
COMPARISON BETWEEN GMRES AND LCD ITERATIVE METHODS IN THE
FINITE ELEMENT AND FINITE DIFFERENCE SOLUTION OF

CONVECTION-DIFFUSION EQUATIONS

Abstract. In this work we evaluate the performance of the left conjugate direction method
(LCD) for the solution of non-symmetric systems of linear equations arising from the finite
element and the finite difference discretizations of the convection-diffusion equation. We solve
the steady convection-diffusion equation using the SUPG finite element formulation and the
nonlinear convection-diffusion by centered finite differences. In the latter case the resulting
nonlinear system of equations is solved by the inexact Newton method. We extend the original
LCD algorithm to accomodate restarts, using only one matrix-vector product per step. Our
discussion considers comparison studies between the computational efficiency of the GMRES
and LCD methods and some issues related to the choice of the forcing term in the inexact
Newton method.
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1. INTRODUCTION

Numerical strategies for flow problems in science and engineering often requires repeated
solution of nonlinear systems of equations involving millions of unknowns. After some form
of linearization, these systems are usually solved by generalizations of the conjugate gradient
method, GMRES or QMR and its variants (Saad, 1996). The success of this solution strategy
requires an efficient implementation of matrix-vector products and the choice of a suitable pre-
conditioner. Within the finite element method, implementations of global matrix-vector prod-
ucts are performed by element level products followed by global assembly, which forms the
core of element-by-element strategies as introduced in the finite element simulation of com-
pressible flow by Shakib et al. (1989). In the other hand, when centered finite differences are
used, we arrive to a matrix involving only 5 nonzero diagonals.

Yuan et al. (2003) introduced a new algorithm for solving nonsymmetric, nonsingular lin-
ear systems, the Left Conjugate Direction (LCD for short) method. This method is based on
the concept of left and right conjugate vectors for nonsymmetric and nonsingular matrices and
possesses several theoretical advantages: (i) it has a finite termination property; (ii) breakdown
for general matrices can be avoided and (iii) there is a connection between LCD and LU de-
composition. Initial experiments in Yuan et al. (2003) using a MATLAB implementation have
shown that LCD has attractive convergence rates when compared to Bi-CGSTAB, QMR and
GMRES algorithms.

Catabriga et al. (2004) evaluated the performance of LCD in the solution of nonsymmetric
systems of linear equations arising from the implicit semi-discrete SUPG finite element for-
mulation for advection-diffusion and inviscid compressible flows described in Catabriga and
Coutinho (2002). They extended the original algorithm to accommodate restarts and typical
finite element preconditioners very much in the same manner Shakib et al. (1989) did for GM-
RES. Comparisons with other Krylov space methods with or without preconditioning unfortu-
nately do not favour LCD. Although requiring usually less iterations, CPU times and memory
are larger than GMRES, Bi-CGSTAB and TFQMR. The main reason is the need to compute
two matrix-vector products per iteration, one with the coefficient matrix and the other with its
transposed matrix. Those are the dominant costs, although thanks to the element-by-element
data structure both are performed with the same efficiency.

Valentim et al. (2004) study the solution of nonlinear systems using an inexact Newton
method where the approximate solution of the resulting linear system at each iteration is ob-
tained by LCD or GMRES. A spatial discretization based on central finite difference formula-
tion of the heat equation and the convection-diffusion equation was considered. They showed
comparison studies between the computational efficiency of the two linear solvers and some
issues related to the choice of the forcing term in the inexact Newton method. The results show
that the LCD is faster than GMRES in most of the cases.

Recently, Dai and Yuan (2004) proposed a new technique to overcome the breakdown
problem appearing in the semi-conjugate direction method and a memory limitation scheme
similar to the limited-memory BFGS method to minimize memory requirements of the original
algorithm. In this work, we introduce restarts on the LCD algorithm given by Dai and Yuan
(2004) and compare it with the restarted LCD algorithm given by Catabriga et al. (2004) and
the restarted GMRES method for the solution of the linear and nonlinear problems discretized
by finite element and finite difference methods. For the nonlinear problems we study the choice
of the forcing term of the inexact Newton method.

