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SUMMARY

We propose two timestep selection algorithms, based on feedback control theory, for �nite element
simulation of steady state and transient 2D viscous �ow and coupled reaction–convection–di�usion
processes. To illustrate performance of the schemes in practice, we solve Rayleigh–Benard–Marangoni
�ows, �ow across a backward-facing step, unsteady �ow around a circular cylinder and chemical reaction
systems. Numerical experiments con�rm that the feedback controllers produce in some cases a very
smooth stepsize variation, suggesting that robust control algorithms are possible. These experiments
also show that parameter selection can improve timesteps when co-ordinated with the convergence
control of non-linear iterations. Further, computational cost of the selection procedures is negligible,
since they involve only storing a few extra vectors, computation of norms and evaluation of kinetic
energy. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: timestep selection; control theory; incompressible �ows; reaction–convection–di�usion
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1. INTRODUCTION

With the evolution of numerical methodology to more complex classes of coupled �ow
and transport problems there has been an increasing need for improved algorithms and other
enhancements such as adaptive grid re�nement and coarsening. Several adaptive timestep-
ping selection strategies have been developed as a means to provide stable accurate transient
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(and steady-state) solutions more e�ciently. Analogously, adaptive grid schemes use feedback
from the computed solution on a given intermediate grid to ascertain where the grid should be
locally re�ned. We remark that both of these processes (adaptive timestep selection and adap-
tive grid re�nement) can be viewed as examples of feedback control problems. This brings
us to the main theme of the present work—the utilization of feedback control algorithms for
timestep selection in the simulations of steady state and transient 2D viscous �ow and coupled
reaction–convection–di�usion processes combined with surface tension e�ects.
Adaptive techniques for automatic timestep selection are probably the most important means

to improve e�ciency of a given integration method in the numerical solution of ordinary
di�erential equations. These strategies are usually based on approximate local truncation error
measures or on purely heuristic considerations. For example, standard automatic timestep
selection algorithms use an estimate of the local truncation error to adjust the stepsize in
accordance with a user-speci�ed accuracy requirement, as shown in References [1–4]. Of
particular interest here are ODE systems arising from semidiscrete approximation of coupled
PDE systems such as those in �uid �ow and transport. Gresho et al. [5] use a predictor–
corrector scheme with a time truncation estimate for integration error control in advection–
di�usion problems. Winget and Hughes [6], Johan et al. [7] and Jacob and Ebecken [8]
develop stepsize selection schemes based on heuristic rules for transient heat conduction,
compressible Navier–Stokes equations and structural dynamics problems, respectively. Another
strategy for timestep integration is to use control theory. Gustafsson et al. [9–11] developed a
control approach for adaptive timestep selection and presented an algorithm using the concept
of proportional-integral-derivative (PID) control. Both of these studies dealt with traditional
ODE systems. A recent review of the �eld is found in Reference [12].
In this work, we propose two PID timestep control algorithms based on controlling accuracy

or the convergence rate of the successive iterations [13–18] for semidiscrete systems arising
in PDE applications. The �rst control utilizes normalized changes in the solution variables of
interest (velocities, temperature, concentration, etc.) to compute the local truncation errors. In
the second control, the timestep size is limited by the normalized changes in other quantities
such as the non-dimensional kinetic energy or by the rate of convergence of the successive
approximations. The e�ciency of these controls are compared with the heuristic time-stepping
strategy developed by Winget and Hughes [6], also implemented in our code. We demonstrate
that, with these controllers, we obtain approximate solutions with a smaller number of steps
without any signi�cant loss of accuracy. In addition, the controllers also produce in some
cases a smooth variation of timesteps, suggesting that a robust control algorithm is possible.
These ideas are illustrated for several coupled viscous �ow and transport problems. We also
provide comparison studies with a digital �lter/PID controller presented by S�oderlind [19].
The outline of this work is as follows. First, we present the class of transient coupled

problems under investigation and brie�y the �nite element formulations. Then, we discuss
the two control algorithms for timestep selection. In Section 4, we present the application
problems. In the �rst problem, we assess the accuracy of the solutions when our controllers
are applied to a test problem with known analytical solution. In the second example, we study
the performance of the controllers to solve Rayleigh–Benard–Marangoni problems. Then, we
solve �ow over a backward-facing step and unsteady �ow around a circular cylinder with
vortex shedding. Finally, we apply the timestep control algorithms to solve non-linear �ow
and reactive transport as well as chemical reaction systems, we present the main conclusions,
and comment on the extension of these ideas to include adaptive meshing.
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2. COUPLED VISCOUS FLOW AND TRANSPORT

We consider �ow of a viscous incompressible �uid as described by the Navier–Stokes equa-
tions coupled to the transport of heat and mass by convection, conduction and reaction in
the �uid including surface tension e�ects. The class of transient coupled problems we are
interested in solving may be summarized by the following equations:

@u
@t
+ u · ∇u − ��u+ 1

�
∇p= q+ f(T; c) in �× I (1)

∇ · u=0 in �× I (2)

�cp
@T
@t
+ �cpu · ∇T − ∇ · (k∇T ) = h1(T; c) in �× I (3)

@c
@t
+ u · ∇c − ∇ · (K∇c) = h2(T; c) in �× I (4)

where � is the �ow domain, I =[0; �t] the time interval, u the velocity vector, p the pressure,
�=�=� the kinematic viscosity, � the density, q is an applied body force, f(T; c) is a tem-
perature (T ) and species concentration (c) dependent body force, cp the speci�c heat, k the
thermal conductivity, h1(T; c) and h2(T; c) are non-linear reaction source/sink terms and K is
the di�usion tensor. The initial conditions of the problem are u(0)= u0, T (0)=T0, c(0)= c0,
and we consider the following boundary conditions:

• velocities or free surface boundary conditions

u= uw or �∇u · n = 0 on @�1 (5)

�∇u · n=�(T; c) on @�2 (6)

• temperature, �ux or mixed boundary conditions

T = Tw or k∇T · n = 0 on @�3 (7)

k∇T · n= hc(T − Te) on @�4 (8)

• species concentration, �ux and mixed boundary conditions

c= cw or K∇c · n = 0 on @�5 (9)

