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Abstract. This work investigates the use of partitioned analysis of coupled systems involving
fluid-thermal interaction. Viscous flow is modeled by the incompressible 2D Navier-Stokes
equations, with a forcing term that may depend on temperature, coupled to the transport of
heat by convection and conduction. Of particular interesse in the present work is 2-D Rayleigh-
Benard flows. The finite element flow formulation is based on a penalty Galerkin method and
the transport equation utilizes a SUPG method. In our solution approach each equation of
the coupled system is separately advanced in time. Interaction effects are accounted for by
transmission and synchronization of coupled state variables, and we focus our attention on
alternative algorithms and implementation possibilities using subcycling devices. Numerical
results demontrate the efficiency of the subcycling procedure in reduzing the total computational
effort to obtain the numerical solution.
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1. INTRODUCTION

When a thin horizontal fluid layer between two horizontal plates is heated from below, a
temperature gradient is generated across the plates. At a critical Rayleigh number, circular con-
vection cells set in - the heated fluid near the bottom begins to rise while the cooler fluid near the
top descends. Buoyancy is a dominant component in driving this type of flow termed Rayleigh-
Benard problem. To develop effective algorithms capable of high resolution transient flow and
heat transfer computations, we need improved techniques. For example, domain decomposi-
tion strategies and parallel gradient-type iterative solution schemes have been developed and
implemented with success for 3-D Rayleigh-Benard flow calculations by Carey et al. (1997).
Also, with the evolution of the methodology and its extension to more complex classes of cou-
pled problems, there has been an increasing need for other enhancements such as adaptive grid
refinement and coarsening. Several adaptive timestepping selection strategies have been stud-
ied as a means to provide stable accurate transient (and steady state) solutions more efficiently
(Winget and Hughes (1985); Coutinho and Alves (1996); Valli et al. (1998, 1999a,b)). The
focus in our work is to investigate alternative algorithms and implementation possibilities us-
ing subcycling devices (Fellipa et al. (2001)) to demonstrate the efficiency of the partitioning
procedure in reducing the total computational effort to obtain the numerical solution.

In the numerical integration of ordinary differential equations by implicit timestepping
methods, a system of nonlinear equations has to be solved at every step. In general, it is com-
mon to use fixed-point iterations or modified Newton iterations. In the present work, we use
fixed-point iterations given by successive approximations. The convergence rate of the iterative
methods depends on the stepsize (Gustafsson and Soderlind (1997)), and the computational effi-
ciency of the method can be measured by the total number of successive iterations to obtain the
final solution. To improve efficiency, diminishing computational costs, it is necessary to control
the convergence rate of the fixed point iterations. We consider the transient flow of a viscous
incompressible fluid as described by the Navier-Stokes equations coupled to the heat transfer
equation. The present algorithm employs a decoupled scheme, where the momentum and con-
tinuity equations are solved first, in each timestep, lagging the temperature in the forcing term.
Then, the heat transfer equation is solved with the computed velocities as input. The finite ele-
ment flow formulation is based on a penalty Galerkin method to enforce the incompressibility
constraint, and the heat equation utilizes a SUPG method.

In the next section we briefly state the class of coupled viscous flow and heat transfer prob-
lems under investigation, the finite element formulation and the solution approach. Then, we
describe two timestep control algorithms based on controlling either accuracy or the conver-
gence rate of the successive iterations and the subcycling approach. Next, results of the classic
Rayleigh-Benard problem are compared for fixed timestep, our control approaches and the par-
titioned procedure. Finally, some conclusions are given.