The remainder of this work is organized as follows. In the next section we review the
stabilized finite element formulations for linear convection equation and the finite difference
discretization of the nonlinear convection equation. Section 3 makes a brief review of the inex-



act Newton method and shows the forcing term evaluation strategies. In section 4 we describe
the LCD algorithm, with particular emphasis on the introduction of restarts. Next section shows
several numerical experiments, where we compare the performance of LCD with GMRES in
the convection flow problems. Finally the paper ends with a summary of our main conclusions.

2. GOVERNING EQUATIONS AND DISCRETE FORMULATIONS

2.1 Linear Convection-diffusion equation

Let us consider the following time-dependent advection-diffusion equation in conservative
form defined in a domain Ω with boundary Γ:

β.∇u −∇.(κ∇u) = f. (1)

where u represents the quantity being transported (e.g. temperature, concentration), β is the
flow velocity and κ is the volumetric diffusivity given as,

κ =

[

κx 0
0 κy

]

. (2)

The essential and natural boundary conditions appended to equation (1) are:

u = g on Γg,

n.κ∇u = h on Γh, (3)

where g and h are given functions of x = (x, y) and t, n is the unit outward normal vector at
the boundary, Γg and Γh are the complementary subsets of Γ where boundary conditions are
prescribed.

Consider a finite element discretization of Ω into elements Ωe, e = 1, . . . , nel, where nel

is the number of elements. We consider piecewise linear basis spanning finite-dimensional
trial solution and test function spaces Sh and Vh. The stabilized finite element formulation of
equation (1) can then be written as follows. Find uh ∈ Sh such that ∀ wh ∈ Vh:

∫

Ω

(

whβh.∇uh −∇wh.κ∇uh
)

dΩ +

nel
∑

e=1

∫

Ωe

τSUPGβh.∇wh
(

βh.∇uh
)

dΩ =

∫

Ω

whfdΩ +

nel
∑

e=1

∫

Ωe

τSUPGβh.∇whfdΩ, (4)

where τSUPG is the SUPG stabilization parameter which may computed as suggested in Brooks
and Hughes (1982) and Franca et al. (1992). Let the standard finite element approximation be
given as follows:

uh(x) ∼=

nnodes
∑

i=1

Ni(x)ui, (5)

where nnodes is the number of the nodes, Ni is a shape function corresponding to node i and
ui are the nodal values of u. Then, substituting (5) into (4) we arrive at a system of ordinary
differential equations,

Kv = F , (6)

where v = {u1, u2, . . . , unnodes}
t is the vector of nodal values of u, K is called the “stiffness”

matrix and F is called the “load” vector.



2.2 Nonlinear Convection-diffusion equation

Let us consider the nonlinear convection-diffusion equation defined in a square domain
Ω = (0, lx) × (0, ly) with boundary Γ:

Cu∇.u −∇2u = f,

u = g on Γ, (7)

where u(x, y) represents the the quantity being transported, f(x, y), g(x, y) and constant C are
known. Consider a discretization of Ω into a uniform grid with n + 2 points in the x direction
and m + 2 points in the y direction, i.e,

xi = i × hx, i = 0, . . . , n + 1 yj = j × hy, j = 0, . . . ,m + 1 (8)

where hx = lx
n+1

and hy = ly
m+1

. Since the values at the boundaries are known, we have
N = n×m unknowns points in Ω. We consider the approximation of the first and second order
derivatives by the centered finite differences and we arrive at a nonlinear system of equations,

F (u1, u2, . . . , uN) =







f1(u1, u2, . . . , uN )
...

fN(u1, u2, . . . , uN)






=







0
...
0






(9)

where F : IRN → IRN function, u1, u2, . . . , uN are the unknowns and each fk depends only the
unknowns uk−n, uk−1, uk and uk+n for k = 1, 2, . . . , N .

