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SUMMARY

In this work, we evaluate the performance of the left conjugate direction method (LCD) for the
solution of non-symmetric systems of linear equations arising from �nite element and �nite di�erence
discretizations of the convection–di�usion equation. We extend the LCD algorithm proposed by Dai
and Yuan (Int. J. Numer. Meth. Engng 2004; 60:1383–1399) to accommodate restarts. Our discussion
considers comparison studies between the computational e�ciency of the GMRES and LCD methods
and some issues related to the choice of the forcing term in the inexact Newton method. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical strategies for �ow problems in science and engineering often requires repeated
solution of non-linear systems of equations involving millions of unknowns. After some form
of linearization, these systems are usually solved by Krylov subspace iterative methods [1].
Yuan et al. [2] introduced a new algorithm for solving non-symmetric, non-singular linear
systems, the left conjugate direction (LCD for short) method. This method is based on the
concept of left and right conjugate vectors for non-symmetric and non-singular matrices and
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possesses several theoretical advantages: (i) it has a �nite termination property; (ii) breakdown
for general matrices can be avoided and (iii) there is a connection between LCD and LU
decomposition. Initial experiments in Reference [2] using a MATLAB implementation have
shown that LCD has attractive convergence rates when compared to Bi-CGSTAB, QMR and
GMRES algorithms.
Catabriga et al. [3] evaluated the performance of the original LCD algorithm in the solution

of non-symmetric systems of linear equations arising from the implicit semi-discrete SUPG
�nite element formulation for inviscid compressible �ows described in Reference [4]. They
extended the original algorithm to accommodate restarts and typical �nite element precon-
ditioners. Comparisons with other Krylov subspace methods with or without preconditioning
unfortunately did not favour the LCD method. Although requiring usually less iterations, CPU
times and memory are larger than GMRES, Bi-CGSTAB and TFQMR. The main reason is
the need to compute two matrix–vector products per iteration, one with the coe�cient matrix
and the other with its transposed matrix.
Valentim et al. [5] studied the solution of non-linear systems using an inexact Newton

method where the approximate solution of the resulting linear system at each iteration is
obtained by LCD or GMRES. A spatial discretization based on centred �nite di�erence ap-
proximations of the heat equation and the convection–di�usion equation was considered. They
studied the computational e�ciency of the two linear solvers and some issues related to the
choice of the forcing term in the inexact Newton method. The results have shown that the
LCD method is faster than the GMRES method in most of the cases.
Recently, Dai and Yuan [6] proposed a new technique to overcome the breakdown problem

appearing in the semi-conjugate direction method and a memory limitation scheme similar to
the limited-memory BFGS method to minimize memory requirements of the original algorithm.
In this work, we introduce restarts on the new LCD algorithm given by Dai and Yuan [6] and
compare it with the restarted LCD algorithm given by Catabriga et al. [3] and the restarted
GMRES method for the solution of the linear and non-linear problems discretized by �nite
element and �nite di�erence methods. For the non-linear problems we study the choice of the
forcing term of the inexact Newton method.
The remainder of this work is organized as follows. In the next section, we brie�y review

the stabilized �nite element formulation for linear convection equation and the �nite di�erence
discretization of the non-linear convection equation. Section 3 introduces the inexact Newton
method and shows the forcing term evaluation strategies. In Section 4, we describe the LCD
algorithms, with particular emphasis on the introduction of restarts. Section 5 shows several
numerical experiments, where we compare the performance of the LCD method with the
GMRES method. Finally the paper ends with a summary of our main conclusions.

2. GOVERNING EQUATIONS AND DISCRETE FORMULATIONS

2.1. Linear convection–di�usion equation

Let us consider the following convection–di�usion equation de�ned in a domain � with
boundary �:

R:∇u− ∇:(Z∇u) = f (1)
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u= g on �g (2)

n:Z∇u= h on �h (3)

where u represents the quantity being transported (e.g. temperature, concentration), R is the
divergence-free �ow velocity and Z is the volumetric di�usivity. Equations (2) and (3) are
the essential and natural boundary conditions, respectively, g and h are given functions of
x=(x; y), and n is the unit outward normal vector at the boundary, �g and �h are the
complementary subsets of � where boundary conditions are prescribed.
Consider a �nite element discretization of � into elements �e, e=1; : : : ; nel, where nel is

the number of elements. The stabilized �nite element formulation of Equation (1), described
in detail in Reference [7], leads to a system of linear equations

Kv=F (4)

where v= {u1; u2; : : : ; unnodes}t is the vector of nodal values of u, K is called the ‘sti�ness’
matrix and F is the ‘load’ vector.

