

Parallel Finite Element Implementations using Different Data Structures

Leonardo Muniz de Lima Bruno Zanetti Melotti Lucia Catabriga Andréa Maria Pedrosa Valli

LCAD – Laboratório de Computação de Alto Desempenho - UFES

Outline

- Motivation
- Parallel Finite Element Algorithm
- Iterative Solution of the Linear System and Storage Schemes
- Numerical Experiments and Performance Results
- Conclusions and Future Work

Motivation

- Parallel implementation of the finite element method using block-arrowhead structure (Saad, 1995 and Jimack&Touheed, 2000)
- Krylov based methods (GMRES, Bi-CGSTAB, etc): matrix-vector product and inner product
- Storage Schemes: EBE, EDE and CSR
- Domain Decomposition, MPI and Cluster of Workstations

• Cluster Enterprise: 64 ATHLON's XP 1800, 256 RAM, 20 GB, 3COM TX Fast-Ethernet

Parallel FE Algorithm

Governing Equation

$$\frac{\partial u}{\partial t} + \beta \nabla u - \nabla \cdot k \nabla u = f$$

• SUPG Finite Element Formulation

$$\begin{split} &\int_{\Omega} (w^{h} \frac{\partial u^{h}}{\partial t} + w^{h} \beta \cdot \nabla u^{h} - \nabla w^{h} \cdot \kappa \nabla u^{h}) d\Omega + \\ &\sum_{e=1}^{n_{el}} \int_{\Omega_{e}} \tau_{SUPG} \beta^{h} \cdot \nabla w^{h} (\frac{\partial u^{h}}{\partial t} + \beta^{h} \cdot \nabla u^{h}) d\Omega = \\ &\int_{\Omega} w^{h} f d\Omega + \sum_{e=1}^{n_{el}} \int_{\Omega_{e}} \tau_{SUPG} \cdot \nabla w^{h} f d\Omega \end{split}$$

• Ma + Kv = F \downarrow $M^* \Delta a = R$

where:

*M** = *M* + α Δ*t K R* = *F* - (*Ma** + *Kv**)

Parallel FE Algorithm

• A partition of a non-uniform mesh into 4 pieces

 $A_i \rightarrow$ contributions from the coupling between interior nodes

- B_i and $C_i \rightarrow$ contributions from coupling between the interface nodes and the nodes interior to sub-domain *i*

 - $A_s = \sum_{i=1}^p A_{s(i)}$ \rightarrow contributions from coupling between the interface nodes

• Global Strategy: implementations of global matrix-vector products and global inner products are performed by A_i , B_i , C_i and A_s global blocks.

Global Storage	Dimensions	Average Cost
A_{i}	$n_I \ge n_I$	n_I^2
B_{i}	$n_I \ge n_B$	$n_I \cdot n_B$
C_{i}	$n_B \ge n_I$	$n_I \cdot n_B$
A_{s}	$n_B \ge n_B$	n_B^2

Intnodes	Ibnodes	Matrix-vector produc
$y_i = A_i x_i + B_i x_{s(i)}$	$y_{s(i)} = \sum_{i=1,p} C_i x_i + A_{s(i)} x_{s(i)}$	
Intnodes	Ibnodes	Inner product
$\sum_{i=1,p} u_i v_i$	$\sum_{i=1,p} u_{s(i)} v_{s(i)}$	

• Element by Element Strategy: implementations of matrix-vector products and inner products are performed by element level.

EBE Storage	By element	By node		
A_{i}	$6 ebe_{Ai}$	$12 n_I$		
B_{i}	$6 \ ebe_{Bi}$	12 n _B		
C_{i}	6 ebe _{ci}	$12 n_B$		
A_{s}	$6 ebe_{As}$	$12 n_{B}$		

Matrix-vector product

ebe _{Ai}	ebe _{Bi}	ebe _{ci}	ebe _{As(i)}
$y_i = A_i x_i$	$y_{s(i)} = B_i x_{s(i)}$	$y_i = \sum_{i=1,p} C_i x_i$	$y_{s(i)} = \sum_{i=1,p} A_{s(i)} x_{s(i)}$

• Edge by Edge Strategy: by disassembling the resulting FE matrix into their edge contributions, matrix-vector products are computed based on edge data structures.

