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Abstract. This paper evaluates the effects of reordering the unknowns on the convergence
of preconditioned Krylov subspace methods for the solution of nonsymmetric linear sys-
tems that arise from the finite element discretization of flow and transport. Of particular
interest is the iterative solver behavior when adaptive mesh refinement (AMR) is utilized.
Numerical studies are conducted using the object oriented AMR software system LibMesh
with the PETSc Library. Using incomplete factorization preconditioners with several lev-
els of fill-in, we investigate the effects of the Reverse Cuthill-McKee algorithm on GMRES,
LCD and BICGSTAB methods. It is shown that the reordering applied in this finite ele-
ment implementation with adaptive mesh refinement can reduce the number of iterations
and, consequently, improve CPU time for some incomplete factorization preconditioners.
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1. INTRODUCTION

Incomplete factorization preconditioners are sensitive to the ordering of unknowns
and equations. Reorderings have been used to reduce fill-in (as with sparse direct solvers),
to introduce parallelism in the construction of an application of ILU preconditioners, and
to improve the stability of the incomplete factorization. In most cases, reorderings tend to
affect the rate of convergence of preconditioned Krylov subspace methods, Benzi (2002).
The effects of reordering on the convergence of preconditioned Krylov subspace meth-
ods have been studied by a number of authors, mostly experimentally, and are still the
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subject of some debate (see, e.g., Langtangen (1989); Dimon (1989); Duff and Meu-
rant (1989); Dutto (1993); Benzi et al. (1999); Benzi and Tuma (2000); Doi and Washio
(1999); Heniche et al. (2001); Borne (2000)).

Sparse matrix reorderings have been in use for a long time. Classical ordering strate-
gies include bandwidth- and profile-reducing ordering, such as reverse Cuthill-McKee
(RCM), Sloan’s ordering, Gibbs-Poole-Stockmeyer ordering, variants of minimum degree
ordering, and nested dissection, Saad (1996). These orderings are based only on the struc-
ture of the matrix and not on the numerical values of the matrix entries. For direct solvers
based on complete matrix factorization this is justified, particularly in the SPD (symmet-
ric positive definitive) case. For incomplete factorizations, however, the effectiveness of
reordering is strongly affected by the size of the dropped entries. Those orderings based
solely on graph information may result in a poor preconditioner when applied to matrices
(Benzi (2002); Duff and Meurant (1989)). For SPD finite element matrices, where a “nat-
ural” ordering of unknowns may not exist, Duff and Meurant (1989) recommend the use
of RCM ordering.

The situation is somewhat different for nonsymmetric problems. In this case, ma-
trix reorderings can significantly improve the performance of ILU-preconditioned Krylov
subspace solvers. Dutto (1993) studied the effect on the convergence of GMRES with
ILU(0) preconditioning in the context of solving the compressible Navier-Stokes equa-
tions on unstructured grids. RCM ordering was often better than other orderings not only
in terms of performance but also in terms of robustness.

Benzi et al. (1999) showed numerical experiments about the effects of reorderings
on the convergence of preconditioned Krylov subespace methods for the solution of non-
symmetric linear systems. They studied how different reorderings affect the convergence
of the Krylov subspace methods when incomplete LU factorizations are used as precon-
ditioners. Their focus was on linear systems arising from the discretization of second
order partial differential equations by finite differences. They also studied a selection
of nonsymmetric matrices from various sources (for example, Harwell-Boeing collection
and Saad’s SPARSKIT). These matrices arise from different application areas: oil reser-
voirs, modeling, plasma physics, neutron diffusion, and more. Some of these matrices,
from finite element models, have a much more complicated structure than those arising
from finite differences. For the test matrices that are nearly symmetric, the reorderings
have no positive effect on the convergence of the preconditioned Krylov methods. On
the other hand, for the highly nonsymmetric test matrices, i.e., when the nonsymmetric
part is large, they conclude that reorderings can indeed make a big difference. It is shown
that the reverse Cuthill-McKee reordering can be very beneficial in terms of the number
of iterations. Benzi et al. (1999) concluded that the RCM ordering should be used as the
default ordering with incomplete factorization preconditioners if some amount of fill-in is
allowed.