3. THE INEXACT NEWTON METHOD

The nonlinear system (9) can be solved by Newton’s method. It is a iterative method for
nonlinear equations that approximate the function F at a given point u = (u1, u3, . . . , uN)t by
a linear function. The Jacobian matrix J represents the variation of the function F with respect
of u. Each iteration of the Newton’s method is given by

uk+1 = uk + sk, (10)

where sk is calculated by the solution of the linear system:

J(uk)sk = −F (uk). (11)

We may terminate the iteration when the relative nonlinear residual ‖F (uk)‖/‖F (u0)‖ is small.
However, if there is error in evaluation of F or the initial iterate is near a solution, a termination
decision based on the relative residual may be made too late in the iteration or it may not
terminate at all. Kelley (1995) suggested to stop the iteration if

‖F (uk)‖ ≤ τr‖F (u0)‖ + τa. (12)

where the relative error tolerance τr and absolute error tolerance τa are input to the algorithm.
When the iterative method is used to solve the system (11) the Newton’s method is known as
inexact Newton method (Pernice and Walker, 1998). In this method the Newton equation is
relaxed to an inexact Newton condition:

‖F (uk) + J(uk)sk‖ ≤ ηk‖F (uk)‖. (13)

for some ηk ∈ [0, 1). The parameter ηk is often called a forcing term, since its roles is to
force the residual (11) to be suitably small (Shadid et al., 1997). Inexact Newton methods are



especially well suited for large-scale problems and have been used very successfully in many
applications. In this work, we use two schemes for choosing the forcing term, one suggested by
Papadrakakis (1993) and other suggested by Kelley (1995). The calculation of the linear system
tolerances suggested by Papadrakakis (1993) is given by:

ηk = min{ηmax,

(

‖F (uk)‖

‖F (u0)‖

)r

}, (14)

where ηmax and 0 < r < 1 are known parameters. In this work we consider ηmax = 0.9999 and
r = 0.5 . On the other hand, Kelley (1995) describes that a measure of the degree to which the
nonlinear iteration approximates the solution is,

ηA
k = γ

‖F (uk)‖2

‖F (uk−1)‖2
, (15)

where γ ∈ (0, 1] is a parameter. If ηA
k uniformly bounded away from 1, then setting ηk = ηA

k

for k > 0 would guarantee superlinear convergence. In this way, the most information possible
would be extracted from the inner iteration. In order to specify the choice at the first iteration
and bound the sequence away from 1 we set

ηB
k =

{

ηmax, k = 0
min(ηmax, η

A
k ), k > 0

. (16)

The parameter ηmax is an upper limit on the sequence ηk, k = 1, 2, . . .. The initial values sug-
gested by Kelley (1995) are γ = 0.9 and ηmax = 0.9999. It may happen that ηB

k is small for one
or more iterations while uk is still far from the solution. In this case, Kelley (1995) suggested
that if ηk−1 is sufficiently large we do not let ηk decrease by much more than a factor of ηk−1,i.e,

ηC
k =







ηmax, k = 0
min(ηmax, η

A
k ), k > 0 e γη2

k−1 < 0.1
min(ηmax,max(ηA

k , γη2
k−1)) k > 0 e γη2

k−1 > 0.1
, (17)

where the constant 0.1 is somewhat arbitrary.

4. THE LEFT CONJUGATE DIRECTION ALGORITHM

The finite element discretization of the linear convection-diffusion equation and the finite
difference discretization of the nonlinear convection-diffusion equation described on the previ-
ous section, respectively, leads to a linear problem given in (6) and a nonlinear problem given
in (9). In any case we have to solve a system of linear equations of the form,

Ax = b, (18)

where A is a N × N nonsymmetric sparse matrix, x is the vector of nodal unknowns and b is
the out-of-balance force or residual vector.

