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SUMMARY

This work investigates the use of control strategies for timestep selection and convergence rate im-
provement of non-linear iterative processes in the ;nite element solution of 2D coupled viscous 0ow
and heat transfer. The present solution method employs a decoupled scheme, where the ;nite element
0ow formulation is based on a penalty Galerkin method and the heat transfer computations use a
traditional Galerkin formulation. We compare the e>ciency of the control strategies for timestep se-
lection with another heuristic adaptive stepsize selection scheme. Numerical results for representative
Rayleigh–Benard–Marangoni problems con;rm that the non-dimensional kinetic energy could be a suit-
able parameter to improve the timestep selection when co-ordinated with the convergence control of
non-linear iterations. We ;nd approximate solutions with a much smaller number of steps without any
signi;cant loss of accuracy. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the early 1970s there has been a rapid expansion of research and applications for
;nite element simulations of 0uid 0ow and transport processes. With the evolution of the
methodology and its extension to more complex classes of coupled problems there has been
an increasing need for improved algorithms and other enhancements such as adaptive grid
re;nement. Several adaptive timestepping strategies have been studied as a means to provide
stable accurate transient (and steady state) solutions more e>ciently [1–4]. We remark that
adaptive timestep selection can be viewed as examples of feedback control problems.
In the numerical integration of ordinary diGerential equations by implicit timestepping

methods, a system of non-linear equations has to be solved at every step. In general, it is com-
mon to use ;xed-point iterations or modi;ed Newton iterations. In the present work, we use
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;xed-point iterations given by successive approximations. The convergence rate of the iter-
ative methods depends on the stepsize [5], and the computational e>ciency of the method
can be measured by the total number of successive iterations to obtain the ;nal solution. To
improve e>ciency, diminishing computational costs, it is necessary to control the convergence
rate of the ;xed-point iterations.
In the present study we propose two timestep control algorithms based on controlling accu-

racy or the convergence rate of the successive iterations. The objective of the stepsize control
schemes is to minimize the computational eGort to construct an approximate solution of a
given problem in accordance with a desired accuracy. The algorithms look for changes in the
key variables (velocities, pressure, temperature, etc.) or in the kinetic energy.

2. FORMULATION

We consider the transient 0ow of a viscous incompressible 0uid as described by the Navier–
Stokes equations coupled to the transport of heat by convection and conduction. Of particular
interest in the present work is 2-D Rayleigh–Benard–Marangoni 0ows. Buoyancy and thermo-
capillary surface traction due to temperature gradients on the free surface provide the dominant
forces driving these kind of 0ows. The dimensionless equations describing the Rayleigh–
Benard–Marangoni 0ows are
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where u=(u; v) is the velocity vector, p is the pressure, T is the temperature, Ra is the
Rayleigh number, Pr is the Prandtl number and g is the gravity vector. Boundary conditions
and initial conditions for temperature and velocities complete the mathematical statement of
the problem. The non-dimensional boundary condition on the free surface is given by
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where Ma is the Marangoni number.
Introducing a ;nite element discretization and basis on a uniform discretization Oh of

rectangular elements, the direct approximation of the penalized variational formulation of the
Navier–Stokes equations reduces to [6; 7]: for �¿0, ;nd u�
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where I denotes reduced numerical integration, � is the penalty parameter, Ph =Ph
1 ∪Ph

2 is the
;nite element approximation of the boundary, Ph

1 is the part of the domain that is not a free
surface and Ph

2 is the free surface. This leads to the following non-linear semidiscrete system
of ordinary diGerential equations:

M
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+ s(U) +AU+
1
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which is solved by successive approximations in the present study. We integrate the ODE
system implicitly using a Crank–Nicolson scheme, and the resulting linear systems are solved
using a direct frontal solver.
Similarly, introducing a Galerkin ;nite element scheme for the temperature T∫
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where we have assumed essential data for convenience. The resulting semi-discrete ODE
system for the nodal vector T has the form

N
dT
dt

+C(u)T+DT=0 (8)

which is also integrated implicitly using the Crank–Nicolson scheme, and a frontal solver
to ;nd solutions of the resulting linear systems. The present algorithm employs a decoupled
scheme, where the Navier–Stokes equations are solved ;rst, in each timestep, lagging the
temperature in the forcing term. Then, the energy equation is solved with the computed
velocities as input. A single timestep for all equations is adaptively chosen using the control
strategies described in the next section.