2. COUPLED VISCOUS FLOW AND TRANSPORT

Natural convection of an incompressible fluid can be driven by buoyancy forces due to
temperature gradients. When a thin horizontal layer fluid between two horizontal plates is
heated from below, a temperature gradient is generated across the plates. At critical Rayleigh
number, circular convection cells set in - the heated fluid near the bottom begins to rise while
the cooler fluid near to the top descends. Buoyancy is a dominant component in driving this
type of flow termed Rayleigh-Benard problem. The dimensionless equations describing the



Rayleigh-Benard flows are

∂u

∂t
+ u · ∇u −∇2u + ∇p =

Ra

Pr
Tg in Ω × I (1)

∇ · u = 0 in Ω × I (2)
∂T

∂t
+ u · ∇T −

1

Pr
∇2T = 0 in Ω × I (3)

where Ω is the flow domain, I = [0, t̄] is the time interval, u = (u, v) is the velocity vector, p

is the pressure, T is the temperature, Ra = βT ∆TgL3

να
is the Rayleigh number, βT is the thermal

coefficient, ∆T is the temperature difference for flows with heated or cooled walls, g is the
gravity vector, L is a characteristic length scale of the flow, α = k

ρcp
is the thermal diffusivity

and Pr = ν
α

is the Prandtl number. Boundary conditions and initial conditions for temperature
and velocities complete the mathematical statement of the problem. The finite element flow
formulation is based on a penalty Galerkin method and the transport equation utilizes a SUPG
formulation.

In the present work, we are only interested in the velocity solution and the associated cou-
pled transport processes. Hence, for simplicity and convenience we use a penalty method to
enforce the incompressibility constraint (Carey and Oden (1986); Carey and Krishnan (1984)).
The penalty approach for the Navier-Stokes problem is designed to determine an approximate
formulation involving only velocities and not pressures. Hence the size of the problem is re-
duced accordingly. Introducing a finite element discretization and basis on a uniform discretiza-
tion Ωh of quadrilateral elements, the semidiscrete projection of the penalized variational for-
mulation of the Navier-Stokes equations (1), (2) leads to an non-linear semidiscrete system of
ordinary differential equations, which is solved by successive approximations in the present
study. We integrate the ODE system implicitly using a Crank-Nicolson scheme, and the result-
ing linear systems are solved using a direct frontal solver. Similarly, introducing a stabilized
SUPG scheme for the temperature T , the resulting semi-discrete ODE system is also integrated
implicitly using the Crank-Nicolson scheme, and here we also apply a frontal solver to find
solutions of the resulting linear systems. More details of the finite element formulations can be
found in Valli et al. (2002, 2001, 1999a, 1998).

Within each timestep we must solve a coupled nonlinear algebraic system associated with
the discretized flow and transport equations. The main coupling between the flow and transport
subsystems enters weakly through the dependence of the source term in the flow equations on
the temperature and and the convective velocity in the temperature transport. Since the class of
applications here does not involve high speed flow a corresponding iterative block decoupling of
the subsystems within each timestep will be effective. That is, we can decouple the respective
discretized flow and transport systems by a successive approximation scheme in which the
source term is “lagged” in the flow equation and the computed velocity iterate is then used in
the discretized transport subsystems. This successive approximation iteration may be repeated
until convergence. In our experiments we consider one single step within each timestep.

In the application problems, we computed steady-state solutions using fixed timestep sizes
and adaptive timestep sizes to test the efficiency of our PID controllers and the subcycling device
to solve the related class of coupled problems. In the next section, we present briefly the PID
controllers used and the subcycling device of partitioned analysis time stepping implemented.



3. TIME STEPPING STRATEGIES

3.1 Control Algorithms

Most timestep schemes are based on controlling accuracy as determined by truncation error
estimates (e.g. Prediction-Modification-Correction). The objective of timestep selection is to
minimize the computational effort to construct an approximate solution of a given problem in
accordance with a desired accuracy. Gustafsson et al. (1988); Gustafsson (1991, 1994) showed
that stepsize selection can be viewed as an automatic control problem with a PID controller
defined as