2.2. Non-linear convection–di�usion equation

Let us consider the non-linear convection–di�usion equation de�ned in a square domain
�= (0; lx)× (0; ly) with boundary �

�u∇:u− ∇2u=f (5)

u= g on � (6)

where u represents again the quantity being transported, functions f(x; y), g(x; y) and constant
� are known. Consider a discretization of � into a uniform grid with n+ 2 points in the x
direction and m+ 2 points in the y direction, i.e.

xi= i × hx; i=0; : : : ; n+ 1 yj= j × hy; j=0; : : : ; m+ 1 (7)

where hx= lx=(n+ 1) and hy= ly=(m+ 1). Since the values at the boundaries are known, we
have N = n×m unknowns points in �. We consider the approximation of the �rst- and second-
order derivatives by centred �nite di�erences, arriving to the non-linear system of equations

F(u1; u2; : : : ; uN )=

⎡
⎢⎢⎢⎣
f1(u1; u2; : : : ; uN )

...

fN (u1; u2; : : : ; uN )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0

...

0

⎤
⎥⎥⎥⎦ (8)

where F : RN → RN is a non-linear vector function, u1; u2; : : : ; uN are the unknowns and each
fk depends only the unknowns uk−n, uk−1, uk , uk+1 and uk+n for k=1; 2; : : : ; N .

3. THE INEXACT NEWTON METHOD

The non-linear system (8) can be solved by Newton’s method. It is an iterative method for
non-linear equations that approximate the function F at a given point u=(u1; u3; : : : ; uN )t by a
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linear function. The Jacobian matrix J represents the variation of the function F with respect
of u. Each iteration of the Newton’s method is given by

uk+1 = uk + sk (9)

where sk is calculated by the solution of the linear system

J (uk)sk = − F(uk) (10)

We may terminate the iteration when the relative non-linear residual ‖F(uk)‖=‖F(u0)‖ is
small. However, if there is error in evaluation of F or the initial iterate is near a solution, a
termination decision based on the relative residual may be made too late in the iteration or it
may not terminate at all. Kelley [8] suggested to stop the iteration if

‖F(uk)‖ 6 �r‖F(u0)‖+ �a (11)

where the relative error tolerance �r and absolute error tolerance �a are input to the algorithm.
When an iterative method is used to solve system (10), the resulting method is known as
inexact Newton method [9]. Inexact Newton methods are especially well suited for large-scale
problems and have been used very successfully in many applications. In this work, we use
two schemes for choosing adaptively tolerances for the inner iterative method, or the forcing
term, one suggested by Papadrakakis [10] and other suggested by Kelley [8]. The calculation
of the linear system tolerances suggested by Papadrakakis [10] is given by

�k = min

{
�max;

(‖F(uk)‖
‖F(u0)‖

)�}
(12)

where �max and 0¡�¡1 are known parameters. In this work we consider �max =0:9999 and
�=0:5. On the other hand, Kelley [8] suggested that the convergence was superlinear using
the values

�k =

⎧⎪⎪⎨
⎪⎪⎩
�max; k=0

min(�max; �Ak ); k¿0 and ��2k−1¡0:1

min(�max;max(�Ak ; ��
2
k−1)); k¿0 and ��2k−1¿0:1

(13)

where the �max is an upper limit on the sequence �k ; k=1; 2; : : : : The constant 0.1 is somewhat
arbitrary and �Ak = �(‖F(uk)‖2=‖F(uk−1)‖2). The initial values suggested by Kelley [8] are
�=0:9 and �max =0:9999.

4. THE LEFT CONJUGATE DIRECTION ALGORITHM

The �nite element discretization of the linear convection–di�usion equation and the �nite
di�erence discretization of the non-linear convection–di�usion equation described before yields
a linear problem given in (4) and a non-linear problem given in (8). In any case we have to
solve a system of linear equations of the form

Ax= b (14)
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where A is an N ×N non-symmetric sparse matrix, x is the vector of nodal unknowns and b
is a known vector.
The LCD method was recently introduced in Reference [2]. In this method vectors p1;

p2; : : : ; pN∈RN are called left conjugate direction vectors of an N×N real non-singular matrix
A if

pTi Apj=0 for i¡j

pTi Apj �=0 for i= j
(15)

Suppose that the solution of system (14) is x∗, and {p1; p2; : : : ; pN} are left conjugate direction
vectors of A. Then it follows that

x∗= x0 +
N∑
i=1
�ipi (16)

for every �xed vector x0. If r denotes the residual vector then

r= r0 −
N∑
i=1
�iApi (17)

where r0 is the initial residual vector. To determine �i, since p1; p2; : : : ; pN are linearly inde-
pendent, then take r orthogonal to all pi, that is

pTi r=0 ∀i=1; : : : ; N (18)

