted using the obje
t oriented AMR software system libMeshwith the PETS
 library. Two standard test 
ases for transient Navier-Stokes 
omputa-tions are used for 
omparison purposes, the lid-driven 
avity �ow and the �ow over aba
kward-fa
ing step.
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A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey1 INTRODUCTIONWith the evolution of �nite element methodology and its extension to more 
omplex
lasses of 
oupled problems there has been an in
reasing need for improved algorithms andother enhan
ements su
h as adaptive grid re�nement and 
oarsening (AMR) [2, 4, 11, 25,24℄. Several adaptive timestepping sele
tion strategies have been studied as a means toprovide stable a

urate transient (and steady state) solutions more e�
iently [19, 20, 17℄.This adaptive timestepping sele
tion pro
ess is usually approa
hed by means of lo
altrun
ation error analysis. In the same way, the adaptive grid s
hemes use feedba
k fromthe 
omputed solution on a given intermediate grid to as
ertain where the grid should belo
ally re�ned. This brings us to the main obje
tive of the present work - the utilizationof feedba
k 
ontrol algorithms for timestep sele
tion in 
onjun
tion with AMR pro
ess of�nite element analysis in the simulations of steady-state 2D vis
ous �ow.There are many works in the literature that deal with spatial and time adaptivity[22, 18, 17℄. Controlling the numeri
al error gives a better solution and also gives to theuser the knowledge of the reliability of the results. In this work we use the same approa
hpresented in [16, 13, 23℄ that splits the error in two parts: one part 
oming from the spatialdis
retization and another 
oming from the temporal dis
retization. An adaptive strategyis developed to drive the re�nements, 
ontrolling the element size and distribution, andto 
ontrol the timestep size. For the spa
e dis
retization error we 
hoose an a-posteriorierror indi
ator similar to the 
lassi
al indi
ator proposed by Kelly et al. [11℄, based oninterfa
e derivative jumps. There is an extensive literature devoted to obtaining morerelialible a-posteriori estimates and a

ompanying errors indi
ators but, in pra
ti
e, thisjump indi
ators have proved to be broadly appli
able. For the time dis
retization weuse a proportional-integral-derivative (PID) 
ontrol to sele
t the timestep size, based on
ontrolling normalized 
hanges in the variables of interest [20℄. Sin
e in this work weare interested in the steady-state solution, this simple error indi
ator is very e�
ient andthe 
omputational overhead of the sele
tion pro
edure is insigni�
ant 
ompared to solveroperations [21℄.Both timestep 
ontrol and AMR o�er means to a

elerate simulation and analysis fordesign and rapid prototyping: timestep 
ontrol redu
es the CPU time to rea
h steady-state solution and likewise AMR permits a solution to be a
hieved to 
omparable a

ura
yon a 
oarser but better designed mesh than with standard �xed meshing. In this work, toredu
e the amount of work involving in the implementation of an AMR pro
ess, we usethe open-sour
e, C++ �nite element library, libMesh [12℄. A major goal of libMesh isto provide a platform for parallel, adaptive, multiphysi
s �nite element simulations in areliable, reusable way [3℄. Users 
an fo
us on the spe
i�
s of a given appli
ation without
onsidering the additional 
omplexities of adaptive mesh 
omputing. In this way libMeshhas proved a valuable testbed for a wide range of physi
al appli
ations. Moreover, theavailable adaptive mesh re�nement and 
oarsing s
heme utilizes simple interfa
e derivativejump (or �ux jump) indi
ators that are essentially independent of the physi
s [11℄. This2



