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CONTROL STRATEGIES FOR TIMESTEP SELECTION IN THESIMULATION OF INCOMPRESSIBLE FLOWS AND COUPLED HEAT ANDMASS TRANSFERAndr�ea Maria Pedrosa ValliNovember/2001
Adaptive tehniques for automati timestep seletion are probably the most impor-tant means to improve eÆieny of a given integration method in the numerialsolution of ordinary di�erential equations. These strategies are usually based onapproximate loal trunation error measures or on purely heuristi onsiderations.We remark that this proess an be viewed as an examples of feedbak ontrol prob-lems. In the present work, we propose two PID timestep ontrol algorithms for�nite element simulations of steady-state and transient 2D visous ow and oupledreation-onvetion-di�usion proesses ombined with surfae tension e�ets. Wesolve hemial reation systems, Rayleigh-Benard and Rayleigh-Benard-Marangoniows and heat and mass transfer by natural onvetion.Numerial experiments on�rm that we an �nd approximate solutions with asmaller number of steps without any signi�ant loss of auray. Moreover, the PIDontroller produes a very smooth urve suggesting that a robust ontrol algorithmis possible. Numerial results also show that the non-dimensional kineti energyould be a suitable parameter to improve the timestep seletion when oordinatedwith the onvergene ontrol of nonlinear iterations. Further, omputational ost ofthe seletion proedures are negligible, sine they involve only storing a few extravetors, omputation of norms and evaluation of kineti energy.
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ESTRAT�EGIAS DE CONTROLE PARA A SELEC� ~AO DE PASSO DE TEMPOPARA AN�ALISE DE ESCOAMENTOS INCOMPRESS�IVEIS ACOPLADOSCOM TRANSPORTE DE CALOR E MASSAAndr�ea Maria Pedrosa ValliNovembro/2001
T�enias adaptativas para a sele�~ao de passo de tempo s~ao as mais importantesferramentas para melhorar a e�iênia de um m�etodo de integra�~ao de sistemas deODE's. Estas estrat�egias s~ao geralmente baseadas em medidas do erro de trun-amento loal ou por onsidera�~oes heur��stias. No entanto, este proesso podeser visto omo um problema de ontrole retroalimentado. No presente trabalho,propomos dois algoritmos de ontrole PID de passo de tempo para as simula�~oes emelementos �nitos de esoamentos visosos e inompress��veis aoplados �a proessosde rea�~ao, difus~ao e onve�~ao ombinados om efeitos na tens~ao super�ial. Re-solvemos sistemas de rea�~oes qu��mias, problemas de Rayleigh-Benard-Marangoni etransferênia de alor e massa por onve�~ao natural.Experimentos num�erios on�rmam que enontramos solu�~oes aproximadas omum n�umero menor de passos sem nenhuma perda signi�ativa de preis~ao. Os on-troladores produzem uma urva bastante suave para a varia�~ao do passo, sugerindoque um algoritmo de ontrole robusto �e poss��vel. Resultados num�erios demostraramque a energia in�etia �e um parâmetro adequado para a sele�~ao de passo de tempoquando oordenado om a onvergênia das itera�~oes n~ao lineares. Al�em disso, osustos omputaionais para os proessos de sele�~ao do passo s~ao desprez��veis, umavez que involvem apenas o armazenamento de alguns vetores, o �alulo de normase avalia�~ao da energia in�etia.
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Chapter 1IntrodutionWith the evolution of �nite element methodology and its extension to more omplexlasses of oupled problems there has been an inreasing need for improved algo-rithms and other enhanements suh as adaptive grid re�nement and oarsening.Several adaptive timestepping seletion strategies have been studied as a means toprovide stable aurate transient (and steady state) solutions more eÆiently. Thisadaptive timestepping seletion proess is usually approahed by means of loaltrunation error analysis. In the same way, the adaptive grid shemes use feedbakfrom the omputed solution on a given intermediate grid to asertain where the gridshould be loally re�ned. We remark that both of these proesses (adaptive timestepseletion and adaptive grid re�nement) an be viewed as examples of feedbak on-trol problems. This brings us to the main theme of the present work - the utilizationof feedbak ontrol algorithms for timestep seletion in onjuntion of �nite elementanalysis in the simulations of steady-state and transient 2D visous ow and oupledreation-onvetion-di�usion proesses ombined with surfae tension e�ets.Besides the ontrol algorithms for timestep seletion, we are also interested in thenumerial simulation of hemial reation systems, Rayleigh-Benard and Rayleigh-Benard-Marangoni ows, heat and mass transfer by natural onvetion and doubledi�usive onvetion. In partiular, we want to study the performane of the on-trollers to solve these lasses of appliation problems, perform numerial experimentsfor di�erent parameters that inuene the problems, and ompare our results withthose found in the literature. Pratial appliations of the related problems inlude,for example, nonisothermal reation on a atalyst setion [33, 58℄, pattern formationduring solidi�ation and welding in manufaturing proesses [78, 7, 25℄, physial be-havior of uids under mirogravity onditions [13, 38, 31℄, semiondutor rystalgrowth and double di�usive and Marangoni instabilities [65, 63, 62, 66, 42℄.1