−K∇c · n= � c −� on @�6 (10)

where n is a unit normal vector, and we suppose that the boundary @� of the domain
may be divided into @�1 to @�6, on which conditions can be imposed. Functions uw, �,
� are speci�ed and hc, � are known parameters.
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Let us �rst consider the spatial discretization of the viscous �ow equation. Introducing a
�nite element discretization and basis on a uniform discretization �h of quadrilateral elements,
the semidiscrete projection of the penalized variational formulation of the Navier–Stokes equa-
tions (1) and (2) reduces to: for 0¡�� 1, �nd u�h ∈ Vh satisfying the initial condition with
u�h = uw on @�1h such that [20, 21]

∫
�h

(
@u�h
@t

· vh + �∇u�h : ∇vh + (u�h · ∇)u�h · vh
)
d� +

1
�
I(∇ · u�h)(∇ · vh)

=
∫
�h

(q+ f(Th; ch)) · vh d� +
∫
@�2h

�− (Th; ch) · vh dl (11)

for all vh ∈ Vh with vh = 0 on @�1h, where I denotes reduced numerical integration, � is the
penalty parameter, @�h is the �nite element approximation of the boundary, and @�h1 to @�h6
approximate @�1 to @�6, respectively. This leads to the following non-linear semidiscrete
system of ordinary di�erential equations:

M
dU
dt
+ �AU+ N̂(U) +

1
�
BU =F(T;C) (12)

where matrices M, A, N̂, B correspond to the respective mass, viscous, inertial and penalty
terms on the left in (11) and F corresponds to the source term on the right. The semidiscrete
systems for the heat and mass transfer equations are constructed similarly. For example, the
�nite element formulation for the mass transfer equation of a representative single species cs,
s = 1; 2; : : : ; ns of (4) is

∫
�h

(
wh

(
@chs
@t

+ uhi
@chs
@xi

)
+
@wh
@xi

ksij
@chs
@xj

− whh2s(Th; ch)
)
d�

+
E∑
e=1

∫
�e
�
uhm
||uh||

@wh
@xm

(
@chs
@t

+ uhi
@chs
@xi

− @
@xi

(
ksij
@chs
@xj

)
− h2s(Th; ch)

)
d�

=
∫
@�6h

wh(�chs −	s) dl for all wh ∈ Wh (13)

where Wh is the �nite element test space for the transport problem, the �rst integral represents
the Galerkin formulation of the problem and the second integral is the SUPG stabilization
term added to the variational formulation [22]. The last integral in (13) enforces the mixed
boundary condition (10) and ksij, i; j = 1; 2, is the di�usion tensor for species component s.
The resulting semi-discrete ODE system for the nodal concentration vector C has the form

M̂
dC
dt
+R(U)C+ EC =H(C) (14)

where matrices M̂, R and E correspond to the respective mass, convective and di�usive
terms on the left in (13) and H corresponds to the source term on the right. A similar
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semidiscrete SUPG system follows from (3) for temperature. This yields a coupled set of
semidiscrete systems for nodal velocity, species concentration and temperature. The result-
ing coupled semidiscrete systems are integrated using a standard �-method 06 �6 1, where
� = 0 corresponds to the forward Euler scheme, � = 1

2 the trapezoidal Crank–Nicolson type
scheme and � = 1 the backward Euler scheme. In the numerical studies presented later, the
second-order implicit scheme (� = 1

2) is used. Timestep selection is based on the PID control
described later.
Within each timestep we must solve a coupled non-linear algebraic system associated with

the discretized �ow and transport equations. The main coupling between the �ow and transport
subsystems enters weakly through the dependence of the source term in the �ow equations
on the temperature and concentration and the convective velocity in the species/temperature
transport. Since the class of applications here does not involve high speed �ow a corresponding
iterative block decoupling of the subsystems within each timestep will be e�ective. That
is, we can decouple the respective discretized �ow and transport systems by a successive
approximation scheme in which the source term is ‘lagged’ in the �ow equation and the
computed velocity iterate is then used in the discretized transport subsystems. This successive
approximation iteration is then repeated until convergence.
The respective �ow and transport subproblems (resulting from the successive approximation

decoupling) are non-linear. In the present scheme the non-linearity from the inertial term in
the �ow equation subsystem (12) is weak so we use an iterative successive approximation to
linearize N̂ in (12) as

N̂(U) ≈ D(Uk−1)Uk =
∫
�h

(u�h;k−1 · ∇)u�h;k · vh d� (15)

with initial iterates given by the solution at the previous step. For each successive approxi-
mation k = 1; 2; : : : within timestep we have to solve linear systems of the form

PUnk = Q (16)

with

P=M+
�t
2

(
�A+D+

1
�
B

)
(17)

Q=
(
M − �t

2

(
�A+D+

1
�
B

))
Un−1k +

�t
2
(Fn +Fn−1) (18)

where n denotes the time index, and Fn = qn + f where f is evaluated at the current iterate
of T and C. Solutions of the resulting linear systems are obtained using a direct frontal
solver [23].
The velocity solution is then used as the convective coe�cient in the subsequent transport

systems such as (14). Since the reaction term H in (14) is a non-linear function of the
unknown species solution, we have to solve a non-linear system of the form

L(Cn) = 0 (19)
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where

L(Cn) =
(
M̂+

�t
2
(R(Un) + E)

)
Cn − �t

2
Hn +I (20)

with

I = −
(
M̂ − �t

2
(R(Un−1) + E)

)
Cn−1 − �t

2
Hn−1 (21)

and n denotes the timestep index. The non-linear system (19) is solved by Newton’s method
in the present study. The starting iterate is the solution from the most recent subsystem solve.
Given Cn0, U

n−1 and Un, for k = 1; 2; : : :, solve linear systems of the form

J(Cnk −Cnk−1) = −V (22)

with

J =
(
M̂+

�t
2
(R(Un) + E)

)
− �t
2
@Hn

k−1
@Cn

(23)

and

V =
(
M̂+

�t
2
(R(Un) + E)

)
Cnk−1 − �t

2
Hn

k−1 +I (24)

where I is de�ned in (21) and Hn
k−1 = H(Tnk−1;C

n
k−1). Here the solution of the linear

systems (22) are also obtained using a direct frontal solver [23]. A similar approach is applied
to the thermal subsystem and the solutions used to update the source term in the �ow equation.
In the preceding discussion we have outlined an algorithm for decoupled solution of the

subsystems within each timestep. Such a decoupled scheme is appropriate when the PDE
subsystems are weakly coupled, as in the cases described in later numerical experiments. For
situations where the coupling is strong it may be preferable to solve the problem within each
timestep as a fully coupled system or use other algorithms. The situation is then quite complex
because the cost of the fully coupled non-linear algebraic solution is much more expensive. It
is clearly also possible to construct other variants of the scheme described here. For example,
one can consider approximate solution of the decoupled problem with a single pass where
the coupling source term is treated explicitly using the value from the previous timestep.
Such an approach is appealing when the timescales of the subsystems di�er signi�cantly or
if other non-linearities in the systems are comparatively more signi�cant than the coupling
non-linearity. The non-linearity can restrict the timestep by rejecting and halving timesteps
where non-linear convergence is not attained in a subsystem solve. If the problem is due
to disparate timescales then subcycling is e�ective with di�erent size timesteps on di�erent
subsystems [24]. It is clear from these remarks that the choice of a best algorithm is inherently
problem dependent. In the numerical studies we consider both multisweep and single sweep
decoupling within a timestep and comment on their behaviour.
Clearly, other integrators are possible and may be advisable in some situations, but similar