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careyallows the library to be more �exibly applied in diverse appli
ations.In parti
ular libMesh is suitable for testing our 
ontrol algorithm for timestep sele
tion[19, 20℄ when applied to an AMR s
heme for �nite element simulation. Computationsof two standard test 
ases for transient Navier-Stokes 
omputations are performed to
ompare the e�
ien
y of the adaptive pro
esses in redu
ing the total 
omputational e�ortand to verify the behavior of AMR pro
ess with the timestep 
ontrol. In the next se
tion,we des
ribe the governing equations and dis
rete formulation with the PID and AMRs
hemes and show the solution algorithm implemented. Then results are 
ompared for�xed and variable timestep s
hemes, and with �xed and adaptive grid re�nement and
oarsening, for two ben
hmark problems, lid driven 
avity and �ow over a ba
kward-fa
ing step.2 GOVERNING EQUATIONS AND DISCRETE FORMULATIONThe system of equations 
onsidered is the unsteady Navier-Stokes equations for low-speed in
ompressible �uid �ow, in the velo
ity-pressure formulation. The nondimensionalform of the Navier-Stokes equations is
∂u

∂t
+ u · ∇u −

1

Re
∇2u + ∇p = f in Ω × (0, T ) (1)

∇ · u = 0 in Ω × (0, T ) (2)where Ω is the �ow domain, u is the velo
ity ve
tor, p is the pressure, Re is the Reynoldsnumber and f is an applied body for
e. In addition, we require Diri
hlet boundary dataon ∂Ω × [0, T ], u = u0, and initial data at t = 0 to 
omplete the spe
i�
ation of theevolution problem. Here we use a mixed �nite element formulation as developed in [6℄.Let us 
onsider the spatial dis
retization of the vis
ous �ow equation. Introdu
ing a�nite element dis
retization and basis for the velo
ity 
omponents and for the pressureon a dis
retization Ωh, the semidis
rete proje
tion of the variational formulation of theNavier-Stokes equations (1), (2) redu
es to: �nd the pair (uh, ph) with uh ∈ V h satisfyingthe initial 
ondition with uh = u0 on ∂Ωh and ph ∈ P h, su
h that
∫

Ωh

((
∂uh

∂t
+ (uh · ∇)uh) · vh +

1

Re
∇uh:∇vh − ph∇ · vh) dΩ

=

∫

Ωh

f · vh dΩ (3)
∫

Ωh

(∇ · uh) qh dΩ = 0 (4)for all admissible vh ∈ Vh, with vh = 0 on ∂Ωh, and ph ∈ Ph. Here ∇uh:∇vh is the dyadi
produ
t. Introdu
ing expansions for uh and ph and �nite element test bases for vh and
qh into the variational statements (3) and (4) and integrating, we obtain the following3
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rete system of ordinary di�erential equations
M

dU

dt
+ D(U) +

1

Re
AU − BP = F (5)

BTU = 0 (6)where UT = [uT
1 uT

2 ], uT
i = [ui

1 · · ·u
i
N ], i = 1, 2, for N nodal velo
ities and PT = [p1 · · ·pM ]for M nodal pressures. The matri
es M, A and B 
orrespond to the respe
tive mass,vis
ous and pressure terms on the left in (5), F 
orresponds to the sour
e term on the rightand D(U) is a nonlinear fun
tion of the nodal velo
ities 
orresponding to the adve
tiveterm. The resulting semidis
rete system (5) is integrated impli
itly using a standard

θ-method, 0 ≤ θ ≤ 1. At ea
h timestep, we have a nonlinear system of the form
M

Un − Un−1

∆t
+ θ [D(Un) +

1

Re
AUn − BPn]

+ (1 − θ) [D(Un−1) +
1

Re
AUn−1 − BPn−1]

= θFn + (1 − θ)Fn−1 (7)
BT Un = 0 (8)where n denotes the timestep index. In the numeri
al studies, we are using the impli
itEuler method (θ = 1) even though it is only �rst-order a

urate in time. The reason forthis de
ision is that the se
ond-order Crank-Ni
olson method is notoriously os
illatoryfor problems with dis
ontinuous initial data su
h as the lid-driven 
avity problem shownlater. We therefore, sa
ri�
e a

ura
y in time for stability. Later we 
ompare the steady-state solution with �xed and adaptive meshes for the Navier-Stokes equations (1)-(2). Weassume that the steady-state o

urs when the kineti
 energy at two 
onse
utive timestepsrea
hes a relative di�eren
e less than a spe
i�ed toleran
e, tolst.The nonlinear system (7),(8) is solved by Newton's method in the present study. Writ-ing the nonlinear system formally as
g(rn) = 0, with (rn)T = [(Un)T , (Pn)T ] (9)and given rn