The �rst lass of problems studied in this work involves nonlinear ow and rea-tive transport. We solve isothermal reation inside a porous atalyst and hemialreation on a atalyst setion with heat e�ets inluded [58, 33℄. In the seondproblem, the proess is highly nonlinear beause of an exponential hemial rea-tion term arising from the temperature dependene of the hemial reation rate.As a onsequene, we need to hoose a very small timestep to obtain onvergene ofthe nonlinear iterations in the transport equation. Therefore, eÆient omputationof the transport proess in this example demands the use of a timestep seletionalgorithm.The seond lass of appliation problems we investigate is Rayleigh-Benard owsand Rayleigh-Benard-Marangoni ows. When buoyany fores due to temperaturegradients are the dominant omponent in driving the ow, we have a Rayleigh-Benard problem [31, 30, 25℄. For example, when a thin horizontal layer of uidbetween two horizontal plates is heated from below, a temperature gradient is gen-erated aross the plates. At a ritial Rayleigh number, irular onvetion ells setin. If the plate is removed from the upper surfae, then the surfae tension e�etsassoiated with temperature gradients on the free surfae beome important. Nowboth buoyany and thermoapillary e�ets provide the dominant fores driving theow, termed Rayleigh-Benard-Marangoni problems [61, 18, 80℄. Rayleigh-Benard-Marangoni problems beome very popular as prototypes of omplex behavior wherenonlinear theories of pattern formation may be tested.When heat and speies transfer exist within a uid layer, the temperature andonentration gradients reate a oupled transport mode, alled double di�usion.This phenomenon is found in uid mixtures of two omponents having two di�erentmoleular di�usivities, where the potential energy of one omponent may be releasedby di�erential di�usion, thus driving the onvetive motion, even though the systemmay be gravitation stable [69, 70, 56, 42, 66℄. One example of double di�usiveonvetion is when a hot salty uid layer (slower di�usion) is underlying a oldfresh uid layer (faster di�usion) [63, 62, 66℄. In the present work, the third lassof appliation problems we solve is simultaneous heat and mass transfer by naturalonvetion above horizontal surfaes [65℄. Our future works involves solving theoupling between Marangoni (thermal and solutal) onvetion and double di�usiononvetion in a multi-avity system with a non-deforming free surfae.Visous ow is modeled by the inompressible 2D Navier-Stokes equations, writ-ten in primitive variables, with a foring term that may depend on temperature2



and onentration. In the transient transport equation, the time rate of hange(evolution) of the speies omponent �elds may depend on advetion, di�usion andhemial reations. There are two primary approahes to the numerial formulationof the lass of oupled problems we are investigating. One approah is alled thedeoupled formulation, where the momentum and ontinuity equations are solved�rst, in eah timestep or iteration, lagging the temperature and onentration vetorin the foring term. Then, the transport equations are solved with the omputedveloities as input. The seond approah, alled the fully-oupled formulation, re-quires simultaneous oupled solution of the ow and transport systems. Here, weonsider only the deoupled formulation.Among the most notable �nite element formulations for inompressible ows arethe mixed (or multiplier) method [16, 55℄, the penalty method [81, 55, 14, 15, 16℄, thestabilized formulations, suh as, the Streamline-Upwind/Petrov-Galerkin (SUPG)formulation [44, 11, 23, 68℄, Galerkin/Least-Squares (GLS) formulation [45, 17, 28℄,Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulation [67, 21℄ and frationalstep formulations [8, 22℄. We an also �nd �nite element formulations based onthe stream funtion-vortiity equations [16, 3℄. The �nite element method makesuse of a spatial disretization and a weighted residual formulation to arrive at a sys-tem of matrix equations. The Galerkin method, whih is the most ommon weightedresidual formulation, uses weighting and interpolation funtions from the same lassof funtions. The suess of the Galerkin �nite element method in several appliationproblems is due to its best approximation minimization property [43℄, whih meansthat the di�erene between the �nite element solution and the exat solution is min-imized with respet to a ertain norm. When the problem is onvetion-dominated,the Galerkin method loses this property. For general treatments of these issues see,for example, Carey and Oden [16℄, Zienkiewiz [81℄, Hughes [43℄ and Bathe [4℄.The subjet of �nite element approximations to inompressible ow problems en-ompasses several mixed and penalty formulations. The essential harater of mixedmethods is exhibited in the framework of a onstrained variational problem, in whihboth veloities and pressure must be approximated. The formal development of amixed �nite element analysis is quite straightforward and the method has been ex-tensively applied (see, e.g., [57, 35, 54℄). The penalty approah for the Navier-Stokesproblem is designed to determine an approximate formulation involving only velo-ities and not pressures. Hene the size of the problem is redued aordingly. Thedivergene-free ondition r � u = 0 is viewed as a onstraint ondition embedded3