From (18) we obtain

�i=
pTi ri−1
pTi Api

(19)

We also can write

ri = b− Axi= ri−1 − �iApi (20)

xi = x0 +
i∑
k=1
�kpk = xi−1 + �ipi (21)

From (19)–(21) we can implement the left conjugate direction method if we know the set of
linearly independent vectors p1; p2; : : : ; pN such that they are left conjugate direction vectors of
A. There is still a recurrence relation among p1; p2; : : : ; pk and rk to compute the left conjugate
gradient vector pk+1. For this, we need to know the �rst vector p1 such that pT1Ap1 �=0. Yuan
et al. [2] described the complete left conjugate direction method as follows.

Algorithm 4.1

1. Input x, A, p1 such that pT1Ap1 �= 0 and b;
2. r = b− Ax;
3. For k = 1; : : : ; N do

3.1. qk = ATpk ,
�k = pTk r=q

T
k pk ,

x = x + �kpk ,
r = r − �kApk ;
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3.2. pk+1 = r,
�i = −qTi pk+1=qTi pi,
pk+1 = pk+1 + �ipi for i = 1; : : : ; k.

In Algorithm 4.1 we need to store N vectors pk and N vectors qk , furthermore we need two
matrix–vector product per iteration to obtain the solution x. Dai and Yuan [6] proposed new
ideas for the LCD methods where one matrix–vector product is needed. The new algorithm
can be written as follows.

Algorithm 4.2
1. Input x, A, p1 such that pT1Ap1 �= 0 and b;
2. r= b− Ax;
3. q1 =Ap1;
4. For k=1; : : : ; N do

3.1. �k = pTk r=p
T
k qk ,

x= x + �kpk ,
r= r − �kqk ;

3.2. pk+1 = r,
qk+1 =Apk+1,
For i=1; : : : ; k do

�i= − pTi qk+1=pTi qi,
pk+1 =pk+1 + �ipi,
qk+1 = qk+1 + �iqi.

Catabriga et al. [3] introduced an algorithm similar to Algorithm 4.1, but with restart as in
the GMRES algorithm implemented by Shakib et al. [11]. In this paper we consider the same
restart scheme applied to Algorithm 4.2. The new algorithm is given below.

Algorithm 4.3 (LCD(k))
1. Given x, A, b, lmax, kmax and �
2. r = b− Ax
3. � = �‖r‖
4. Choose p1 such that pT1Ap1 �= 0
5. For l = 1; : : : ; lmax do

5.1. q1 = Ap1
5.2. For k = 1; : : : ; kmax do

5.2.1. �k = pTk r=p
T
k qk

x = x + �kpk
r = r − �kqk

5.2.2. if ‖r‖¡� then exit loop k and l, x is the solution.
5.2.3. pk+1 = r

qk+1 = Apk+1
For i = 1; : : : ; k do

�i = −pTi qk+1=pTi qi
pk+1 = pk+1 + �ipi
qk+1 = qk+1 + �iqi

5.3. Choose the new p1 such that pT1Ap1 �= 0,
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where lmax is the maximum number of iterations, kmax is the number of left conjugate directions
considered for each restart. Note that the number of left conjugate direction vectors was
considered equal to the number of restarts. In principle both can be di�erent. We need to store
2kmax N -dimensional vectors {p1; : : : ; pkmax} and {q1; : : : ; qkmax}. For each iteration l we need
only one matrix–vector product as in the GMRES algorithm. To start LCD(kmax), we have to
choose p1 and the subsequent p1 for each kmax iteration. Catabriga et al. [3] reported numerical
experiments about this choice. The best results were p1 = r for l=1 and p1 =pkmax+1 for
l=2; 3; : : : ; and in this work we adopt this choice.

5. NUMERICAL RESULTS

In this section, we evaluate the LCD algorithm implemented by Yuan et al. [2] and Dai
and Yuan [6]. All results were implemented using restarts unless stated otherwise. The LCD
algorithm given by Yuan et al. [2] is denoted by LCDA and the algorithm in Reference [6]
is denoted by LCDB.