0 , we solve the linear Ja
obian system
J(rn

k+1 − rn
k) = −g(rn

k), where J = (Jij) = (
∂gi

∂rj

), (10)for i, j = 1, 2, · · · , (2N + M) and iterate k = 0, 1, 2, . . ., at ea
h timestep. The resultinglinear system of equations is solved using GMRES method with the In
omplete LU-de
omposition pre
onditioner ILU(1). In the numeri
al tests des
ribed later we 
onsider30 basis ve
tors for the GMRES method and a linear toleran
e of 10−6. For the Newtonmethod, the non-linear toleran
e is 10−4. 4



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Carey2.1 Adaptive mesh re�nement and 
oarsing (AMR/C)Adaptive mesh re�nement (h re�nement) has been used to generate optimal grids andthere is a extensive literature devoted to obtain a posteriori estimates and a

ompanyingerror indi
ators [11, 25, 2, 4℄. In this work, we use the error indi
ator as implementedin the libMesh library [12℄, whi
h employs a simple interfa
e derivative jump (or �uxjump) error indi
ator similar to the 
lassi
al indi
ator proposed by Kelly et al. [11℄ todrive the h-re�nement pro
ess. The adaptive te
hnology utilizes element subdivision tolo
ally re�ne the mesh and thereby resolve di�erent s
ales su
h as boundary layers andinterior sho
k layers. The fo
us in libMesh is on lo
al subdivision (h re�nement) withlo
al 
oarsening by h restitution of subelements and the lo
al indi
ators are essentiallyindependent of the physi
s. The interfa
e jump error indi
ator for a given element a isde�ned by
ηFLUX

a =

(

h

∫

Ωa

|(∇uhb
−∇uha

) · η|2ds

)
1

2

, (11)where element b shares an edge (fa
e) with 
ell a in the �nite element mesh, h is thelength of this fa
e and η is the outward unit normal for element a. In regions of rapidly
hanging solution gradients, the jump error (11) will be large and hen
e re�nement willbe triggered in su
h zones.In this work, we employ a statisti
al approa
h to �ag individual elements for re�ne-ment and 
oarsening, and the element error is treated as an approximately log-normaldistribution. This kind of �agging s
heme have been used with good su

ess [1℄ and is anextension of one te
hnique des
ribed in [14℄. As shown in Figure 1, the solution error hasan approximately normal distribution about its mean value µ with standard deviation
σ. The user has to supply the re�nement and 
oarsening fra
tions rf and cf . Observethat elements with errors greater than µ+ σrf are �agged for re�nement while elementswith errors less than µ − σcf are �agged for 
oarsening. The �nal de
ision for re�ne-ment/
oarsening 
an still be 
onstrained by spe
ifying a maximum-allowable re�nementlevel and by 
ompatibility 
onditions su
h as a gradual transition in 
ell size. The numberof re�nement levels per time step and the maximum-allowable re�nement level are impor-tant AMR 
ontrol parameters whi
h in�uen
e the a

ura
y and e�
ien
y of the method,and the 
hoi
e of cf and rf is also problem-dependent and a�e
ts the overall out
ome [1℄.This s
heme is bene�
ial in evolution problems where, at early times, the error is smalland equidistributed and no elements are �agged for re�nement. Later, as interesting fea-tures develop, the statisti
al distribution spreads and re�nement and 
oarsing begins. Asthe steady-state solution is approa
hed, the distribution of the error rea
hes a steady-stateas well, e�e
tively stopping the AMR/
oarsening pro
ess. Here, for the statisti
al s
hemein the AMR pro
ess, we 
onsider the following parameters: the initial mesh (initial-mesh), the number of uniform re�nement steps (uniform-re�nement), the error per
ent-age to re�ne (re�ne-per
entage), the error per
entage to 
oarse (
oarsen-per
entage) andthe number of maximum re�nements levels (re�nement-levels). In the numeri
al experi-5
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edure is identi�ed by the 5-tuple AMR (initial-mesh,uniform-re�nement, re�ne-per
entage, 
oarsen-per
entage, re�nement-levels).