4tn+1 = (
en−1

en

)kP (
tol

en

)kI (
en−1

2

enen−2

)kD 4tn, (4)

where tol is some input tolerance, en is the measure of the change of the quantities of interest in
time tn, and kP , kI and kD are the PID parameters. Gustafsson and Soderlind (1997) establish a
model for controlling the convergence rate of the iterative method that relates the convergence
rate to the stepsize. Assuming that the stepsize is limited by the convergence rate of nonlinear
iterations, the new stepsize should be chosen as

∆tn+1 =
αref

α
∆tn (5)

where αref is a reference rate of convergence and α is an estimated rate of convergence. Now
the controller tries to keep the estimated convergence rate as close as possible to a reference
value, αref . In general, any value 0.2 < αref < 0.4 would be acceptable, and αref ≈ 0.2
gives performance near to optimal (Gustafsson and Soderlind (1997)). The estimated rate of
convergence is calculated using three consecutive iterates for the velocities, un−2, un−1, and un,
as follows

α = max αn = max
n

‖un − un−1‖

‖un−1 − un−2‖
(6)

It is necessary to coordinate the convergence control algorithm (5) with the stepsize control
strategy (4) so that efficiency is maintained. Based on equations (5) and (6), we propose two
timestep control algorithms.

The first control uses changes in velocities and temperature, and can be motivated on the
need to control accuracy with respect to time in the specific solution variables. The Control 1
is defined by
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with
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and ∆t represents the new timestep size, 4tprev is the timestep size at the previous step, and
tolu, tolT and tolc are user supplied tolerances corresponding to the normalized changes in
velocities and temperature vectors, respectively.

In the second control, the size of the timestep is limited by the changes in the kinetic energy
or by the rate of convergence of the successive approximations. The Control 2 is given by

∆t = min(∆tα, ∆tr), (11)
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Here, tolK is a given tolerance corresponding to the normalized changes in kinetic energy, and
u∗ and v∗ are the nondimensional velocity components. The motivation in choosing this control
for the kinetic energy is related to an interest in the qualitative behavior of the solution as
different cell structures, steady-state solutions, periodic solutions or aperiodic solutions arise.

The algorithm for controlling the timestep has two main parts. First, a step size is assumed,
and using the newly computed solution, an a posteriori estimate is made of the error in the
step. Second, this error measure is used to accept or reject the solution and modify the timestep
accordingly. If the error is unacceptable, the new solution is discarded and we restart the time
integration in the previous step with a a scaled timestep size based on the magnitude of the error
relative to the tolerance. In our algorithm, if the sequence of iterates of the nonlinear system
is converging at a slow rate, the timestep is also rejected. That is, if the number of successive
approximations nsa is greater than the maximum number of successive approximations allowed
nsamax, the stepsize is rejected. If the error is acceptable, a new timestep is calculated using (7)
or (11) and we proceed with the time integration.

To prevent an excessive growth or reduction of the step size 4t, we supply timestep limits
4tmin and 4tmax which limit the control signal (Franklin et al. (1994)). We performed para-
metric studies for different values of PID parameters (kP , kI , kD) for test problems in Valli
et al. (2002, 1998), to verify whether the PID controller is robust or not. Although feedback
control theory provides techniques to choose PID parameters, robustness is required when a
general method is used for a wide range of different situations. The controller was found to be
very robust, allowing us to fix the values of the PID parameters, kP = 0.075, kI = 0.175 and
kD = 0.01, for all the numerical experiments performed subsequently.

3.2 Partitioning in time

The coupled system investigated in this work involves fluid-thermal interaction, and the
fields are discretized in space and time. Because we are simulating different physical subsys-
tems, it is possible that the response to each process occurs at different time scales. For example,
in aircraft aeroelasticity, structural motions are typically dominated by low frequency vibration
modes. On the other hand, the fluid response must be captured in a smaller time scale because of
nonstationary effects involving shocks, vortices and turbulence (Fellipa et al. (2001)). Thus the



use of a smaller time scale for the fluid is natural. This partitioning device is called subcycling
and it will be used here to simulate the fluid-thermal interaction.