PID timestep control strategies to those considered here can again be applied. In the next
section we discuss the form of timestep control utilized in the present scheme and numerical
studies.
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3. CONTROL STRATEGIES

Most timestep schemes are based on controlling accuracy as determined by truncation error
estimates (e.g. Prediction–Modi�cation–Correction). The objective of timestep selection is to
minimize the computational e�ort to construct an approximate solution of a given problem in
accordance with a desired accuracy. Gustafsson et al. [9–11] showed that stepsize selection
can be viewed as an automatic control problem with a PID controller de�ned as

�tn+1 =
(
en−1
en

)kP (
tol
en

)kI ( en−12

enen−2

)kD
�tn (25)

where tol is some input tolerance, en is the measure of the change of the quantities of interest
in time tn, and kP, kI and kD are the PID parameters. Figure 1 shows a block diagram of the
feedback control problem. An estimate of the solution change is compared with the speci�ed
accuracy requirement, and the result is fed back to calculate the new time step. The controller
tries to select the stepsize such that en comes as close as possible to the input tolerance, tol,
along a smooth curve.
Gustafsson and S�oderlind [25] establish a model for controlling the convergence rate of the

iterative method that relates the convergence rate to the stepsize. Assuming that the stepsize
is limited by the convergence rate of non-linear iterations, the new stepsize should be chosen
as

�tn+1 =
�ref
�
�tn (26)

where �ref is a reference rate of convergence and � is an estimated rate of convergence. Now
the controller tries to keep the estimated convergence rate as close as possible to a reference
value, �ref . In general, any value 0:2¡�ref¡ 0:4 would be acceptable, and �ref ≈ 0:2 gives
performance near to optimal [25]. The estimated rate of convergence is calculated using three
consecutive iterates for the velocities, un−2, un−1, and un, as follows:

� = max �n = max
n

‖un − un−1‖
‖un−1 − un−2‖ (27)

It is necessary to co-ordinate the convergence control algorithm (26) with the stepsize control
strategy (25) so that e�ciency is maintained. We propose two timestep control algorithms.
The �rst control uses the changes in velocities, temperature and concentrations, and can

be motivated based on the need to control accuracy with respect to time in the speci�c solution

∆t
Controller Plant

Feedback

tol
Error

Figure 1. Stepsize selection viewed as a control problem.
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variables. The Control 1 is de�ned by

�t =
(
en−1
en

)kP (
1
en

)kI ( en−12

enen−2

)kD
�tprev (28)

with

en = max (eu; eT ; ec) (29)

where

eu =
e∗u
tolu

; e∗u =
‖Un −Un−1‖

‖Un‖ (30)

eT =
e∗T
tolT

; e∗T =
‖Tn − Tn−1‖

‖Tn‖ (31)

ec =
e∗c
tolc

; e∗c =
‖Cn −Cn−1‖

‖Cn‖ (32)

and �t represents the new timestep size, �tprev is the timestep size at the previous step, and
tolu, tolT and tolc are user supplied tolerances corresponding to the normalized changes in
velocities, temperature and concentration vectors, respectively. The control formula (28) may
be written in the equivalent form [19]

�t =
(
1
en

)kI+kP+kD (
1
en−1

)−(kP+2kD) ( 1
en−2

)kD
�tprev (33)

which is expressed in terms of present and past control errors only. Depending on the way the
norm that measures the error is implemented, this formula is preferable. However, we observe
in our numerical experiments that the results with this alternative formula are essentially
identical. Thus, we use the control formula given by (28).
In the second control, the size of the timestep is limited by the changes in the kinetic

energy or by the rate of convergence of the successive approximations. The Control 2 is
given by

�t = min(�t�;�tr) (34)

where

�t� =
�ref
�
�tprev (35)

�tr =
(
en−1
en

)kP (
1
en

)kI ( en−12

enen−2

)kD
�tprev (36)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:201–231



CONTROL STRATEGIES FOR TIMESTEP SELECTION 209

Figure 2. Algorithm for Control 1 and 2.

and

en =
e∗K
tolK

; e∗K =
‖Kn − Kn−1‖

‖Kn‖ ; K =
∫
�

(u∗2 + v∗2)
2

d� (37)

Here, tolK is a given tolerance corresponding to the normalized changes in kinetic energy,
and u∗ and v∗ are the non-dimensional velocity components. The motivation in choosing
this control for the kinetic energy is related to an interest in the qualitative behaviour of
the solution as di�erent cell structures, steady-state solutions, periodic solutions or aperiodic
solutions arise.
Our control algorithms may be summarized by the steps in Figure 2. The algorithm for

controlling the timestep has two main parts. First, a step size is assumed, and using the newly
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computed solution, an a posteriori estimate is made of the error in the step. Second, this error
measure is used to accept or reject the solution and modify the timestep accordingly. If the
error is unacceptable, the new solution is discarded and we restart the time integration in
the previous step with a scaled timestep size based on the magnitude of the error relative to
the tolerance. In our algorithm, if the sequence of iterates of the non-linear system is con-
verging at a slow rate, the timestep is also rejected. That is, if the number of successive
approximations nsa is greater than the maximum number of successive approximations al-
lowed nsamax, the step size is rejected. If the error is acceptable, a new timestep is calculated
using (28) or (34) and we proceed with the time integration.
To prevent an excessive growth or reduction of the step size �t, we supply timestep limiters

�tmin and �tmax which limit the control signal (anti-windup e�ect [26]). The e�ect of the
anti-windup is to reduce both overshoot and the control e�ort in the feedback system. In most
of the examples studied in this paper, the initial timestep size is chosen to allow convergence
of the successive iterations and the Newton iterations at the beginning of the process. That is,
if we start with a timestep size greater than the initial timesteps chosen here, the non-linear
iterations failed to converge after a few time steps.
We performed parametric studies for di�erent values of PID parameters (kP, kI, kD) for

two test problems, to verify whether the PID controller is robust or not. Although feedback
control theory provides techniques to choose PID parameters, robustness is required when a
general method is used for a wide range of di�erent situations. The controller was found to be
very robust, allowing us to �x the values of the PID parameters, kP = 0:075, kI = 0:175 and
kD = 0:01, for all the numerical experiments performed subsequently. Experimental studies
will be given in the next section showing the e�ciency of the two controls. Comparative
studies between the two controls and the timestep selection strategy suggested by Winget
and Hughes [6] will also be carried out for representative test problems. The results with the
Winget and Hughes heuristic algorithm will be labelled as W&H.