Figure 1: Graphi
al des
ription of the re�nement/
oarsening s
heme.2.2 PID timestep sele
tionMost timestep s
hemes are based on 
ontrolling a

ura
y as determined by trun
ationerror estimates (e.g. Predi
tion-Modi�
ation-Corre
tion). The obje
tive of timestep se-le
tion is to minimize the 
omputational e�ort to 
onstru
t an approximate solution of agiven problem in a

ordan
e with a desired a

ura
y. Gustafsson at. al. [9℄ and Hairerand Wanner [10℄ viewed the problem of automati
 timestep sele
tion as examples of aproportional-integral-derivative (PID) 
ontroller de�ned as
△tn+1 = (

en−1

en

)kP (
tol

en

)kI (
en−1

2

enen−2

)kD △tn, (12)where tol is some input toleran
e, en is the measure of the 
hange of the quantities ofinterest in time tn, and kP , kI and kD are the PID parameters. In the present work, weuse the 
hanges in nodal velo
ities and pressure to 
ompute en taking,
en =

‖rn − rn−1‖

‖rn‖
, (rn)T = [(Un)T , (Pn)T ] (13)The algorithm for 
ontrolling the timestep has two main parts. First, a step size isassumed, and using the newly 
omputed solution, an a posteriori estimate is made of theerror in the step. Se
ond, this error measure is used to a

ept or reje
t the solution andmodify the timestep a

ordingly. If the error is una

eptable, the new solution is dis
ardedand we restart the time integration in the previous step with a redu
ed step size. If theerror is a

eptable, a new timestep is 
al
ulated using equation (12) and we pro
eed withthe time integration. In the algorithm, we have to de�ne the 
ontrol data: the minimum6



A.M.P. Valli, J.J. Camata, L. Catabriga, A.L.G.A. Coutinho and G.F. Careytimestep size △tmin, the maximum timestep size △tmax, the PID parameters kP , kI , kD,and the toleran
e tol for 
hanges in nodal velo
ities and pressure. The e�
ien
y of the
ontrol was demonstrated by Valli et al. [19, 20℄ in numeri
al simulations of Rayleigh-Benard-Marangoni problems, �ow over a ba
kward-fa
ing step and unsteady �ow past a
ylinder. Further, the 
omputational overhead of the sele
tion pro
edure is insigni�
ant
ompared to solver operations, sin
e timestep sele
tion involves only storing a few extrave
tors and 
omputation of asso
iated norms. As in [19, 20℄, we �x the values of thePID parameters equal to kP = 0.075, kI = 0.175 and kD = 0.01 in all the numeri
alexperiments performed subsequently.2.3 Solution s
hemeThe solution s
heme used is designed to arrive at faster steady-state solutions using thePID timestep 
ontrol algorithm 
ombined with adaptive mesh re�nement (AMR). Fig-ure 2 provides a s
hemati
 des
ription of the main 
al
ulations to obtain the steady-statesolution using PID and AMR s
hemes. As shown in the �ow
hart, after sele
ting initialvalues and generi
 parameters (Re, ∆t, initial mesh, initial velo
ities, et
.), apply a �xednumber of uniform re�nement steps in the initial mesh. At ea
h timestep (Time Loop),perform one (or more) h-adaptive re�nement/
oarsening steps (AMR Loop) using the�ux-based indi
ator of (11) and the statisti
al �agging s
heme mentioned in Se
tion 2.1,
al
ulate the new timestep using (12), test for the steady-state and exit or repeat for thenext time step. Inside the AMR Loop, the PID error estimate (13) is 
al
ulated usingtwo 
onse
utive solutions at the same mesh to avoid further level of 
omplexity. Notealso that the mesh is re�ned inside the AMR loop only if the timestep is not reje
ted. Inthe numeri
al experiments presented later we 
onsider four algorithm 
ombinations for
omparison: �xed mesh and 
onstant timestep (
ase 1.1), �xed mesh and PID (
ase 1.2),AMR and 
onstant timestep (
ase 2.1) and AMR and PID (
ase 2.2). In other words,we 
onsider the 
ases of no adaptation, spa
e adaptation only, time adaptation only andsimultaneous spa
e-time adaptation.3 NUMERICAL RESULTS3.1 Lid driven 
avity problemThe lid-driven 
avity �ow is a standard test 
ase for steady Navier-Stokes 
omputationsand there are numerous published results that 
an be used for 
omparison purposes [5, 7℄.The domain of analysis is a unit square and both velo
ity 
omponents are pres
ribed tobe zero, ex
ept at the top boundary (the lid) where the horizontal velo
ity 
omponent ispres
ribed as in [15℄
u(x) =