5.1. Pure convection problem

We consider a pure convection of a scalar on a square domain, where convection is skew to
the mesh and the di�usivity is negligible. Figure 1 shows the problem set up. The domain is
the unit square �= [0; 1]× [0; 1] and the boundary conditions are

u=0:0 along y=0:0

u=0:0 along x=0:0 and 0:0¡y¡0:25 (22)

u=1:0 along x=0:0 and 0:25¡y¡1:0

45ο

u = 0.0

y

x

β
u = 1.0

u = 0.0

0.75

1.0

0.25

Figure 1. Problem set up—pure convection of a scalar on a square domain.
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The di�usivity is 	x=	y=1 × 10−7, the �ow direction is 45◦ from the x-axis, ‖�‖=1 and
the stabilization parameter is computed as in Reference [7]. The domain is discretized by
grids of triangular elements with 64 × 64, 128 × 128, 256 × 256 and 512 × 512 cells. Each
cell is subdivided into four triangles. For these meshes we studied the in�uence of restart,
considering several test cases, from no restart until a restart every 40 iterations. We noted that
the solutions computed by LCDA, LCDB and GMRES are virtually identical for any numbers
of left conjugate direction vectors.
Table I shows the number of iterations (Niter) and CPU times for the GMRES and

LCD methods using a relative residual tolerance of 10−10. In this table Neq is the num-
ber of the unknowns. We can observe in Table I that the LCDA and LCDB methods con-
verge with less iterations than GMRES in all cases, except in the case without restart.
The LCDB algorithm is faster than the LCDA in most cases. Only when we consider 10
or less vectors to restart the LCDB algorithm is faster than the GMRES algorithm. Figure
2 compares the relative residual evolution for LCD(5)A, LCD(5)B and GMRES(5) for the
four meshes de�ned before. Although the relative residual in LCD(5)A and LCD(5)B de-
crease more slowly than in GMRES(5) in the beginning of the process, the total number
of LCD(5)A and LCD(5)B iterations are almost the same and it is smaller than the num-
ber of GMRES(5) iterations in all cases. Results for the other number of restart vectors are
similar.

5.2. Non-linear convection–di�usion problem

We consider Equation (5) with homogeneous Dirichlet boundary conditions on the unit square
(0; 1)×(0; 1). Function f has been constructed so that the exact solution was the discretization
of u(x; y)=10xy(1 − x)(1 − y)ex4:5 . We set �=20, u0 = 0, �a = 10−9 and �r = 10−12. In this
problem, we use the global Gauss–Seidel preconditioner for all cases and three types of forcing
term (�xed, Papadrakakis and Kelley). We observed that LCDA, LCDB and GMRES solutions
are virtually identical for any numbers of left conjugate gradient vectors. For the following
discussions, we consider the domain discretized on 512× 512 cells.
Table II shows the number of linear iterations (Niter) and CPU times for the LCDA, LCDB

and GMRES methods using three types of forcing term (�xed, Papadrakakis and Kelley).
We can observe that the inexact methods decrease the number of linear iterations when com-
pared with the �xed tolerance criterion. The Papadrakakis criterion needs less inner linear
iterations for all cases, except for GMRES(5). Now the LCDA algorithm is faster than LCDB
for almost all number of restart vectors tested. This occurs because the calculation of two
matrix–vector products per iteration is not the dominant cost in these �nite di�erence ex-
periments. Moreover, LCD tends to be slower than GMRES as the number of basis vectors
increase. The best results in terms of CPU time using 20 restart vectors was for GMRES
method with all types of forcing terms. When 40 restart vectors are considered, the best
results are for GMRES, with the exception of the �xed tolerance case, where LCDA is better
than GMRES.
Figures 3(a)–(c) show plots of the non-linear residual norm and Figures 4(a)–(c) show the

number of linear iterations in each non-linear iteration obtained using LCD(10)A, LCD(10)B
and GMRES(10). We can observe that the �xed forcing term needs less non-linear itera-
tions for convergence than the other two criteria, but it needs more linear iterations for each
non-linear iteration. Table II shows that, for all numbers of restart vectors tested, larger
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Table I. Computational costs—pure convection of a scalar on a square domain.

1 Vector

Mesh GMRES(1) LCD(1)A LCD(1)B

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 714 7 654 7 654 7
128× 128 32 768 1123 55 1042 53 1041 54
256× 256 131 072 1918 385 1784 364 1784 371

5 Vectors

Mesh GMRES(5) LCD(5)A LCD(5)B

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 471 3 328 3 328 2
128× 128 32 768 888 31 618 33 620 25
256× 256 131 072 1661 238 1163 244 1182 186
512× 512 524 288 3104 1726 2384 2086 2378 1533

10 Vectors

Mesh GMRES(10) LCD(10)A LCD(10)B

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 399 2 356 4 356 2
128× 128 32 768 751 28 608 35 611 28
256× 256 131 072 1479 220 1091 258 1105 204