3. TIMESTEP CONTROL STRATEGIES

Stepsize selection algorithms in most integration methods are based on control of the maximum
change in the key variables. According to Hairer and Wanner [8], stepsize selection can be
viewed as an automatic control problem with a PID controller de;ned as
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(
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)kP ( 1
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)k I ( en−1
2

enen−2

)kD
Rtn (9)

where tol is some input tolerance, en is the measure of the change of the quantities of interest
in time tn, and kP, kI and kD are the PID parameters.

We consider two diGerent ways to measure the relative changes en. First, we use the changes
in nodal velocities and temperature taking,

en = max(eu; eT ) (10)

where

eu =
e∗u
tolu

; e∗u =
‖un − un−1‖

‖un‖ (11)

eT =
e∗T
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; e∗T =
‖Tn − Tn−1‖

‖Tn‖ (12)
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where tolu and tolT are user supplied tolerances. Second, we de;ne en computing changes in
the non-dimensional kinetic energy given by K =

∫
Oh(u∗2 + v∗2)=2 dO, where u∗ and v∗ are

the non-dimensional velocity components. Now en is de;ned by

en =
e∗K
tolK

; e∗K =
|Kn − Kn−1|

|Kn| (13)

where tolK is a given tolerance.
Gustafsson and SSoderlind [5] establish a model for controlling the convergence rate of the

iterative non-linear solution method that relates the convergence rate to the stepsize. Assuming
that the stepsize is limited by the convergence rate of non-linear iterations, the new stepsize
should be chosen as

Rtn+1 =
�ref

�
Rtn (14)

where �ref is a reference rate of convergence and � is an estimated rate of convergence. Now
the controller tries to keep the estimated convergence rate as close as possible to a reference
value. The estimated rate of convergence is calculated using three consecutive iterates for the
velocities, un−2, un−1, and un, as follows:

�= max �n = max
n

‖un − un−1‖
‖un−1 − un−2‖ (15)

It is necessary to co-ordinate the convergence control algorithm (14) with the stepsize control
strategy (9) so that e>ciency is maintained.
We propose two timestep control algorithms based on controlling accuracy or the conver-

gence rate of the successive iterations. The ;rst control (Control 1) uses only the PID control
for timestep selection, (9), with changes in velocities and temperature, (10), (11) and (12).
In the second control (Control 2), the size of the timestep is limited by the changes in the
kinetic energy or by the rate of convergence of the successive approximations. We take the
minimum between the two values, Rtn+1 = min(Rtr ;Rt�), where Rtr and Rt� are de;ned by
(9) and (14), respectively. Now, the relative changes en are calculated using (13). Computa-
tional cost of the selection procedures are negligible, since they involve only storing a few
extra vectors, computation of norms and evaluation of kinetic energy.
Although feedback control theory provides sophisticated techniques to choose PID pa-

rameters, robustness is required when a general ;nite element method is used for a wide
range of diGerent simulations. We perform parametric studies of the PID controller in [2–4].
Numerical experiments demonstrate that the PID controller is very robust for all the appli-
cations studied here, and that we can adopt the following parameters: kP =0:075, kI = 0:175
and kD =0:01. Experimental studies will be given in the next section showing the e>ciency
of the two controls. Comparative studies between the two controls and the timestep selection
strategy suggested by Winget and Hughes in Reference [1] will also be carried out for a
representative test problem.
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Table I. Comparison of speci;c results to benchmark case.