In our original algorithm, we calculate a sequential staggered solution of the problem: first
we solve the momentum and continuity equations, lagging the temperature in the forcing term;
then, the transport equation is solved with the computed velocities as input. This zigzagged pic-
ture of interfield data transfers between the two programs is depicted in Figure 1. We can have
fixed or adaptive timestep given by the PID controllers to advance in time. In this approach, the
velocities and temperature are updated at each timestep. Now, the idea is modify this algorithm
to include the subcycling device and evaluate the cost and accuracy of the new solutions.

Transport Equation

Navier−Stokes Equations

Figure 1: Sequential staggered solution of the problem.

In the partitioned solution approach, the systems are spatially decomposed into partitions,
and the solution is separately advanced in time over each partition. In the subcycling technique,
different timestep intervals will be used to solve the two problems, as sketched in Figure 2.
Now, we solve the momentum and continuity equations lagging the temperature in the forcing
term; then, the transport equation is solved for a fixed number of steps with the last computed
velocities as input. After one cycle, the velocities are computed with the last updated temper-
ature. At the beginning of the process, the velocities and temperature are updated at each step
for a small number of fixed step sizes.

Navier−Stokes Equations

Transport Equation

SubcyclingInitial Steps Subcycling

Figure 2: Subcycling device on the transport equation.

We define the ratio of thermal to fluid timestep as being np : 1, and we use a smaller time
scale for the heat calculations. After np temperature calculations on the transport equation,
the last updated temperature enters in the buoyancy term of the momentum equation and the
new velocities are calculated. Then, we calculated the new temperature with the last update
velocities and an new cycle begins. Interaction effects are accounted for by transmission and
synchronization of coupled state variables. In the next section, two problems are solved to
compared the efficiency of the algorithms proposed here.

4. RESULTS

Our first example involves natural convection in a unit square Ω = [0, 1] × [0, 1] with
temperatures T = 1, T = 0 on the left and right walls respectively, adiabatic top and bottom
wall (no free surface), with Pr = 0.71 and different Rayleigh numbers, Ra, of 103, 104 and
105. The computed Nusselt number at the left wall (Nu0 =

∫ 1

0
qdy, where q is the heat flux),

and the stream function at the midpoint (ψmid) are compared to the results from Davis (1968,
1983a,b). The stream function contours and temperature contours for Ra = 103, Ra = 104 and



Ra = 105 are shown in Figure 3 and Figure 4, respectively. The contour values are the same as
in Davis (1983b) and show excellent agreement with his results.

Figure 3: Stream functions contours for Ra = 10
3 (equally spaced (0.1174) between -1.0566 and 0), Ra

= 10
4 (equally spaced (0.5071) between -4.5639 and 0) and Ra = 10

5 (equally spaced (0.9607) between
-9.507 and 0).

Figure 4: Temperature contours for Ra = 10
3, Ra = 10

4 and Ra = 10
5 (equally spaced (0.1) between

1 and 0).

The approximate velocities and temperature are calculated using 9-node isoparametric
quadrilaterals elements in a uniform mesh of 16 × 16 elements at Ra = 103, 104 and 32 × 32
elements at Ra = 105. The initial timestep size in all cases is chosen to allow convergence of
the successive iterations at the beginning of the process. That is, if we start with a timestep size
greater than the initial timesteps chosen here, the successive approximation iterations failed to
converge after a few time steps. We start with a timestep size of 0.01 at Ra = 103, 104 and 0.001
at Ra = 105. We assume that the steady-state occurs when the kinetic energy at two different
time steps reaches a relative difference less than a given tolerance, tolst. We establish that the
steady-state occurs when tolst = 10−4 at Ra = 103 and tolst = 10−3 at Ra = 104, 105. The
results are shown in Table 1, and the agreement for all cases are good with percentage errors no
more than 1.5% in all quantities as shown in Table 2. Observe that the differences increase as
Ra increases due to the growing difficulty of the problem.