20 Vectors

Mesh GMRES(20) LCD(20)A LCD(20)B

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 448 3 401 5 401 3
128× 128 32 768 756 34 655 44 655 39
256× 256 131 072 1383 255 1123 307 1150 285

40 Vectors

Mesh GMRES(40) LCD(40)A LCD(40)B

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 595 5 478 7 478 6
128× 128 32 768 942 60 829 71 829 75
256× 256 131 072 1552 405 1265 439 1269 467

Without restart

Mesh GMRES LCDA LCDB

Cells Neq Niter Time (s) Niter Time (s) Niter Time (s)

64× 64 8192 261 6 262 11 262 13
128× 128 32 768 533 320 534 307 538 481

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2006; 22:643–656
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Figure 2. Relative residual evolution for LCD(5)A, LCD(5)B and GMRES(5)—pure
convection of a scalar on a square domain: (a) mesh 64× 64; (b) mesh 128× 128;

(c) mesh 256× 256; and (d) mesh 512× 512.

numbers of linear iterations are observed when the forcing term is �xed. Further, we can see
in Figure 4 that when the Papadrakakis criterion is selected, less linear iterations are needed,
which implies in less processing time. This may be due to the adaptative choice of tolerance
in the inexact Newton method.
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Table II. Computational costs—mesh with 512 × 512 cells—non-linear
convection–di�usion problem.

5 Vectors

GMRES(5) LCD(5)A LCD(5)B

�k Niter Time (min) Niter Time (min) Niter Time (min)

Fixed (10−5) 35 834 103.18 8835 38.73 8833 38.36
Papadrakakis 7063 21.41 4214 18.35 4214 18.55
Kelley 6214 18.63 12 614 54.23 12 614 54.73

10 Vectors

GMRES(10) LCD(10)A LCD(10)B

�k Niter Time (min) Niter Time (min) Niter Time (min)

Fixed (10−5) 17 903 66.00 4907 25.36 4907 28.75
Papadrakakis 3144 11.41 1754 9.08 1754 10.53
Kelley 3444 12.76 3243 16.83 3243 17.93

20 Vectors

GMRES(20) LCD(20)A LCD(20)B

�k Niter Time (min) Niter Time (min) Niter Time (min)

Fixed (10−5) 9098 47.15 12 809 87.71 12 809 116.33
Papadrakakis 1721 9.10 1414 9.93 1414 12.11
Kelley 2450 13.10 2132 14.68 2132 19.36

40 Vectors

GMRES(40) LCD(40)A LCD(40)B

�k Niter Time (min) Niter Time (min) Niter Time (min)

Fixed (10−5) 4495 39.45 2962 29.96 2962 43.20
Papadrakakis 1319 10.45 1481 14.03 1481 22.06
Kelley 1650 18.83 1678 22.10 1678 25.70

6. CONCLUSION

In this work, we compared the performance of LCD and GMRES algorithms in the �nite
element and �nite di�erence solutions for linear and non-linear convection–di�usion problems.
The non-linear problem solution have been carried out by the inexact Newton method. We
studied two choices for the forcing term of the inexact Newton method. We implemented
two di�erent algorithms for the LCD method. One considers two matrix–vector products per
iteration (LCDA) and the other considers only one matrix–vector product, but needs to compute
more inner products, if we consider k vectors to restart (LCDB).
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Figure 3. Convergence histories using di�erent choices of the forcing terms (Non-linear
iterations × ‖F(uk)‖)—mesh with 512×512 cells—non-linear convection–di�usion problem:

(a) LCD(10)A solution; (b) LCD(10)B solution; and (c) GMRES (10) solution.

For the �nite element experiments we can observe that the LCDB algorithm is faster than
GMRES and LCDA only when we consider small number of basis vectors. For the �nite
di�erence experiments, the LCDA is faster than LCDB for all cases. LCDA using 10 vectors to
restart and Papadrakakis criterion gave the smallest CPU time. In general, GMRES is faster
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Figure 4. Number of linear iteration behaviour using di�erent choices of the forcing
terms—mesh with 512×512 cells—non-linear convection–di�usion problem: (a) LCD(10)A

solution; (b) LCD(10)B solution; and (c) GMRES (10) solution.

than LCD when the number of restart vectors are increased. On the criteria to choose the
forcing term for the inexact Newton method, we conclude that Papadrakakis criterion was the
best option in all of our experiments.
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The present numerical experiments are not exhaustive and certainly more tests are required.
The apparent superiority of LCDA in the �nite di�erence test case should be further explored,
and these will addressed in a forthcoming paper.
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