The LCD method was recently introduced by Yuan et al. (2003). In this method vectors
p1, p2, . . . , pN ∈ IRN are called left conjugate gradient vectors of an N × N real nonsingular
matrix A if

pT
i Apj = 0 for i < j,

pT
i Apj 6= 0 for i = j. (19)



Suppose that the solution of the system (18) is x∗, and {p1, p2, . . . , pN} are left conjugate gra-
dient vectors of A. Then it follows that

x∗ = x0 +
N
∑

i=1

αipi, (20)

for every fixed vector x0. If r denotes the residual vector then

r = r0 −

N
∑

i=1

αiApi, (21)

where r0 is the initial residual vector. To determine αi, since p1, p2, . . . , pN are linearly inde-
pendent, then take r orthogonal to all pi, that is

pT
i r = 0 ∀i = 1, . . . , N. (22)

From (22) we obtain

αi =
pT

i ri−1

pT
i Api

. (23)

We also can write

ri = b − Axi = ri−1 − αiApi, (24)

xi = x0 +
i
∑

k=1

αkpk = xi−1 + αipi. (25)

From (23), (24) and (25) we can implement the left conjugate direction method if we know
the set of linearly independent vectors p1, p2, . . . , pN such that they are left conjugate gradient
vectors of A. There is still a recurrence relation among p1, p2, . . . , pk and rk to compute the left
conjugate gradient vector pk+1, given in Yuan et al. (2003):

q0 = rk,

βi = −
pT

i Aqi−1

pT
i Api

,

qi = qi−1 + βipi for i = 1, . . . , k,

pk+1 = qk. (26)

In this case we need to know the first vector p1 such that pT
1 Ap1 6= 0. Putting all together, Yuan

et al. (2003) described the complete left conjugate direction method as follows:

Algorithm 4.1
1. Input x0, A, p1 such that pT

1 Ap1 6= 0 and b;
2. r0 = b − Ax0;
3. For k = 1, . . . , N do

3.1 qk = AT pk,

αk =
pT

k
rk−1

qT
k

pk
,

xk = xk−1 + αkpk,
rk = rk−1 − αkApk;

3.2 pk+1 = rk,

βi = −
qT
i pk+1

qT
i pi

,

pk+1 = pk+1 + βipi for i = 1, . . . , k.



In Algorithm 4.1 we need to store N vectors pk and N vectors qk, furthermore we need two
matrix vector product per iteration to obtain the solution xN . Dai and Yuan (2004) proposed
news ideas for the LCD methods where one matrix vector product is need. The new algorithm
can be written as follows.

Algorithm 4.2
1. Input x1, A, p1 such that pT

1 Ap1 6= 0 and b;
2. r1 = b − Ax0;
3. q1 = Ap1;
4. For k = 1, . . . , N do

3.1 αk =
pT

k
rk

pT
k

qk
,

xk+1 = xk + αkpk,
rk+1 = rk − αkqk;

3.2 pk+1 = rk,
qk+1 = Apk+1,
For i = 1, . . . , k do

βi = −
pT

i qk+1

pT
i qi

,

pk+1 = pk+1 + βipi,
qk+1 = qk+1 + βiqi.

Catabriga et al. (2004) introduced an algorithm similar to Algorithm 4.1, but with restart as in
the GMRES algorithm implemented by Shakib et al. (1989). In this paper we consider the same
restart for the Algorithm 4.2 and the new algorithm is given below:

Algorithm 4.3 - LCD(k)
1. Given x1, A, b, lmax, k and εtol

2. r1 = b − Ax1

3. ε = εtol‖r‖
4. Choose p1 such that pT

1 Ap1 6= 0
5. For l = 1, . . . , lmax do

5.1ql = Apl

5.2. For i = 1, . . . , k do

5.2.1. αi =
pT

i ri

pT
i qi

xi+1 = xi + αipi

ri+1 = ri − αiqi

5.2.2. if ‖ri‖ < ε then exit loop and l, xi is the solution.
5.2.3. pi+1 = ri

qi+1 = Api+1

For j = 1, . . . , i do

βj = −
pT

j qi+1

pT
j qj

pi+1 = pi+1 + βjpj

qi+1 = qi+1 + βjqj

5.3. choose the new p1 such that pT
1 Ap1 6= 0

where lmax is the maximum number of iterations, εtol is the user supplied tolerance and k is num-
ber of left conjugate directions considered in the restart. We need to store 2k N -dimensional
vectors {p1, . . . , pk} and {q1, . . . , qk}. For each iteration l we need only one matrix-vector prod-
ucts as in the GMRES algorithm. To start LCD(k), we have to choose p1 and a new pl

1 for each



l iteration. Catabriga et al. (2004) reported numerical experiments about this choice. The best
results were p1 = r1 and pl

1 = pl−1

k+1
and in this work we adopt this choice.

5. NUMERICAL RESULTS

In this section we evaluate the LCD algorithm implemented by Yuan et al. (2003) and Dai
and Yuan (2004). All results were implemented using restarts. The LCD algorithm given by
Yuan et al. (2003) is denoted by LCDA and it given by Dai and Yuan (2004) is denoted by
LCDB.

5.1 Pure convection problem

We consider a pure convection of a scalar on a square domain, where convection is skew
to the mesh and the diffusivity is negligible. Figure 1 shows the problem set up. The domain is
the unit square Ω = [0, 1] × [0, 1] and the boundary conditions are

u = 0.0 along y = 0.0,

u = 0.0 along x = 0.0 and 0.0 < y < 0.25,

u = 1.0 along x = 0.0 and 0.25 < y < 1.0. (27)

The diffusivity is κx = κy = 1 × 10−7, the flow direction is 45◦ from the x-axis, ‖β‖ = 1

45ο

u = 0.0

y

x

β
u = 1.0

u = 0.0

0.75

1.0

0.25

Figure 1: Problem set up - Pure convection of a scalar on a square domain.

and the stabilization parameter is computed as in Brooks and Hughes (1982). The domain is
discretized by grids of triangular elements with 64 × 64, 128 × 128, 256 × 256 and 512 × 512
cells. Each cell is subdivided into four triangles.

Figures 2(a), 2(b) and 2(c) show, respectively, the solution with the LCD(5)A, LCD(5)B
and the GMRES(5) solution for the mesh with 64× 64 cells. We observed that the solutions are
virtually identical. The solution for other numbers of left conjugate gradient vectors is the same.
Figure 3 compares the relative residual evolution for LCD(5)A, LCD(5)B and GMRES(5) for
the four meshes defined before. Iterations are halted when the relative residual reaches 10−10.
Although relative residual in LCD(5)A and LCD(5)B decrease more slowly than in GMRES(5)
in the beginning of the process, the total number of LCD(5)A and LCD(5)B iterations are the
same and it is smaller than the number of GMRES(5) iterations. A similar behavior is observed
for all meshes. Figure 4 shows the performance of LCDA, LCDB and GMRES methods for
k=1, 5, 10, 20, 40 and without restart considering the mesh of 128 × 128 cells. Results for the
other meshes are similar. Table 1 shows the number of iterations (Niter) and CPU times for the
GMRES and LCD methods using a relative residual tolerance of 10−10. In this Table Neq is



(a) LCD(5)A solution. (b) LCD(5)B solution.

(c) GMRES(5) solution.

Figure 2: Mesh with 64 × 64 cells - Pure convection of a scalar on a square domain.
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(b) Mesh 128 × 128.
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(c) Mesh 256 × 256.
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(d) Mesh 512 × 512.