Fixed Rt Control 1 Control 2 Winget & Hughes Benchmark

Ra Nu0  mid Nu0  mid Nu0  mid Nu0  mid Nu0  mid

103 1.118 1.175 1.119 1.175 1.117 1.174 1.119 1.175 1.117 1.174

104 2.255 5.067 2.236 5.077 2.246 5.064 2.249 5.066 2.238 5.071

105 4.550 9.134 4.518 9.036 4.553 9.120 4.503 8.925 4.509 9.111

4. NUMERICAL RESULTS

The ;rst case studied involves natural convection in a unit square with temperatures T =1; 0
on the left and right walls, respectively, adiabatic top and bottom wall (no free surface), with
Pr=0:71 and diGerent Rayleigh numbers, Ra, of 103, 104 and 105. The computed Nusselt
number at the left wall, Nu0 =

∫ 1
0 q dy, where q is the heat 0ux, and the stream function at

the midpoint,  mid, are compared to benchmark computations [9]. We compare approximate
solutions using ;xed timestep sizes, Control 1, Control 2, the Winget and Hughes approach
and the benchmark solution. The results are shown in Table I.
The approximate velocities and temperature are calculated using 9-node isoparametric

quadrilateral elements in a uniform mesh of 16× 16 elements at Ra=103, 104 and 32× 32
elements at Ra=105. We assume that the steady-state occurs when the kinetic energy at two
diGerent timesteps reaches a relative diGerence less than a given tolerance, tolst. The initial
timestep size in all cases is chosen to have convergence of the successive iterations at the
beginning of the process. If we start with a timestep size greater than the initial timestep
de;ned below, the successive approximation iterations failed to converge after a few time
steps. The results are in good agreement for all the cases, with percentage errors no more
than 1 per cent in all quantities for Controls 1 and 2. However, observe that the diGerences
increase as Ra increases due to the growing di>culty of the problem. The Winget and Hughes
approach also produces good results with percentage errors no more than 2 per cent in all
quantities. The stream function contours and temperature contours are shown in Figure 1.
Now we compare the computational eGort to calculate the solution for Ra=103. Since

computational cost of the controls are negligible, the computational eGort is measured by
the total number of successive approximations needed to calculate the velocity ;eld using
one of the approaches divided by the number of successive approximations obtained using
a ;xed timestep size. We start with a minimum timestep size of 0.01, and we allow a
maximum timestep size of 0.1. We de;ne a tolerance of 0.1 for changes in nodal velocities
and temperature, and a tolerance of 1.0 for changes in kinetic energy. The reference rate
of convergence is equal to 0.2. We assume that the steady-state solution is reached when
tolst = 10−4. We calculate the number of time iterations, ntstep, the number of rejected steps,
nrejec, the total number of successive approximations, nsa, and the computational eGort, ceGort.
The results for Ra=103 are shown in Table II.
We can observe in Table II that the number of successive approximations necessary to

calculate the approximate solutions was reduced for all approaches. However, Control 2 pre-
sented the best results. We obtain the solution with 24 successive iterations using Control 2,
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Figure 1. Stream function contours (top) and temperature contours (bottom) for Ra=103; 104 and 105.

Table II. Computational eGort for the natural convection problem, Ra=103.

Ra=103 ntstep nrejec nsa ceGort

Fixed Rt 24 0 58 1
Control 1 11 0 32 0.55
Control 2 8 0 24 0.41
Winget and Hughes 15 0 41 0.71

and we need 58 iterations with the ;xed timestep. Thus, we are able to calculate the solution
2.4 times faster using the Control 2 without any signi;cant loss of accuracy. For Control 2,
the choice of the timestep is dominated by the changes in the kinetic energy in all iterations.
Figure 2 shows the timestep size against time and the number of successive approximations
against time using Control 1, Control 2 and the Winget and Hughes approach for Ra=103.
In this example the kinetic energy is the most suitable parameter to choose the timestep, since
Control 2 gives the best result. It is worthwhile noting also that Control 2 begins to act before
any other approach and, after a few steps, provides a timestep equal to the maximum stepsize
allowed, 0.1.
The second numerical experiment involves buoyancy forces due to temperature gradients