{

tanh(βx) for 0 ≤ x ≤ 0.5,

−tanh(β(x− 1)) for 0.5 < x ≤ 1.0.
(14)7
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Figure 2: Flow
hart for the adaptive solution s
heme.with β > 0. In this work we assume β = 100. The domain is dis
retized by quadrati
triangular elements (TRI6) for velo
ity and by linear triangular elements (TRI3) for pres-sure. We infer experimentally that the steady-state is rea
hed when the di�eren
e betweenthe kineti
 energy is less than 10−4. We use a 80×80 �xed mesh and an adaptive mesh re-�nement de�ned by the 5-tuple AMR (20×20, 2, 0.3, 0.01, 2) with 
onstant and adaptivetimesteps. The numeri
al results will be 
ompared with the result presented by Erturket al. [7℄ for Re = 1000. Figure 3 shows the horizontal velo
ity u along the verti
al
enterline and the verti
al velo
ity v along the horizontal 
enterline for the four algorithm
ombinations. The agreement for all 
ases is favorable when 
ompared with the resultsin [7℄.Next, we 
ompare the 
omputational e�ort to 
al
ulate the solution using the four al-gorithm 
ombinations 
onsidered here. For the PID experiments, we de�ne △tmin = 1.0,8
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Figure 3: Horizontal velo
ity u along the verti
al 
enterline (left) and the verti
al velo
ity v along thehorizontal 
enterline (right) for the lid driven 
avity problem with Re = 1000.
△tmax = 5.0 and tol = 0.1. Table 1 shows the number of nonlinear iterations (NLI),the number of linear iterations (LI), the CPU time in se
onds to 
al
ulate the lineariterations (CPUgmres), the CPU time in se
onds to perform the re�nement (CPUref), the
omputational e�ort (CPUeffort) and the maximum value of the streamlines (ψmax). The
omputational e�ort is measured by the (CPUgmres) using 
onstant steps divided by the(CPUgmres) using the PID 
ontroller for timestep sele
tion. Observe that the 
omputa-tional e�ort to 
al
ulate the solutions in all 
ases is redu
ed using the PID 
ontroller. Forboth the �xed and adapted meshes, the solutions are obtained approximately 1.5 timesfaster using the PID 
ontroller and the maximum value of the streamlines are 
loser tothe value 
al
ulated in [7℄, whi
h 
orresponds to 0.118585 for a mesh with 401× 401 
ellsusing �nite di�eren
es se
ond order a

ura
y. The re�nement CPU time (CPUref) 
orre-sponds to 0.34 % of the GMRES CPU time (CPUgmres) using 
onstant steps. However,using the PID 
ontroller this e�ort 
orresponds to only 0.25% of the GMRES CPU time.The evolution of timesteps is shown in Figure 4 for both �xed and AMR meshes. Thebehavior of the PID for both spatial meshes are similar for this example, stepping fromthe initial timestep size to the maximum timestep size of 5.0 after 40 time units.The �nal AMR meshes using 
onstant and adaptive steps are the same, as shown inFigure 5 together with the streamlines. The �nal number of nodes in both AMR meshes,
ases 2.1 and 2.2, is equal to 6710. The steady-state using 
onstant steps and the PID
ontroller are a
hieved at approximately 80 and 120 time units respe
tively, as shown bythe nondimensional kineti
 energy versus time in Figure 6.