Figure 3: Relative residual evolution for LCD(5) and GMRES(5) - Pure convection of a scalar on a
square domain.



the number of the unknowns. We can observe that the LCDA and LCDB method converge with
less iterations than GMRES method in most of the cases, however they are slower than GMRES
method in the most of cases.
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Figure 4: Relative residual evolution for LCD(k)A, LCD(k)B and GMRES(k) - mesh of 128× 128 cells
- Pure convection of a scalar on a square domain.

5.2 Nonlinear convection-diffusion problem

We consider the equation (7) with homogeneous Dirichlet boundary conditions on the unit
square (0, 1) × (0, 1). Function f has been constructed so that the exact solution was the dis-
cretization of u(x, y) = 10xy(1 − x)(1 − y)ex4.5

. We set C = 20, u0 = 0, τa = 10−9 and
τr = 10−12. In this problem, we use the global Gauss-Seidel preconditioner for all cases. Fig-
ures 5(a), 5(b) and 5(c) show, respectively, the solution with the LCD(10)A, LCD(10)B and
GMRES(10) solutions when we consider the domain discretized on a 64 × 64 cells. We ob-
served that the solutions are virtually identical. The solution for other numbers of left conjugate
gradient vectors is the same. From now on, we consider the domain discretized on a 512 × 512
cells. Figures 6(a), 6(b) and 6(c) show, respectively, plots of the nonlinear residual norm ob-
tained using LCD(10)A, LCD(10)B and GMRES(10) considering a fixed value for the forcing
term and the forcing term computed by Papadrakakis and Kelley criteria. Figures 7(a), 7(b)
and 7(c) show, respectively, the forcing behavior using LCD(10)A, LCD(10)B and GMRES(10)
computed by Paradrakakis and Kelley criteria. Figures 8(a), 8(b) and 8(c), respectively, show
the number of linear iteration for each nonlinear iteration using LCD(10)A, LCD(10)B and GM-
RES(10) considering a fixed value for the forcing term and the forcing term computed by Pa-



Table 1: Computational costs - Pure convection of a scalar on a square domain

1 vector
Mesh GMRES(1) LCD(1)A LCD(1)B

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 714 7 654 7 654 7

128 × 128 32768 1123 55 1042 53 1041 54
256 × 256 131072 1918 385 1784 364 1784 371

5 Vectors
Mesh GMRES(5) LCD(5)A LCD(5)B

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 471 3 328 3 328 2

128 × 128 32768 888 31 618 33 620 25
256 × 256 131072 1661 238 1163 244 1182 186
512 × 512 524288 3104 1726 2384 2086 2378 1533

10 Vectors
Mesh GMRES(10) LCD(10)A LCD(10)B

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 399 2 356 4 356 2

128 × 128 32768 751 28 608 35 611 28
256 × 256 131072 1479 220 1091 258 1105 204

20 Vectors
Mesh GMRES(20) LCD(20)A LCD(20)A

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 448 3 401 5 401 3

128 × 128 32768 756 34 655 44 655 39
256 × 256 131072 1383 255 1123 307 1150 285

40 Vectors
Mesh GMRES(40) LCD(40)A LCD(40)B

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 595 5 478 7 478 6

128 × 128 32768 942 60 829 71 829 75
256 × 256 131072 1552 405 1265 439 1269 467

without restart
Mesh GMRES LCDA LCDB

Cells Neq Niter Time(sec) Niter Time(sec) Niter Time(sec)
64 × 64 8192 261 6 262 11 262 13

128 × 128 32768 533 320 534 307 538 481
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(a) LCD(10)A solution.
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(b) LCD(10)B solution.
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(c) GMRES(10) solution.

Figure 5: The solution of the convection-diffusion problem - Mesh with 64 × 64 cells
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(a) LCD(10)A solution.
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(b) LCD(10)B solution.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  5  10  15  20  25

Fixed
Papadrakakis

Kelley

(c) GMRES(10) solution.