Now we compare the computational effort to calculate the solution using fixed timesteps,
the PID controllers, and the subcycling. The computational effort is measured by the total
number of successive approximations needed to calculate the velocity field using one of the
approaches divided by the number of successive approximations obtained using a fixed timestep
size. For each case, we calculate the total number of successive approximations, nsa, and the
computational effort, ceffort. The results are shown in Table 3.

For Ra = 103, we start with a minimum timestep size of 0.01, and we allow a maximum
timestep size of 0.1. We define a tolerance of 0.1 for changes in nodal velocities and tempera-
ture. The tolerance corresponding to the normalized changes in kinetic energy is equal to one.



Table 1: Comparison of specific results to benchmark case

Fixed ∆t Control 1 Control 2 Subycling Benchmark
Ra Nu0 ψmid Nu0 ψmid Nu0 ψmid Nu0 ψmid Nu0 ψmid

103 1.118 1.175 1.117 1.173 1.117 1.174 1.117 1.174 1.117 1.174
104 2.255 5.067 2.236 5.077 2.246 5.064 2.266 5.096 2.238 5.071
105 4.550 9.134 4.518 9.036 4.553 9.120 4.552 9.114 4.509 9.111

Table 2: Percentage errors

Fixed ∆t Control 1 Control 2 Subycling
Ra Nu0 ψmid Nu0 ψmid Nu0 ψmid Nu0 ψmid

103 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0
104 0.8 0.1 0.1 0.1 0.4 0.1 1.3 0.5
105 0.9 0.3 0.2 0.8 1.0 0.1 0.9 0.0

Table 3: Computational effort for the natural convection problem.

Fixed ∆t Control 1 Control 2 Subycling
Ra nsa ceffort nsa ceffort nsa ceffort nsa ceffort

103 58 1.0 32 0.55 24 0.41 25 0.43
104 56 1.0 47 0.84 45 0.80 29 0.52
105 363 1.0 260 0.72 189 0.52 134 0.37

The reference rate of convergence is equal to 0.2. We can observe in Table 3 that the number of
successive approximations necessary to calculate the approximate solutions is reduced for all
approaches. However, Control 2 presents the best results. We obtain the solution with 24 suc-
cessive iterations using Control 2, and we need 58 iterations with the fixed timestep size. Thus,
we are able to calculate the solution 2.4 times faster using Control 2 without any significant loss
of accuracy. For Control 2, the choice of the timestep is dominated by the changes in the kinetic
energy in all iterations. Note that the subcycling device also reduced significantly the number
of successive approximations and the values of the Nusselt number and the stream function are
the same calculated using Control 2.

For Ra = 104, we start with a minimum timestep of 0.01, and we allow a maximum
timestep size of 0.1. We define tolerances of 0.2, 0.1 and 0.5 for changes in nodal velocities,
temperature and kinetic energy, respectively. The reference rate of convergence is equal to
0.19. Here we also improve efficiency for all approaches, reducing the number of successive
approximations necessary to calculate the approximate solutions. Control 1 and Control 2 are
equivalent in terms of efficiency. The choice of the timestep in Control 2 is dominated by
the convergence rate of the successive iterations, with only two time iterations limited by the
changes in the kinetic energy. The subcycling device presents the best results, and the solution
is calculated 1.93 times faster. However, the results for the subcycling device are less accurate.

For Ra = 105, we start with a minimum timestep size of 0.001, and we allow a maximum
timestep size of 0.1. We define a tolerance of 0.1 for changes in nodal velocities and tempera-



ture. The tolerance corresponding to the normalized changes in kinetic energy is equal to one.
The reference rate of convergence is equal to 0.25. Now, Control 2 is dominated by the changes
in the kinetic energy, with only 4 iterations calculated according to the convergence rate of the
successive iterations. All approaches reduce the number of successive approximations to obtain
the solution, but the subcycling device gives the best result. The total number of successive
approximations obtained by Control 1 can be reduced if we define large tolerances for changes
in nodal velocities and temperature. However, the results will loose accuracy.