Oliker et al. (2002) investigated the effects of various ordering and partitioning strate-
gies on the performance of parallel conjugate gradient(CG) and ILU(0) preconditioned
CG (PCG) using different programming paradigms and architectures. Their results show
that for SPD matrices, ordering significantly improves overall performance on both dis-
tributed and distributed shared-memory systems, but they concluded that the quality of an
ILU preconditioner in terms of the convergence rate has a nontrivial dependence on the
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ordering.
Hou (2005) presented a study of an incomplete ILU preconditioner for solving linear

systems arising from the finite element method using reordering to improve the efficiency
of serial and parallel implementations. He compared the classic Cuthill-McKee ordering
and the popular Reverse Cuthill-McKee, both applied in ILU(0) and ILUT precondition-
ers. He concluded that nodal reordering strategies go side-by-side with preconditioners.
While one strategy works very poorly for one preconditioner, it can be the best choice for
another. No ordering is perfect in all situations, and therefore we must be careful when
choosing one for each individual problem.

In this work we evaluate the effects of reordering the unknowns on the convergence
of preconditioned Krylov subspace methods for the solution of nonsymmetric linear sys-
tems that arise from the finite element discretization of flow and transport. Of particular
interest is the iterative solver behavior when adaptive mesh refinement (AMR) is uti-
lized. Numerical studies are conducted using the object oriented AMR software system
LibMesh with the PETSc Library (LibMesh (2006); PETSc (2006)). Using incomplete
factorization preconditioners, we investigate the GMRES, LCD (Catabriga et al. (2004))
and BICGSTAB methods for solving the Navier-Stokes equations and compare standard
nodal ordering with reverse Cuthill-McKee ordering.

2. GOVERNING EQUATIONS AND DISCRETE FORMULATION

The system of equations considered is the unsteady Navier-Stokes equations for low-
speed incompressible fluid flow, in the velocity-pressure formulation,

∂u

∂t
+ u · ∇u −

1

Re
∇2u + ∇p = f in Ω × (0, T ) (1)

∇ · u = 0 in Ω × (0, T ) (2)

where Ω is the flow domain, u is the velocity vector, p is the pressure, Re is the Reynolds
number and f is an applied body force. In addition, we require boundary data on ∂Ω ×

[0, T ], u = u0, and initial data at t = 0, u(x, 0) = u0(x) in Ω, to complete the speci-
fication of the evolution problem. To satisfy the LBB criterion, different approximation
spaces are used for the velocity and pressure fields. Here we use a mixed finite element
formulation as developed in Carey and Oden (1986).

Let us consider the spatial discretization of the viscous flow equation. Introducing
a finite element discretization and basis for the velocity components and for the pressure
on a discretization Ωh, the semidiscrete projection of the variational formulation of the
Navier-Stokes equations (1), (2) reduces to: Find the pair (uh, ph) with uh ∈ V h satisfy-
ing the initial condition with uh = u0 on ∂Ωh and ph ∈ P h, such that

∫
Ωh

((
∂uh

∂t
+ (uh · ∇)uh) · vh +

1

Re
∇uh:∇vh − ph∇ · vh) dΩ

=

∫
Ωh

f · vh dΩ (3)

∫
Ωh

(∇ · uh) qh dΩ = 0 (4)
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for all admissible vh ∈ Vh, with v = 0 on ∂Ω, and ph ∈ Ph. Here ∇uh:∇vh is the
dyadic product. Introducing expansions for uh and ph and finite element test bases for vh

and qh into the variational statements (3) and (4) and integrating, we obtain the following
nonlinear semidiscrete system of ordinary differential equations

M
dU

dt
+ D(U) +

1

Re
AU − BP = F (5)

BTU = 0 (6)

where UT = [uT
1 uT

2 ], UT
i = [U1

i · · ·U
N
i ], i = 1, 2, for N nodal velocities and PT =

[p1 · · · pM ] for M nodal pressure. The matrices M, A and B correspond to the respective
mass, viscous and pressure terms on the left in (5), F corresponds to the source term on the
right and D(U) is a nonlinear function of the nodal velocities correspond to the inertial
term. The resulting semidiscrete system (5) is integrated implicitly using a standard θ-
method, 0 ≤ θ ≤ 1. At each timestep, we have a nonlinear system of the form

M
Un − Un−1

∆t
+ θ [D(Un) +

1

Re
AUn − BPn]

+ (1 − θ) [D(Un−1) +
1

Re
AUn−1 − BPn−1] = Fn (7)

BT Un = 0 (8)

where n denotes the timestep index. In the numerical studies, we are using the implicit
Euler method (θ = 1) even though it is only first-order accurate in time. The reason for
this decision is that the second-order Crank-Nicolson method is notoriously oscillatory
for problems with discontinuous initial data such as the lid-driven cavity. We therefore,
sacrifice accuracy in time for stability. Since however the solution reaches steady-state
relatively quickly, we can afford to take small timesteps.