Figure 6: Convergence histories using different choices of the forcing terms (Nonlinear iterations ×
‖F (uk)‖) - Mesh with 512 × 512 cells - Nonlinear convection-diffusion problem.
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Figure 7: Forcing term behavior using different choices of the forcing terms (Nonlinear iterations ×
forcing term) - Mesh with 512 × 512 cells - Nonlinear convection-diffusion problem.



padrakakis and Kelley criteria. We can observe that the fixed forcing term needs less nonlinear
iterations for convergence than the other two criteria, but it needs more linear iterations for each
nonlinear iteration. Table 2 shows the number of linear iterations (Niter) and CPU times for
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Figure 8: Number of linear iteration behaviour using different choices of the forcing terms - Mesh with
512 × 512 cells - Nonlinear convection-diffusion problem.

the LCDA, LCDB and GMRES methods using three types of forcing term (fixed, Papadrakakis
and Kelley). We can observe that the inexact methods decrease the number of linear iterations
when compared with the fixed tolerance criterion. The Papadrakakis criterion needs less inner
linear iterations for all cases. The LCDA algorithm is faster than LCDB for all number of restart
vectors tested. Moreover, LCD tends to be slower than GMRES as the number of basis vectors
increase.

6. CONCLUSIONS

In this work we compared the performance of LCD and GMRES algorithm in the finite
element and finite difference solution, respectively, for a linear convection-diffusion and a non-
linear convection-diffusion problems. The nonlinear problem solution have been carried out by
the inexact Newton method. We studied two choices for the forcing term of the inexact Newton
method. We implemented two different algorithms for the LCD method. One considers two
matrix-vector products per iteration (LCDA) and the other considers only one matrix-vector
product, but needs to compute more inner products, if we consider k vectors to restart (LCDB).

For the finite element experiments we can observe that the LCDB algorithm is faster than
GMRES and LCDA only when we consider small number of basis vectors. For the finite differ-
ence experiments, the LCDA is faster than LCDB for all cases. LCDA using 10 vectors to restart
and Papadrakakis criterion gave the smallest CPU time. However, GMRES is faster than LCD
in the most cases. On the criteria to choose the forcing term for the inexact Newton method, we
conclude that the Papadrakakis criterion was the best option.
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Table 2: Computational costs - Mesh with 512 × 512 cells - Nonlinear convection-diffusion problem

5 vectors
ηk GMRES(5) LCD(5)A LCD(5)B

Niter Time(min) Niter Time(min) Niter Time(min)
Fixed (10−5) 35,834 103.18 8,835 38.73 8,833 38.36
Papadrakakis 7,063 21.41 4,214 18.35 4,214 18.55
Kelley 6,214 18.63 12,614 54.23 12,614 54,73

10 vectors
ηk GMRES(10) LCD(10)A LCD(10)B

Niter Time(min) Niter Time(min) Niter Time(min)
Fixed (10−5) 17,903 66.00 4,907 25.36 4,907 28.75
Papadrakakis 3,144 11.41 1,754 9.08 1,754 10.53
Kelley 3,444 12.76 3,243 16.83 3,243 17.93

20 vectors
ηk GMRES(20) LCD(20)A LCD(20)B

Niter Time(min) Niter Time(min) Niter Time(min)
Fixed (10−5) 9,098 47.15 12,809 87.71 12,809 116.33
Papadrakakis 1,721 9.10 1,414 9.93 1,414 12.11
Kelley 2,450 13.10 2,132 14.68 2,132 19.36

40 vetores
ηk GMRES(40) LCD(40)A LCD(40)B

Niter Time(min) Niter Time(min) Niter Time(min)
Fixed (10−5) 4,495 39.45 2,962 29.96 2,962 43.20
Papadrakakis 1,319 10.45 1,481 14.03 1,481 22.06
Kelley 1,650 18.83 1,678 22.10 1,678 25.70
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