In the second example, we consider flow in a rectangular container of length 4 times the
height with Pr = 0.72 and Ra = 30000. The temperatures on the bottom surface and top surface
are Th = 1 and Tc = 0, respectively. The approximate velocity and temperature are calculated
using biquadratic shape functions with a grid of 32 × 8 elements, with the PID timestep selec-
tion and the subcycling device. We consider the steady-state problem and the computed vector
field and temperature contours are shown in Figure 5. There are six recirculation cells, and the
results agree with those in Griebel et al. (1998).

Figure 5: Vector field and temperature contours for the flow in a container with aspect ratio 4:1

The steady-state solution is obtained at τu = τT = 10−3, and we set a tolerance of 0.01 for
changes in nodal velocities and temperature. We start with a timestep size of 0.001, and we
allow minimum and maximum time steps of 0.001 and 0.5, respectively. This starting timestep
is the largest for which we obtained convergence in the successive iterations. The reference rate
of convergence of nonlinear iterations is chosen equal to 0.35 in this example. As we can see in
Table 4, we obtain the solutions with a reduced number of successive approximation iterations
using the two controllers and the subcycling device. Control 2 gives a smaller computational
effort than Control 1, however the subcycling device gives the best result. With a fixed timestep
size of 0.001 we need 731 iterations, and only 230 iterations when the subcycling device is
applied. In this case, the solution is obtained 3.2 times faster. Figure 6 compares the streamlines
obtained with fixed timesteps and the subcycling device. As we can see, the solutions agree very
well.

5. CONCLUSION

Since the class of coupled system investigated in this work involves fluid-thermal inter-
action, it is possible that the response to each process occurs at different time scales. Thus
the use of a subcycling device to simulate the problem is natural. In the partitioned solution ap-



Table 4: Results for the problem using the controllers, fixed timestep sizes and the subcycling device.

Fixed ∆t Control 1 Control 2 Subycling
nsa 731 643 380 230
ceffort 1 0.88 0.52 0.31

Figure 6: Streamlines for the flow in a container using fixed timestep sizes (top) and the subcycling
device (bottom)

proach, the solution is separately advanced in time over each partition chosen in accordance with
physical or computational characteristics. In this work we use two adaptive timestep selection
schemes based on feedback control theory and a partitioning device to increase the robustness
of our finite element formulation of coupled incompressible viscous flow and transient heat
transfer. We solved Rayleigh-Benard flows with different parameters that influence the numer-
ical experiments. The finite element flow formulation is based on a penalty Galerkin method
and the transport equations utilize a SUPG formulation. The algorithm employs an iteratively
decoupled scheme. In the application problems, we were interested in obtaining steady-state
using the subcycling device and compare with the solutions obtained using fixed timestep sizes
and adaptive timestep sizes to test the efficiency of this partitioning device to solve the related
class of coupled problems.

The efficiency of the subcycling device was verified in the numerical simulations of the
Rayleigh-Benard problems. The computational effort was measured by the total number of
successive approximations needed to calculate the velocity field using one of the controllers
or the subcycling device divided by the number of successive approximations obtained using
a fixed timestep size. We observed that the number of successive approximations necessary
to calculate the approximate solutions is reduced for all approaches, and the subcycling device



and Control 2 presented the best results. For example, in the second test problem the solution
is obtained 3.2 times faster using the subcycling device and this solution agrees very well with
the solution using fixed timestep sizes. Future studies include to investigate partitioned analysis
procedures for coupled systems in conjunction with control timestep algorithms. The idea is to
use the PID controllers to advance in time over the transport partition and synchronize with the
calculations on the Navier-Stokes partition.
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