The nonlinear system (7), (8) is solved by Newton’s method in the present study.
Wrinting the nonlinear system formally as

g(rn) = 0, with (rn)T = [(Un)T (Pn)T ] (9)

and given rn
0 , we solve the linear Jacobian system

J(rn
k+1 − rn

k) = −g(rn
k), where J = (Jij) = (

∂gi

∂rj

), i, j = 1, 2, · · · , N (10)

for iterate k = 0, 1, 2, . . ., at each timestep. The resulting linear system of equations are
solved using preconditioned GMRES, LCD, and BICGSTAB methods.

The error indictor for the Adaptive Mesh Refinement (AMR) procedure used is ex-
plained in Kelley et al. (1983). The error is computed for each active element using the
provided flux-jump indicator. Comparing the element error in the active elements with a
global error estimate we can select regions where the mesh is refined or coarsened.

3. NUMERICAL EXPERIMENTS

The lid-driven cavity flow is a standard test case for steady Navier-Stokes computa-
tions and there are numerous published results that can be used for comparison purposes
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De Sampaio et al. (1993); Spotz and Carey (1995); Ghia et al. (1982). The domain of
analysis is a unit square. Both velocity components are prescribed to be zero, except at
the top boundary (the lid) where the horizontal velocity component has a unit value.

For all tests the linear solver tolerance is ε = 10−6 and the non-linear tolerance
is τ = 10−4. The AMR parameters are the initial mesh (initial-mesh), the number
of uniform refinement steps (uniform-refinement), the error percentage to refine (refine-
percentage), the error percentage to coarse (coarsen-percentage) and the number of max-
imum refinements levels (refinement-levels). An AMR procedure is identified by the
5-tuple: AMR(initial-mesh, uniform-refinement, refine-percentage, coarsen-percentage,
refinement-levels).

We use the Reverse Cuthill-McKee (RCM) technique (available in the PETSC Li-
brary) to reorder the matrix of the resulting system in each nonlinear step. We compare
the behavior of preconditioned GMRES, LCD, and BICGSTAB methods when the RCM
is considered in the AMR solution of the lid-driven cavity problem.

First, the Reynolds number Re = 200 is considered. To compare the linear solver
behavior for different orderings, we consider a time step ∆t = 1 for both procedures
(AMR and fixed mesh), a quadratic triangular mesh for velocity and linear triangular mesh
for pressure and a final time of 20. We consider a 40 × 40 fixed mesh and an adaptive
mesh refinement defined by AMR(15 × 15,0,0.3,0.0,2). Figure 1 shows the streamlines.
The AMR and fixed mesh have a similar solution. Figure 2 shows the horizontal velocity
u along the vertical centerline and the vertical velocity v along the horizontal centerline.
The results are comparable with Ghia et al. (1982), Spotz and Carey (1995).

Table 1 and 2 show, respectively, for the natural and RCM orderings, the number
of linear iterations (LI), the number of nonlinear iterations (NLI), the CPU time when
the AMR and fixed mesh procedures are considered and the rate between the CPU time
for AMR and fixed mesh procedures (CPU(AMR)/CPU(Fixed)). The results for GM-
RES(30), LCD(30) and BICGSTAB methods are considered for ILU(0), ILU(1) and
ILU(4) preconditioners. For all linear solvers the total CPU time in the AMR proce-
dure is smaller than the fixed mesh solution. The GMRES(30), LCD(30) and BICGSTAB
methods do not converge using AMR or fixed meshes for the ILU(0) preconditioner with
RCM reordering. When the natural ordering is considered, the CPU rates between AMR
and fixed mesh solutions are around 22% for ILU(1) and ILU(4) preconditioners and
around 34% for ILU(0) preconditioner. However, when the RCM ordering is considered,
the CPU rates are 27% for ILU(1) and 38% for ILU(4).

The BICGSTAB method with AMR and ILU(0) preconditioner achieved the smaller
CPU time when natural ordering is considered and the GMRES(30) method with AMR
and ILU(0) the largest (Tab. 1). On the other hand, when RCM ordering is considered the
solution with GMRES(30), AMR and ILU(0) preconditioner has the smallest CPU time
and the BICGSTAB method with AMR and ILU(4) has the largest (Tab. 2). In general
the BICGSTAB method has smaller number of linear iterations than the GMRES(30) and
LCD(30) methods, but the CPU time can be larger. We can say that BICGSTAB iterations
are more expensive than LCD iterations in terms of CPU time, and LCD iterations can be
more expensive than GMRES iterations, Catabriga et al. (2004).