9
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NLI LI CPUgmres CPUref CPUeffort ψmaxConstant Step (
ase 1.1) 218 6627 964.12 - 1.0 0.11877PID (
ase 1.2) 102 6280 664.09 - 0.69 0.11869AMR (20 × 20, 2, 0.3, 0.01, 2)
NLI LI CPUgmres CPUref CPUeffort ψmaxConstant Step (
ase 2.1) 292 2531 110.28 37.92 1.0 0.11877PID (
ase 2.2) 152 2408 80.79 20.05 0.68 0.11879
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Figure 4: The lid driven 
avity: timestep variation for �xed mesh and AMR.3.2 Flow over a ba
hward-fa
ing step problemThe se
ond numeri
al experiment is the two-dimensional ba
kward-fa
ing step problem.Here we 
ompare our results with those presented by Gartling in [8℄. The standard stepgeometry was simpli�ed by ex
luding the 
hannel upstream of the step (see Figure 7). Theboundary 
onditions for the step geometry in
lude the usual no-slip velo
ity spe
i�
ationfor all solid surfa
e walls as shown in Figure 7. The inlet velo
ity �eld is spe
i�ed as aparallel �ow given by u(y) = 24y(0.5− y) and v(y) = 0 for 0 ≤ y ≤ 0.5. This produ
es amaximum in�ow velo
ity of umax = 1.5 and an average in�ow velo
ity of uavg = 1.0. We
onsider homogeneous natural out�ow boundary 
onditions as shown in Figure 7. Theproblem is solved for a Reynolds number of Re = 800.In this example the domain is also dis
retized by quadrati
 triangular elements (TRI6)for velo
ity and by linear triangular elements (TRI3) for pressure. The �xed mesh used
omprises 128 × 16 
ells with two elements per 
ell resulting in 8481 nodes and 2048elements. For the adaptive mesh we 
onsider the parameter tuple AMR (64 × 8, 1, 0.3,0.01, 1) and the PID parameters are: ∆tmin = 0.025, ∆tmax = 0.5 and tol = 0.25 × 10−310
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(a) AMR with 
onstant steps (b) AMR with PID

(
) AMR with 
onstant steps (d) AMR with PIDFigure 5: The lid driven 
avity: �nal meshes (top) and streamlines (bottom).
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Figure 6: The lid driven 
avity: kineti
 energy using 
onstant steps (left) and PID (right).for 
hanges in nodal velo
ities. Table 2 
ompares the PID performan
e for �xed and AMRmeshes, using the same notation of the quantities de�ned in the last example. For the�xed mesh, the CPU time was redu
ed about 50% using the PID 
ontrol even with ain
reased number of linear iterations. For the AMR mesh, with referen
e to CPU time weare able to 
al
ulate the solution 3.6 times faster using the PID 
ontroller and the totalnumber of linear and non-linear iterations was redu
ed.11
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Figure 7: Ba
kward-fa
ing step geometry with 
hannel dimensions and boundary 
onditions.Table 2: Ba
kward fa
ing-step problem with Re = 800.Fixed mesh 128 × 16