and thermocapillary forces caused by gradients in the surface tension. The 0ow domain and
boundary conditions are the same as in the ;rst example, except that the top is now a 0at free
surface. The Rayleigh number is 103, the Prandtl number is 0.71, and the problem is solved
at diGerent Marangoni numbers. The approximate steady-state velocities and temperature are
calculated using biquadratic elements in a uniform mesh with size h= 1

16 . Here we assume
that the steady-state occurs when ‖un − un−1‖¡"u‖un‖ and ‖Tn − Tn−1‖¡"T‖Tn‖, where n
denotes the timestep index, ‖ · ‖ denotes Euclidean norm, and "u and "T are input tolerances.
We ;nd solutions at Ma=1, 100 and 1000 (see Figure 3). At Ma=1, the eGect of the

surface tension is small and the streamlines are roughly circular. The solution is similar
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Figure 2. Timestep variation (left) and number of successive approximations (right) using Controls 1, 2
and the Winget and Hughes approach for Ra = 103.

Figure 3. Stream function contours for Ma=1; 100 and 1000.

in structure to the classic buoyancy driven 0ow studied in the ;rst example, Figure 1. At
Ma=100, the eGect of the thermocapillary force at the free surface is more pronounced.
The streamlines are concentrated near the top boundary. At Ma=1000, the 0ow is be-
ing strongly driven at the top boundary as seen in similar experiments presented by Zebib
et al. [10].
To study the behaviour of the PID timestep selection in the second problem, we select

the case where Ma=100. The steady-state solution is obtained at "u =10−3 and "T =10−4.
We start with a minimum timestep size of 0.001, and we allow a maximum timestep of 0.1.
Solutions are obtained with tolerances of 0.2, 0.1 and 1.0 for changes in nodal velocities,
temperature and kinetic energy, respectively. The reference rate of convergence is equal to
0.2. As we can see in Table III, we obtain the solutions with 57 successive approximation
iterations using Control 2. With a ;xed timestep size of 0.001, we need 272 iterations. Thus,
the solutions are obtained 4.8 times faster using Control 2. Here, the choice of the timestep in
Control 2 is dominated by the changes in the kinetic energy, with only three time iterations
limited by the changes in the convergence rate of the successive iterations.
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Table III. Computational eGort for the Rayleigh–Benard–Marangoni problem,
Pr=0:71; Ra=1000 and Ma=100 in a unit square.

Case ntstep nrejec nsa ceGort

Fixed Rt 118 0 272 1
Control 1 23 0 75 0.28
Control 2 13 0 57 0.21
Winget and Hughes 25 0 80 0.29

Figure 4. Timestep variation (left) and number of successive approximations (right) using Controls 1,
2 and the Winget and Hughes approach for Pr=0:71; Ra=1000 and Ma=100 in a unit square.

Figure 4 shows the timestep variation and the number of successive approximations against
time using Controls 1, 2 and the Winget and Hughes approach. We can observe that Control
1 yields a smoother sequence of time steps than the Winget and Hughes approach. However,
these two approaches are equivalent in terms of e>ciency. Control 2 calculates the solutions
with the smallest computational eGort.

5. CONCLUSIONS

Based on numerical studies of representative Rayleigh–Benard and Rayleigh–Benard–
Marangoni problems, it is concluded that we ;nd approximate solutions with a smaller number
of steps without any signi;cant loss of accuracy. In addition, the controllers also produce a
smooth variation of timestep, suggesting that a robust control algorithm is possible. Further,
the control strategy that maintains the desired solution accuracy by adjusting the timestep size
to account for changes in the kinetic energy or by the rate of convergence of the successive
approximations showed the best results in all cases studied here.
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