For Re = 400 is considered a time step ∆t = 1 for both procedures (AMR and fixed
mesh), a quadratic triangular mesh for velocity and linear triangular mesh for pressure,
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(a) Fixed Mesh (40× 40) - Contours

(b) AMR (15× 15,0,0.3,0.0,2) - Contours (c) AMR (15× 15,0,0.3,0.0,2) - Mesh

Figure 1: Lid-driven cavity Re = 200 - Structured Triangular mesh - GMRES(30)
Streamlines
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Figure 2: Lid-driven cavity Re = 200 - Structured Triangular mesh - GMRES(30) veloc-
ities components along the vertical and horizontal centerlines

afinal time of 40, a 40 × 40 fixed mesh and AMR(20 × 20,0,0.3,0.0,2). Figure 3 and 4
show, respectively, the streamlines and the velocities along the centerlines. Again, the
results are comparable with Ghia et al. (1982), Spotz and Carey (1995).

Table 3 and 4 show, respectively, the computational cost for Re = 400 when natural
and RCM orderings are considered. For all linear solvers the total CPU time in the AMR
procedure is shorter than with the fixed mesh. One exception is the GMRES solution
with ILU(0) preconditioner. In this case, the AMR CPU time is larger than fixed mesh
CPU time. The CPU rates for Re = 400 are larger than the CPU rates for Re = 200.
One more time, the BICGSTAB method with AMR and ILU(0) preconditioner achieved
the smallest CPU time when natural ordering is considered and the GMRES(30) solution
with AMR and ILU(0) the largest (Tab. 3). On the other hand, when RCM ordering is
considered, the GMRES(30) solution with AMR and ILU(1) preconditioner achieved the
smallest CPU time and the BICGSTAB method with AMR and ILU(4) the largest (Tab.
4).

Figure 5 shows the sparsity patterns of the GMRES(30) Jacobian matrix for Re =
400 case, with AMR and fixed mesh. In Figs. 5(a) and (c) no bandwidth reduction was
considered, while in Figs. 5(b) and (d) we can see the effects of RCM ordering in the
bandwidth reduction of corresponding the original matrix. Table 5 shows the number
of nonzeros of the resulting matrix (nz(A)) and the rate between the number of nonze-
ros of the preconditioner matrix (nz(M)) and the resulting matrix (nz(A)) for natural
and RCM orderings, for GMRES(30) with ILU(0), ILU(1) and ILU(4) precondition-
ers. As the ILU(0) preconditioner does not take into account any level of fill-in, the
rate nz(M)/nz(A) is equal to 1.0 for AMR and fixed mesh procedures. But, as can be
observed in Tab. 5, for the ILU(1) preconditioner the rate is around 30% for the natural
ordering and around 75% for the RCM ordering. For the ILU(4) preconditioner, the rate
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(a) Fixed Mesh (40× 40) - Contours

(b) AMR (20× 20,0,0.3,0.0,2) - Contours (c) AMR (20× 20,0,0.3,0.0,2) - Mesh

Figure 3: Lid-driven cavity Re = 400 - Structured Triangular mesh - GMRES(30)
Streamlines
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Figure 4: Lid-driven cavity Re = 400 - Structured Triangular mesh - GMRES(30) veloc-
ities components along the vertical and horizontal centerlines

(a) Fixed mesh - Natural ordering (b) Fixed mesh - RCM ordering

(c) AMR (step 40) - Natural ordering (d) AMR (step 40) - RCM ordering

Figure 5: Lid-driven cavity Re = 400 - Structured Triangular mesh - GMRES(30) with
ILU(1) - Pattern of the Jacobian matrix
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Table 1: Lid-driven cavity Re = 200 - Structured Triangular mesh - Natural Ordering -
Computational costs

ILU(0)

AMR(15 × 15,0,0.3,0.0,2) Fixed Mesh (40 × 40)Linear Solver
LI NLI CPU LI NLI CPU

CPU(AMR)
CPU(Fixed)

GMRES(30) 7764 83 39.1387 3762 60 101.1261 0.39
LCD(30) 7180 83 38.9059 4545 61 115.0701 0.34
BICGSTAB 2986 83 34.1845 2694 61 113.5000 0.30

ILU(1)

AMR(15 × 15,0,0.3,0.0,2) Fixed Mesh (40 × 40)Linear Solver
LI NLI CPU LI NLI CPU

CPU(AMR)
CPU(Fixed)

GMRES(30) 1565 83 36.6392 1287 61 171.9519 0.21
LCD(30) 1575 83 36.7778 1378 61 175.8095 0.21
BICGSTAB 1049 83 38.0464 872 61 185.9538 0.20

ILU(4)

AMR(20 × 20,0,0.3,0.0,2) Fixed Mesh (40 × 40)Linear Solver
LI NLI CPU LI NLI CPU

CPU(AMR)
CPU(Fixed)

GMRES(30) 878 83 129.9476 487 61 594.2065 0.22
LCD(30) 878 83 129.3947 495 61 597.3094 0.22
BICGSTAB 587 83 132.7534 495 61 594.9729 0.22

is around 7% for the natural ordering and around 35% for the RCM ordering.