NLI LI CPUgmres CPUref CPUeffortConstant Step (
ase 1.1) 9474 34106 6432.78 - 1.0PID (
ase 1.2) 1936 30650 4004.21 - 0.62AMR(64 × 8,1,0.3,0.01,1)
NLI LI CPUgmres CPUref CPUeffortConstant Step (
ase 2.1) 13208 53608 7576.38 2803.11 1.0PID (
ase 2.2) 3390 34649 2097.15 593.48 0.26The timestep size variation given by the PID 
ontroller for 
ases 1.2 and 2.2 are pre-sented in Figure 8. For the �xed mesh algorithm (
ase 1.2), the PID solution presents asmooth variation of the timesteps when 
onfronted with the AMR algorithm (
ase 2.2).At the beginning of the pro
ess, the PID 
ontroller keeps the timestep value at minimum,but as soon as the solution evolves, the PID 
ontroller in
reases the timestep size towardsits maximum value. For 
ase 2.2, the stepsize size os
illates be
ause of the 
hanges inthe mesh size and the limitation of the maximum timestep size. However, there was noreje
ted steps during the pro
ess.Now we 
ompare the �nal AMR meshes using 
onstant timesteps and PID 
ontroller,Figures 9(a) and 9(b). Observe that the �nal meshes are di�erent but they have similarfeatures. The mesh is re�ned only on the upstream region of the 
hannel and 
oarsenedin the streamwise dire
tion. The AMR mesh with 
onstant steps begins with 8481 nodesand at the end of the adaptive pro
ess has 3745 nodes. In Figure 10 we show the evolutionof the �nal number of nodes for both solutions. The �nal AMR mesh with PID has 3639nodes, i.e., 106 nodes less than the �nal AMR mesh with 
onstant steps. Note also thatin the beginning of the solution pro
ess the number of nodes in the mesh os
illates but asthe solution approa
hes steady state this number de
reases. This is due to the 
oarseningpro
ess in the regions of the domain where the interfa
e derivative jumps are small.Although there is a di�eren
e between the two �nal AMR meshes, the �nal solution12
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Figure 8: Ba
kward fa
ing-step problem - timestep variation for �xed mesh (left) and AMR (right).
(a) Constant step(b) PIDFigure 9: Ba
kward-fa
ing problem for Re = 800 - mesh for AMR(64 × 8,1,0.3,0.01,1)obtained using the PID 
ontroller presents good a

ura
y as 
ompared with the solutionwith �xed steps. This 
an be veri�ed by the horizontal velo
ity 
omponents 
al
ulatedat x = 7.5 and x = 15.0 using both 
onstant and adaptive timesteps, shown in Figure11. Note that the steady-state horizontal velo
ities are pra
ti
ally 
oin
ident. The basi
features of the ba
kward-fa
ing step �ow at Re = 800 is illustrated in the stream fun
tion
ontour plots of Figure 12 for 
ases 2.1 and 2.2. The plot shows only part of the 
hannelsin
e few phenomena of interest o

ur downstream of this point. The maximum streamlinevalues obtained in the numeri
al experiments for 
ases 2.1 and 2.2 are 0.24668 and 0.24667respe
tively. Our results are in good agreement with the results obtained by Gartling in[8℄. In this example the steady-state was rea
hed for all 
ases around time 100 time units.4 CONCLUSIONSWe have investigated the use of a PID timestep 
ontrol algorithm in 
onju
tion withan AMR pro
ess for simulation of 2D vis
ous �ow problems using the libMesh library.We have suggested an algorithm for the time-spa
e adaptive pro
ess to obtain steady-state solutions of the problems. Uniform and adaptive �nite element solutions have been
omputed for lid driven 
avity and �ow over a ba
kward-fa
ing step problems using �xed13
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Figure 10: Ba
kward-fa
ing problem for Re = 800 - number of nodes.
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Figure 11: Horizontal velo
ity 
omponent at x = 7.5 (left) x = 15 (right) using AMR.

Figure 12: Streamlines using 
onstant steps (top) and PID (bottom) using AMR.14
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h. The 
omputational e�ort was measured
onsidering the 
ases of no adaptation, spa
e adaptation only, time adaptation only andsimultaneous spa
e-time adaptation. Based on the numeri
al studies, it was 
on
ludedthat the 
omputational e�ort to 
al
ulate the solutions is redu
ed using the PID 
ontroller.For example, the solutions in the lid driven 
avity problem are obtained approximately1.5 times faster using the PID 
ontroller for both uniform and adaptive grids without anysigni�
ant loss of a

ura
y. Moreover, the �nal adaptive meshes using �xed and adaptivetimesteps are the same. For the se
ond example, with referen
e to CPU time we areable to 
al
ulate the solution 3.6 times faster using the simultaneous adaptive of meshand time steps (PID 
ontroller and AMR). We also observe that the �nal AMR meshobtained with the PID 
ontrol had less nodes than the the uniform mesh. However, thebasi
 features of the mesh was not lost and the �nal solutions agree very well.A
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