4. NUMERICAL RESULTS

4.1. Validation problem

Our main objective here is to assess the accuracy of the solutions when the timestep control
strategies are applied to a speci�ed problem. We also want to verify whether the PID con-
troller is robust or not. For this investigation, we apply Control 1 to a constructed example
with known analytic solution, and we perform parametric studies for di�erent values of PID
parameters kP, kI and kD.
Our experiment is a test problem constructed to have in the unit square domain [0; 1]×[0; 1]

and for t ¿ 0 the analytic solution

c = 102(t + 1)2x(x − 1)y(y − 1) (38)

where c is the solution of the transport equation (4) for a single species component. The
di�usion tensor is K11 = K22 = 1, K12 = K21 = 0, and the non-linear reaction term is taken to
be

h2 = −c2 + f (39)
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Table I. Results for Control 1 using bilinear elements on a 2× 2 grid.
Case kP, kI, kD error ntstep nrejec newt ce�ort

1 0.05 0.05 0.005 0.37023368E-05 66 0 132 0.66
2 0.1 0.3 0.015 0.38890581E-05 62 0 124 0.62
3 0.075 0.175 0.01 0.38512072E-05 62 0 124 0.62
4 0.1 0.16 0.011 0.38680409E-05 63 0 126 0.63
5 0.06 0.13 0.008 0.38456781E-05 63 0 126 0.63
6 0.08 0.216 0.0116 0.38684855E-05 62 0 124 0.62
7 0.15 0.32 0.017 0.38897674E-05 62 1 126 0.63
8 0.2 0.4 0.02 0.38896720E-05 62 2 128 0.64
9 0.04 0.04 0.004 0.36271440E-05 67 0 134 0.67
10 0.03 0.03 0.003 0.35057604E-05 69 0 138 0.69
11 0.0 0.175 0.0 0.38528566E-05 62 0 124 0.62
12 0.075 0.175 0.0 0.38512100E-05 62 0 124 0.62
13 Fixed �t 0.13711077E-05 100 0 200 1

where the function f is given by

f =
@c
@t
+ u

@c
@x
+ v

@c
@y

− K11 @
2c
@x2

− K22 @
2c
@y2

+ c2 (40)

The initial solution is de�ned as the exact solution at the initial time t = 0. We specify
essential boundary conditions similarly and the exact velocity �eld is taken to be

u(t; x; y) = (t + 1)2x2(1− x)2(2y − 6y2 + 4y3)
v(t; x; y) = (t + 1)2y2(1− y)2(−2x + 6x2 − 4x3) (41)

This velocity �eld is divergence free and satis�es the no-slip condition u = 0 on the boundary
of the square. The maximum nodal velocity is approximately 1:2× 10−2, which corresponds
to a Reynolds number of Re = 1:2.
We use in these experiments a 2×2 grid with biquadratic elements, since the relative errors

in the L2-norm for any number of elements is within roundo� error. The initial timestep size
is 10−4, and we allow minimum and maximum timestep sizes of 10−4 and 10−3, respectively.
Changes in nodal concentration are calculated with an input tolerance of 10−5, and the calcu-
lations stop when the time is greater than 0.01. We perform parametric studies of the timestep
controller for values similar to those used by Gustafsson et al. [9] and also by Coutinho and
Alves [27]. We choose values of kP ranging from 0.03 to 0.20, kI from 0.03 to 0.40, and kD
from 0.003 to 0.02. We also study the case where kP = kD = 0.
Table I shows the L2-norm of the error in the concentration solution, the number of time

iterations, ntstep, the number of rejected steps, nrejec, the total number of Newton iterations,
newt, and the computational e�ort, ce�ort, de�ned here as newt divided by the number of
Newton iterations obtained using a �xed timestep size of 10−4. We can see from Table I that
the error in the approximate solution at the �nal time is of order 10−6 for all cases studied.
Moreover, with the PID control strategy we �nd approximate solutions with a smaller number
of time steps without any signi�cant loss of accuracy.
The PID controller is very robust as we can also see from Table I. Although feedback

control theory provides techniques to choose the PID parameters, robustness is required when
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a general �nite element method is used for a wide range of di�erent simulations. The variation
in the number of time iterations is very small if we keep kP in the range 0.03 to 0.20, kI
from 0.03 to 0.40, and kD from 0.003 to 0.02. For these reasons, we �x the values of
the PID parameters equal to kP = 0:075, kI = 0:175 and kD = 0:01 in all the numerical
experiments performed subsequently. In most cases, a PI controller is satisfactory. However,
we show that these values are also suitable for the other application problems presented here,
and we see more signi�cant improvements with the new adaptive schemes in these latter
applications.

4.2. Rayleigh–Benard–Marangoni problems

Natural convection of an incompressible �uid can be driven by buoyancy forces due to
temperature gradients and thermocapillary forces caused by gradients in the surface tension
[28–31]. The classic Rayleigh–Benard problem corresponds to �ow between two horizontal
plates where the top plate is held at a constant (cool) temperature and the bottom plate is
held at a higher constant temperature. At critical Rayleigh number the heated �uid near the
bottom plate begins to rise while the (cool) �uid near the top is more dense and descends.
This leads to circular convection cells in two dimensions. If the plate is removed from the
upper surface, then the thermocapillary surface tension due to temperature gradients on the
free surface also becomes important. This is a direct consequence of the dependence of sur-
face tension on temperature (Marangoni e�ect). Now, both buoyancy and thermocapillary
e�ects may be important in driving the �ow for this classical Rayleigh–Benard–Marangoni
problem.
The dimensionless equations describing Rayleigh–Benard–Marangoni �ows are

@u
@t
+ u · ∇u − ∇2u+∇p= Ra

Pr
Tg in �× I (42)

∇ · u=0 in �× I (43)