EDE Storage	By edge	By node		
A_i	$2 ede_{Ai}$	6 n ₁		
B_i	$2 ede_{Bi}$	$4 n_B$		
	$2 ede_{Ci}$	$4 n_{B}$		
A_{s}	$2 ede_{As}$	$4 n_B$		

Matrix-vector product

ede _{Ai}	ede _{Bi}	ede _{ci}	ede _{As(i)}
$y_i = A_i x_i$	$y_{s(i)} = B_i x_{s(i)}$	$y_i = \sum_{i=1,p} C_i x_i$	$y_{s(i)} = \sum_{i=1,p} A_{s(i)} x_{s(i)}$

• Compressed Sparse Row Strategy: implementations of global matrix-vector products and global inner products are performed by global blocks A_i , B_i , C_i and A_s storiging only nonzeros positions.

standard	CSR storage	By node		
A_{i}	AA_i , JA_i , IA_i	$7n_I$, $7n_I$, $7n_I$		
B_i	BB_i , JB_i , IB_i	$2n_{_B}$, $2n_{_B}$, $2n_{_B}$		
C_{i}	CC_i , JC_i , IC_i	$2n_{_B}$, $2n_{_B}$, $2n_{_B}$		
A_{s}	$AA_{s(i)}$, $JA_{s(i)}$, $IA_{s(i)}$	$3n_{B}$, $3n_{B}$, $3n_{B}$		

$$A_{i} \qquad B_{i} \qquad C_{i} \qquad A_{s}$$

$$y_{i} = MV(AA_{i}, JA_{i}, IA_{i}, x_{i})$$

$$y_{s(i)} = MV(BB_{i}, JB_{i}, IB_{i}, x_{s(i)})$$

$$y_{i} = MV(CC_{i}, JC_{i}, IC_{i}, x_{i})$$

$$y_{s(i)} = MV(AA_{s(i)}, JA_{s(i)}, Ia_{s(i)}, x_{s(i)})$$

Complexity

• Complexity of the matrix-vector product and inner product

Operation	Parallel	Serial		
Matrix-vector CSR	$1/p (7N_I + 7N_B)$	$7N_I$		
Matrix-vector EBE	$1/p (18N_I + 42N_B)$	$18N_I$		
Matrix-vector EDE	$1/p (12N_I + 12N_B)$	$12N_I$		

Elevation of *u* with 4 processors and CSR storage

Performance Results

• Advection of a cosine hill in a rotating flow field

Uniform mesh – 263,169 nodes and 524,338 elements (512 x 512 cells)

									CDU T.
		1 proc	2 proc	4 proc	8 proc	16 proc	32 proc	64 proc	CPU Time
	EBE	5020	2897	1569	958	470	278	221	
	EDE	4922	2514	1308	758	388	228	195	
	CSR	3191	1729	890	495	265	176	143	
80	· · · ·				083	100		, ,	CRS
	Sneed	lun			EDE	x			
/0	prec	up			i de la				
60	-						X		
							have a		
50	-					60			<u> </u>
9 9 40	-		/						
9									
30	-	/					-		and the second se
~					and the second second				
20			and the second sec			20	-		Efficiency
10	- /	1				-			Efficiency
1	10	20 :	30 40	50	60 70	a	10	20 30	40 50 60 70 80
			Process acb	res				Pro	cessadores

Performance Results

• The rotating cone problem

$$u = 0$$

•
$$\beta = [-y,x]^{T}$$

• $\kappa_x = \kappa_y = 10^{-6}$
• $tol_{GMRES} = 10^{-6}$

Performance Results

• The rotating cone problem

Non uniform mesh - 259,620 nodes and 517,242 elements

Conclusion and Future Work

- In our parallel implementation, the approximate solutions with one processor and more than one processor are the same
- The CSR strategy presents the smallest CPU time for all number of processors
- The EDE strategy exhibits the best marks of parallel efficiency
- The EBE strategy has the simplest computational implementation
- Future works include parallel implementation of more complex system of equations and the extension to 3D problems