4. CONCLUSIONS

This paper evaluated the effects of reordering the unknowns on the convergence of
preconditioned Krylov subspace methods for the solution of nonsymmetric linear systems
that arise from the finite element discretization of flow and transport. Of particular interest
was the iterative solver behavior when AMR is utilized. Using incomplete factorization
preconditioners, we investigated GMRES, LCD and BICGSTAB methods for solving the
Lid-driven cavity application and then compared natural ordering with reverse Cuthill-
McKee ordering. The ILU(0) preconditioner is less sensitive to RCM reordering for fixed
meshes and AMR. However, for ILU(1) and ILU(4) preconditioners, RCM reordering
applied with adaptive mesh refinement reduces considerably CPU time. The ILU(1) pre-
conditioner offers the best results for the GMRES, LCD, and BICGSTAB methods in
terms of CPU time.
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Table 2: Lid-driven cavity Re = 200 - Structured Triangular mesh - RCM Ordering -
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LCD(30) 2579 154 96.9079 1797 114 137.7249 0.70
BICGSTAB 1850 154 99.5153 1521 112 149.3103 0.67

ILU(4)

AMR(20 × 20,0,0.3,0.0,2) Fixed Mesh (40 × 40)Linear Solver
LI NLI CPU LI NLI CPU

CPU(AMR)
CPU(Fixed)

GMRES(30) 1349 154 108.2803 463 111 149.6599 0.72
LCD(30) 1351 154 108.8921 464 111 149.7065 0.73
BICGSTAB 832 154 110.1914 284 111 153.9423 0.72

Heniche, M., Secretan, Y., & Leclerc, M., 2001. Efficient ILU preconditioning and
inexact-newton-gmres to solve the 2d steady shallow water equations. Communica-
tions in Numerical Methods in Engineering, vol. 17, n. 2, pp. 69–75.

Hou, P. S., 2005. Nodal reordering strategies to improve preconditioning for finite element
systems. Master’s Thesis, Virginia Polytechnic Institute and State University.

Kelley, D. W., Gago, J. P. S. R., Zienkiewicz, O. C., & Babuska, I., 1983. A posteriori
error analysis and adaptive processes in the finite element method. Part I: Error analysis.
International Journal for Numerical Methods in Engineering, vol. 18, pp. 1593–1619.

Langtangen, H. P., 1989. Conjugate gradient methods and ILU preconditioning of non-
symmetric matrix systems with arbitrary sparsity patterns. Internat. J. Numer. Methods
Fluids, vol. 9, pp. 213–233.

LibMesh, visited 05-29-2006. libmesh home page. http://libmesh.sourceforge.net/.

Oliker, L., Li, X., Husbands, P., & Biswas, R., 2002. Effects of ordering strategies and
programming paradgms on sparse matrix computations. SIAM Review, vol. 44, n. 3,
pp. 373–393.

PETSc, visited 05-29-2006. Pestc home page. http://www-unix.mcs.anl.gov/petsc/petsc-
2/.

Saad, Y., 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston.

Spotz, W. F. & Carey, G. F., 1995. High-order compact scheme for the esteady stream-
function vorticity equations. International Journal for Numerical Methods in Engi-
neering, vol. 38, pp. 3497–3512.



CILAMCE 2006 – ABMEC & AMC, Belém, Pará, Brazil, 3rd – 6th September 2006

Table 5: Lid-driven cavity Re = 400 - Structured Triangular mesh - GMRES(30) - Or-
dering Evaluation

Natural Ordering

AMR(20 × 20,0,0.3,0.0,2) Fixed Mesh (40 × 40)Preconditioner
nz(A) nz(M)/nz(A) nz(A) nz(M)/nz(A)

ILU(0) 110903 1.0 431609 1.0
ILU(1) 349193 0.32 1388419 0.31
ILU(4) 1456243 0.08 6224865 0.07

RCM Ordering

AMR(20 × 20,0,0.3,0.0,2) Fixed Mesh (40 × 40)Preconditioner
nz(A) nz(M)/nz(A) nz(A) nz(M)/nz(A)

ILU(1) 148569 0.75 583943 0.74
ILU(4) 301161 0.37 1282355 0.33