@T
@t
+ u · ∇T − 1

Pr
∇2T =0 in �× I (44)

where � is the domain, I = [0; �t ] the time interval, Ra = 	T�TgL3=�� the Rayleigh number,
Pr = �=� the Prandtl number, 	T the thermal coe�cient, g the gravity, � the kinematic
viscosity, � = k=�cp the thermal di�usivity, k the thermal conductivity, � the density, and cp
the speci�c heat.
We assume that there is no slip at the solid walls @�1, i.e. u = uw where uw is the

speci�ed wall boundary velocity. Temperature, �ux or mixed thermal boundary conditions
may be applied. The Marangoni problem involves a shear stress boundary in the free surface
@�2. The boundary condition on the free surface is

∇u · n = −Ma
Pr

∇T · t (45)

where Ma = 
T�TL=��� is the Marangoni number, 
T = @
=@T is determined empirically
for a given �uid, n is unit normal vector, and t is a unit tangent vector. Here we assume that
surface tension 
 varies linearly with T , so 
T is a constant for a given �uid.
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Figure 3. Vector �eld, streamlines, and temperature contours for �ow in a
container with aspect ratio 4:1

Table II. Computational e�ort for �ow in a container with aspect ratio 4:1.

ntstep nrejec nsa ce�ort

Fixed �t 241 0 731 1
Control 1 192 0 643 0.88
Control 2 89 1 380 0.52
W&H 193 0 644 0.88

We investigate the formation of Rayleigh–Benard cells treating the �ow in a two-dimensional
simulation. We consider the �ow in a rectangular container with aspect ratio 4:1 (length:width),
insulated lateral walls, Pr = 0:72 and Ra = 30000. Temperatures on bottom and top surfaces
are normalized to T = 1 and 0, respectively. The initial conditions are u = 0 and T (x; y) =
1−y in the domain. The approximate velocity and temperature are calculated using biquadratic
shape functions with a grid of 32 × 8 elements, and the control algorithms for timestep se-
lection. We approach steady state using �xed and adapted timesteps. The resulting velocity
�eld, streamlines and temperature contours are shown in Figure 3. There are six recirculation
cells, and the results agree well with those obtained by Griebel et al. [32].
Table II shows the computational e�ort for this problem, measured by the total number of

successive approximations needed to calculate the velocity �eld using one of the approaches
divided by the number of successive approximations obtained using a �xed timestep size. For
each case, we calculate the number of time iterations, ntstep, the number of rejected steps,
nrejec, the total number of successive approximations, nsa, and the computational e�ort, ce�ort.
We start with a timestep size of 0.001, and we allow minimum and maximum time steps of
0.001 and 0.5, respectively. We set a tolerance of 0.01 for changes in nodal velocities and
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Figure 4. Timestep variation (top) and number of successive approximations (bottom) using Control 1,
Control 2 and W&H for the �ow in a container with aspect ratio 4:1.

temperature and 0.8 for changes in the kinetic energy. The reference rate of convergence for
Control 2 is 0.35 in this example.
As we can see in Table II, we obtain solutions with a reduced number of successive

approximation iterations using all the controllers. However, Control 2 gives the smallest com-
putational e�ort. With a �xed timestep size of 0.001 we need 731 iterations, and only 380
iterations when Control 2 is applied. Thus, the solution is obtained 1.9 times faster using
Control 2. In this example, Control 1 and W&H are equivalent in terms of computational
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Figure 5. Stream function contours for Ma = 1, Ma = 100, Ma = 1000 (top)
and Ma = −10, Ma = −100 (bottom).

e�ort. Figure 4 shows the timestep size against time and the number of successive approx-
imation iterations using Control 1, Control 2 and W&H. We see that Control 2 produces
bigger timesteps with a moderate increase in the number of successive iterations.
The second experiment involves buoyancy forces due to temperature gradients and thermo-

capillary forces caused by gradients in the surface tension. The �ow domain is a unit square
� = [0; 1] × [0; 1] with temperatures T = 1, T = 0 on the left and right walls, respectively,
adiabatic bottom wall and the top is a �at free surface. The initial conditions are u = 0 and
T (x; y) = 1 − x in the domain. The approximate steady-state velocities and temperature are
calculated using biquadratic elements in a uniform mesh with 16×16 elements. The Rayleigh
number is 103, the Prandtl number is Pr = 0:71, and the problem is solved at Ma = 1,
100 and 1000 (see Figure 5). At Ma = 1, the e�ect of the surface tension is small and the
streamlines are roughly circular. The solution is similar in structure to the classic buoyancy
driven �ow. At Ma = 100, the e�ect of the thermocapillary force at the free surface is more
pronounced. The streamlines are concentrated near the top boundary. At Ma = 1000, the
�ow is being strongly driven at the top boundary as seen in similar experiments presented by
Zebib et al. [31]. We consider also the case of a �uid where the surface tension acts in the
direction contrary to the thermal gradient. Similar situations arise for �uids in welding when
impurities are presented [33]. Figure 5 shows the stream function contours for Ma = −10 and
−100. The contours at Ma = −10 look similar to the solution at Ma = 1 due to the small
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Table III. Computational e�ort for the Rayleigh–Benard–Marangoni problem, Pr = 0:71,
Ra=1000 and Ma = 100 in a unit square.

Case ntstep nrejec nsa ce�ort

Fixed �t 118 0 272 1
Control 1 23 0 75 0.28
Control 2 13 0 57 0.21
W&H 25 0 80 0.29
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Figure 6. Non-dimensional kinetic energy plotted as a function of time calculated using �xed timestep
sizes of 0.001 (left) and using Control 1 (right).

thermocapillary e�ect. At Ma = −100, the surface tension e�ect is strong enough to reverse
the �ow on the top surface and two cells are formed.
To study the behaviour of the PID timestep selection algorithms, we select the case where

Ma = 100. We start with a minimum timestep size of 0.001, and we allow a maximum
timestep of 0.1. Solutions are obtained with tolerances of 0.2 and 0.1 for changes in nodal ve-
locities and temperature, respectively. The tolerance corresponding to the normalized changes
in kinetic energy is equal to one. The reference rate of convergence is equal to 0.2. As we
can see in Table III, we obtain the solutions with 57 successive approximation iterations using
Control 2. With a �xed timestep size of 0.001, we need 272 iterations. Thus, the solutions
are obtained 4.8 times faster using Control 2. Here, the choice of the timestep in Control
2 is dominated by the changes in the kinetic energy, with only three time iterations limited
by the changes in the convergence rate of the successive iterations. Figure 6 shows the time
evolution of the non-dimensional kinetic energy calculated using �xed timestep sizes of 0.001
and using Control 1.
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Figure 7. Timestep variation (top) and number of successive approximations (bottom) using Control 1,
Control 2 and W&H for Pr = 0:71, Ra=1000 and Ma = 100 in a unit square.
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Figure 8. Backward-facing step geometry with channel dimensions and boundary conditions.

Figure 7 shows the timestep variation and the number of successive approximations against
time using Control 1, Control 2 and W&H, respectively. We observe that Control 1 yields
a smoother sequence of time steps than W&H. However, these two approaches are equiva-
lent in terms of e�ciency. Control 2 calculates the solution with the smallest computational
e�ort.

4.3. Flow over a backward-facing step

The next experiment is for the backward-facing step problem, Figure 8. Results of physical
experiments are given in Reference [34], and numerical results obtained using di�erent �nite
element methods can be found, for example, in References [35, 36]. In Reference [32] the
problem is solved for di�erent Reynolds numbers using a �nite di�erence approach. Numerical
results using our penalty �nite element formulation are compared with those published by
Griebel et al. [32].
The problem involves viscous incompressible �ow over an isothermal two-dimensional

backward-facing step. Introducing the dimensionless variables x∗ = x=L, y∗ = y=L, t∗ = tu∞=L,
u∗ = u=u∞, v∗ = v=v∞, p∗ = (p− p∞)=�∞u2∞, with given scalar constants L, u∞, p∞, �∞,
and substituting these relations into (1) and (5), we obtain

@u
@t
+ u · ∇u − 1

Re
�u+∇p= 0 in �× I (46)

∇ · u=0 in �× I (47)

where we have dropped the superscript * for simplicity, and Re = �∞u∞L=� is the Reynolds
number. The initial velocity is u = 1:0, v = 0 in the upper half of the domain and u = v = 0
in the lower half. The step is the rectangle [0; 7:5] × [0; 0:75] and the in�ow velocity at the
left end has the constant value u = 1:0. The length L measured from the step to the end
of the calculation domain was selected to make the reattachment length independent of the
calculation domain, and the boundary condition at the out�ow section was taken as that of
a fully developed �ow. We solve the problem towards steady state for Reynolds numbers,
Re = 100 and 500.
The mesh is uniform for 06 x6 15 with (�x;�y) = (0:1875; 0:3). For the downstream

region 156 x6 30 and 06y6 1:5 the mesh is uniform across the channel but smoothly
graded in the �ow direction using

x(i) = 15 + 15 ∗
(
i − 1
nx − 1

)1:2
(48)
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Figure 9. Flow over a backward-facing step, streamlines at Re = 100 (top) and Re = 500 (bottom).

Figure 10. Characteristic lengths.

where nx = 30 is the number of elements in the downstream region. Elements near x = 30
are approximately twice the length of elements near x = 15. The steady-state solution is ap-
proached when ‖un−un−1‖¡ 10−7‖un‖. Results were obtained using the four-node continuous
bilinear velocity element with 1-point Gauss quadrature for the penalty term.
The basic character of the backward-facing step �ow at Re = 100 and 500 is well known

and is illustrated in the contour plots of Figure 9. Note that the �gures show only the part
of the computational domain 66 x6 20, since this contains all the essential features. The
streamlines shown in Figure 9 reveal that, for Re = 100, the �ow widens immediately behind
the step and an eddy of moderate size is evident behind the step. When viscosity is further
reduced (Re = 500), the main �ow is drawn downward, causing it to separate from the upper
boundary and leading to the formation of a second eddy. Note that the �rst eddy increases in
size with increasing Reynolds number (Re = 500).
The lengths X1 and X2 of the lower and upper eddies as well the horizontal distance X3

from the step to the upper eddy’s point of separation are values often used to characterize
the resulting �ow, see Figure 10. For Re = 100, we can observe in Figure 9 that the �ow
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Table IV. Computational e�ort for the backward-facing step �ow at Re = 100.

Re = 100 ntstep nrejec nsa ce�ort

Fixed �t 1094 0 3236 1
Control 1 46 0 320 0.10
Control 2 63 0 375 0.12
W&H 59 0 370 0.11
H211PI 42 0 298 0.09

separates at the step corner and forms a recirculation eddy with a reattachment point on the
lower wall approximately at x = 10:35 which corresponds to X1 = 2:85. This eddy increases
in size to x = 13:725 (X1 = 6:225) with increasing Reynolds number (Re = 500). A second
eddy forms on the upper wall, for Re = 500, beginning approximately at x = 12:15 and
terminating at x = 18:975 (X2 = 6:825 and X3 = 4:65). The results are in exact agreement
with the results reported by Griebel et al. [32].
Now we compare the computational e�ort to calculate the solution for Re = 100 in Table IV.

In this case, we also implemented the PI controller suggested by S�oderlind [19] known as
H211PI. The PI controller and �rst-order digital �lter has a negative proportional gain (kP¡ 0)
and is given by

�tn+1 =
(
1
en

)kI+kP (
1
en−1

)−kP
�tn (49)

with parameters kI = 1=3, kP = −1=6 and kD = 0. We start with a timestep size of 0.02,
and we allow minimum and maximum time steps of 0.02 and 1.0, respectively. The solu-
tions are obtained with a tolerance of 10−3 for changes in nodal velocities. The tolerance
corresponding to the normalized changes in kinetic energy is equal to 0.1, and the reference
rate of convergence is equal to 0.25. We allowed a maximum number of successive approx-
imations, nsamax, equal to 10. As we can see in Table IV, we obtain the solutions with a
reduced number of successive approximation iterations in all cases, and the controllers are
equivalent in terms of e�ciency. The choice of the timestep in Control 2 is dominated by the
convergence rate of the successive iterations, with only 15 timesteps limited by the changes
in the kinetic energy. Figure 11 shows the timestep variation and the number of successive
approximations against time using Control 1, Control 2, W&H and H211PI, respectively. Ob-
serve that Control 1 and H211PI controller have a similar behaviour and produce a very
smooth curve, while W&H yields a curve with several steps and Control 2 oscillates tremen-
dously. In our experiments, if the step size is bigger than the maximum time step allowed,
�tmax = 1, the number of successive approximations obtained is bigger than the maximum
number of successive approximations allowed, nsamax = 10. As a consequence, we can ob-
serve that at the end of the process, the timestep sizes are kept equal to the maximum size
allowed.
Next, we compare the computational e�ort to calculate the solution for Re=500 in Table V.

We start with a timestep size of 0.02, and we allow minimum and maximum time steps of
0.02 and 1.0, respectively. The solutions are obtained with a tolerance of 10−4 for changes
in nodal velocities. The tolerance corresponding to the normalized changes in kinetic energy
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Figure 11. Timestep variation (top) and number of successive approximations (bottom) using Control 1,
Control 2, W&H and H21PI for Re = 100.
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Table V. Computational e�ort for the backward-facing step �ow at Re = 500.

Re = 500 ntstep nrejec nsa ce�ort

Fixed �t 1628 0 5916 1
Control 1 283 0 1477 0.25
Control 2 183 0 1164 0.20
W&H 436 1 2189 0.37

is equal to 0.01, and the reference rate of convergence is equal to 0.2. As we can see in
Table V, Control 2 gives the smallest computational e�ort. With a �xed timestep size of
0.02 we need 5916 iterations, and only 1164 iterations when Control 2 is applied. Thus, the
solution is obtained 5 times faster using Control 2. The choice of the timestep in Control 2
is dominated by the convergence rate of the successive iterations, with 61 timesteps limited
by the changes in the kinetic energy. Figure 12 shows the timestep variation and the number
of successive approximations against time using Control 1, Control 2 and W&H, respectively.
We can observe that Control 1 yields a smoother sequence of timesteps than W&H, and
Control 2 oscillates wildly in this example. Since the size of the timestep increases at the
beginning of the process for Control 1 and W&H, the number of successive iterations to
obtain convergence of the non-linear process at each corresponding time also increases. The
oscillatory behaviour of Control 2 is responsible for the large variation of the number of
successive iterations calculated by this controller.

4.4. Flow past a circular cylinder

Flow past a circular cylinder has become a traditional benchmark problem used to test the
performance of various numerical methods [22, 37, 38]. The �ow around a stationary cylinder
presents many varied physical characteristics depending on Reynolds number. For a Reynolds
number based on the free stream velocity and on the cylinder diameter, experiments show that
a steady-state solution with symmetric attached recirculation regions occurs up to Reynolds
numbers equal to 40. However, for higher Reynolds numbers, the �ow shows a periodic
shedding of vortices, forming what is called a Von Karmann vortex street.
The geometry and boundary conditions considered are depicted in Figure 13. The diameter

of the cylinder is one, and free traction boundary conditions are imposed at the out�ow
section. The initial condition consists of a uniform velocity �eld with u = 1 everywhere,
except along the cylinder surface, where non-slip conditions have been assumed. Figure 14
shows the mesh, containing 4683 nodes and 4520 elements.
We solve the problem using our control algorithms to obtain the approximate solutions,

and compare our results with those obtained by Engelman and Jamnia [37]. In their work,
they used a variable-time-increment approach based on controlling the local time truncation
error at each step. The variable time increment settled down to a constant increment of 0.269
after 100 time steps. This results in about 22 timesteps for each vortex shedding cycle. In our
control algorithms, we allowed a minimum timestep size of 0.05 and a maximum timestep
size of 0.3. In this example, Control 1 uses the changes in nodal vertical velocity component
at point q.
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Figure 12. Timestep variation (top) and number of successive approximations (bottom) using Control 1,
Control 2 and W&H for Re = 500.

The variation of the vertical velocity component v at point q is shown in Figure 15 for the
two control approaches from t = 60 to t = 180. Note that after an initial transient, the vertical
velocity component v exhibits a periodic behaviour. Vortices begin to shed after approximately
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Figure 13. Domain speci�cation and boundary conditions for the cylinder in a cross�ow problem.

Figure 14. Finite element mesh with 4683 nodes and 4520 elements.
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Figure 15. Flow past a circular cylinder, vertical velocity component at point q using
Control 1 (left) and Control 2 (right).

100 timesteps and by timestep 150 the periodic vortex street is well established. The time
histories at location q for the vertical velocity component v is in accordance with the results
presented in Reference [37]. A typical velocity �eld vector plot for Re = 100 is given in
Figure 16.
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Figure 16. Vector plot at t = 160, Re = 100, obtained with �t = 0:05.

Table VI. Computational e�ort for the transient �ow past a circular cylinder, Ra = 100.

Case ntstep nrejec nsa ce�ort

Fixed �t 3600 0 18007 1
Control 1 844 126 7726 0.43
Control 2 623 0 4974 0.28

Of particular interest for the vortex-shedding problem are the period � for one shedding
cycle and the Strouhal number St = Df=v, where f = 1=� is the shedding frequency, D
is cylinder diameter, and v is the horizontal velocity component. These values are � = 5:4,
St = 0:185 for Control 1 and � = 5:8, St = 0:173 for Control 2. The numerical results ob-
tained using Control 2 are in exact agreement with the available data in Reference [37]. To
provide good temporal resolution, it is necessary to take at least 100 timesteps per period.
However, as we want to verify the performance of our control algorithms and compare with
numerical data available in the literature, we allowed a maximum time step size of 0.3, which
corresponds to 20 timesteps per shedding cycle. The Strouhal numbers above di�er from
experiments, Stexp = 0:167, in [22]. This may be a consequence of an inappropriate choice
of the spatial domain for the model problem and the small number of timesteps per vortex
shedding.
The computational e�ort to obtain the numerical solutions for the �ow past a circular

cylinder problem is shown in Table VI for t = [0; 180]. For Control 1, we decided to control
the �uid movement at point q at the out�ow boundary. We de�ne a tolerance of 3.0 for
changes in the vertical velocity component at this point. For Control 2, the successive changes
in kinetic energy are limited to 10.0, and the reference rate of convergence is equal to 0.3.
The controllers reduce the number of successive approximations necessary to calculate the
approximations, and Control 2 presents the best results.
The variation in timestep sizes is shown in Figure 17. Control 2 keeps the timestep size

close to the maximum value while Control 1 varies the timestep size between the minimum
and the maximum values. This is probably the justi�cation for the superior performance of
Control 2. After two initial timesteps, the number of successive approximations necessary for
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Figure 17. Timestep variation using Control 1 (left) and Control 2 (right) the transient �ow
past a circular cylinder problem, Ra = 100.

convergence of the non-linear process at each timestep size remains �xed at 8 for Control 2.
For Control 1, the number of successive approximations varies between 5 and 8.

4.5. Chemical reaction systems

The last class of problems studied here involves non-linear �ow and reactive transport. We
solve chemical reaction on a catalyst section with heat e�ects included [39, 40]. The process
is highly non-linear because of an exponential chemical reaction term arising from the temper-
ature dependence of the chemical reaction rate. As a consequence, we need to choose a very
small timestep to obtain convergence of the non-linear iterations in the transport equation.
Therefore, e�cient computation of the transport process in this example demands the use of
timestep selection algorithms.
When a domain or body made from a porous material impregnated with a catalytic substance

is submerged in a gas stream, the reactant A di�uses into the domain or body, reacts on the
catalytic surface, and the product B di�uses out. We assume that the process A → B is non-
isothermal and homogeneous and that the chemical change takes place in the entire volume
of the �uid. We also assume that the reaction mechanism is known [40, 41]. Consider a �rst-
order, irreversible reaction in a catalyst section [−L; L]× [−L; L] with reaction rate given by
R = −ac exp(−�E=R̂T ), where T is the absolute temperature, �E is the activation energy,
R̂ is the gas constant, and a is constant.
The dimensionless unsteady equations for the non-isothermal problem are

@T
@t
+ u · ∇T − 1

M1
∇2T =

�2c	
M1

exp
(
�
(
1− 1

T

))
(50)

@c
@t
+ u · ∇c − 1

M2
∇2c=−�

2c
M2

exp
(
�
(
1− 1

T

))
(51)

with initial conditions

T (x; y; 0) = c(x; y; 0) = 1 + sin(�x) sin(�y) (52)
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Figure 18. Evolution of temperature solution using bilinear elements on a 8× 8 grid
for the non-isothermal problem.

and boundary conditions

∇T · n=∇c · n = 0 on @�1

−∇T · n= Nu
2
(T − 1:1) on @�2 (53)

−∇c · n= Sh
2
(c − 1:0) on @�2 (54)
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Table VII. Results with Control 1 and W&H for the non-isothermal problem.

Case ntstep nrejec newt ce�ort

No control 400 0 1223 1
Control 1 104 1 423 0.34
W&H 112 1 433 0.35
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Figure 19. Timestep variation using Control 1 and W&H for the non-isothermal problem.

where @�2 is the right side of the dimensionless section � = [0; 1] × [0; 1], M1 = �cpL2=kts,
M2 = L2=Dts, Nu = hg2L=D is the Nusselt number, Sh = kg2L=D is the Sherwood number,
and � =

√
k0L2=D is the Thiele modulus. Here k0 = a exp(−�), � = �E=R̂T0 and 	 =

(−�HR)c0D=kT0, where −�HR is the heat of reaction.
We solve the unsteady problem with M1 = 176, M2 = 199, Nu = 55:3, Sh = 66:5, � = 20,

	 = 0:6 and � = 0:8. The known steady-state velocity �eld is given by the numerical solution
of a Stokes problem as in References [23, 24, 39] and input into the transport equations, which
are solved for concentration and temperature. The approximate solutions are calculated using
a grid with 8× 8 bilinear elements. Figure 18 shows the transient temperature distribution in
a catalyst section at times t = 0, 1, 5 and 10.
For a �xed time equal to 20, we compare approximate solutions using Control 1 and

W&H. We start with a timestep size of 0.05, and we allow minimum and maximum time
steps of 0.05 and 5, respectively. The solutions are obtained with a tolerance of 10−6 for
the changes in nodal temperature and concentration. Table VII shows the number of time
iterations, ntstep, the number of rejected steps, nrejec, the number of Newton iterations, newt,
and the computational e�ort, ce�ort, de�ned as newt divided by the number of Newton iterations
obtained using a �xed timestep size. We obtain the solution with 423 Newton iterations using
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Control 1, and we need 1223 Newton iterations with a �xed timestep of 0.05. Thus, we have
obtained this solution 2.89 times faster. W&H also produces good results. Figure 19 shows
the timestep size against time for Control 1 and W&H. Observe that Control 1 produces a
very smooth curve, while W&H yields a curve with several steps.

5. CONCLUSIONS

In this work we present two adaptive timestep selection schemes based on feedback control
theory to increase the robustness of our �nite element formulation of coupled incompressible
viscous �ow and transient heat and mass transfer with surface e�ects included. These PID con-
trol algorithms for timestep selection are based on controlling accuracy or the convergence rate
of the successive iterations. The schemes were tested for Rayleigh–Benard–Marangoni �ows,
�ow across a backward-facing step, unsteady �ow around a circular cylinder and chemical
reaction systems. The �nite element �ow formulation is based on a penalty Galerkin method
and the transport equations utilize a SUPG formulation. The algorithm employs an iteratively
decoupled scheme. In the application problems, we computed steady-state and transient so-
lutions using �xed timestep sizes and adaptive timestep sizes to test the e�ciency of our
controllers to solve the related class of coupled problems. We also compared our controllers
with a timestep selection algorithm from the literature.
One important issue is to assess solution accuracy when timestep control strategies are

applied to a speci�ed problem. In some of the examples, the controllers produced a smooth
variation of timesteps. The results suggest that a robust control algorithm is possible. Further,
computational cost of the selection procedures are negligible, since they involve only storing
a few extra vectors, computation of norms and evaluation of kinetic energy. We demon-
strate the e�ciency of our �rst control to solve non-linear �ow and reactive transport. In
this example, e�cient computation of the transport process demands the use of a timestep
selection algorithm, since the process is highly non-linear because of an exponential chem-
ical reaction term. The e�ciency of Control 2 was veri�ed in the numerical simulations of
the Rayleigh–Benard–Marangoni problems, �ow across a backward-facing step and unsteady
�ow around a cylinder. In all these problems Control 2 achieved the best performance. In
some of the test problems, the choice of the timestep in Control 2 was dominated by the
convergence rate of the successive iterations, and in other cases by the changes in the kinetic
energy.
In closing we remark that the strategies here may be also applied in conjunction with

adaptive mesh re�nement. Here adaptive mesh re�nement uses feedback control to mon-
itor the error due to the spatial discretization and subdivides the mesh accordingly. One
can then relate the error in the integration scheme speci�cally to the admitted error in
the spatial discretization scheme to equidistribute the error in space and time. Another ap-
proach would be to use space–time �nite elements in strips, with again the strip width
(timestep) controlled using a PID approach. A more open question would be the applica-
tion of PID ideas in an unstructured space–time formulation or in explicit–implicit hybrid
integration schemes. The most recent development in the �eld of control theory for timestep
selection is the use of digital �lters [19]. They o�er new possibilities which remain to be
explored.
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