in the variational problem by using a penalty term. In the present work, we areonly interested in the veloity solution and the assoiated oupled transport pro-esses. Hene, for simpliity and onveniene we use a penalty method to enforethe inompressibility onstraint.In omputation of inompressible Navier-Stokes equations for onvetion-domi-nated ows, the Galerkin method loses the best approximation property, and solu-tions are often orrupted by spurious osillations. In order to overome or mini-mize those osillations, Petrov-Galerkin formulations, whih modify the Galerkin'sweighting funtions by adding a perturbation term, have been derived and used withsuess in the analysis of onvetion-dominated ows. The SUPG stabilization teh-nique was �rst introdued by Hughes and Brooks in [44℄, and investigated in detailby Brooks and Hughes in [11℄. The SUPG tehniques are onsistent stabilizationmethods, in the sense that the exat solution still satis�es the stabilized formulation,just as it satis�es the Galerkin formulation of the problem. The perturbation termin this method ats only in the streamline diretion, hosen as upwind diretion,resulting in good stability and auray properties if the exat solution is regular,showing a onvergene improvement over the Galerkin method. Sine the applia-tion problems we are investigating in this work are not onvetion-dominated, thepenalty method works well for the Navier-Stokes equations.For the transport equations, we use a SUPG formulation to �nd approximatesolutions for the temperature and speies onentration. Although we are using aSUPG formulation for the transport equation, the perturbation term an alwaysbe turned o� if the problem is not onvetion-dominated. Spatial disretization ofthe Navier-Stokes equations gives rise to a non-linear semi-disrete ODE system,linearized by suessive approximations and integrated impliitly using a Crank-Niolson sheme. The solutions of the linear systems are obtained using a frontalsolver. In the transport equations, we use a Crank-Niolson sheme to integrate intime, the Newton's method to solve the nonlinear algebrai system, and a frontalsolver for the linear system. Errors and omputational eÆieny in the transientsolution of the oupled problems are ontrolled by automati timestep ontrol algo-rithms.Adaptive tehniques for automati timestep seletion are probably the most im-portant means to improve eÆieny of a given integration method in the numerialsolution of ordinary di�erential equations. These strategies are usually based onapproximate loal trunation error measures or on purely heuristi onsiderations.4



For example, standard automati timestep seletion algorithms use an estimate ofthe loal trunation error to adjust the stepsize in aordane with a user-spei�edauray requirement, as shown in [51, 59, 9, 60℄. Gresho, Sani and Engelman in [37℄use a preditor-orretor sheme with a time trunation estimate for error ontrol.Winget and Hughes [79℄, Johan, Hughes and Shakib [49℄ and Jaob and Ebeken [48℄develop stepsize seletion shemes based on heuristi rules for transient heat on-dution, ompressible Navier-Stokes equations and strutural dynamis problems,respetively. However, Gustafsson, Lundh and S�oderlind [39℄ showed that adaptivetimestep seletion an be viewed as a standard automati ontrol problem, whihmotivated Hairer and Wanner [41℄ to derive a timestep seletion algorithm usingthe onept of proportional-integral-derivative (PID) ontrol. Later, Coutinho andAlves [24℄ use this approah in their work of �nite element simulation of misibledisplaements in porous media. In this work, we propose two PID timestep ontrolalgorithms based on ontrolling auray or the onvergene rate of the suessiveiterations [71, 74, 75, 76, 73, 72℄.The �rst ontrol utilizes normalized hanges in the variables of interest (ve-loities, temperature, onentration, et) to ompute the loal trunation errors.In the seond ontrol, the timestep size is limited by the normalized hanges inthe nondimensional kineti energy or by the rate of onvergene of the suessiveapproximations. The eÆieny of these ontrols are ompared with another time-stepping strategy developed by Winget and Hughes in [79℄. We demonstrate that,with the ontrollers, we �nd approximate solutions with a smaller number of stepswithout any signi�ant loss of auray. In addition, the ontrollers also produe asmooth variation of timestep, suggesting that a robust ontrol algorithm is possible.The outline of this work is as follows. In Chapter 2 we present the lass oftransient oupled problems under investigation, the �nite element formulations andthe solution algorithm. In Chapter 3 we disuss the two ontrol algorithms fortimestep seletion, and we present the algorithm for timestep seletion suggested byWinget and Hughes. In Chapter 4 we provide results of the numerial experiments tovalidate the �nite element formulations of the Navier-Stokes equations, the transportequations and our timestep ontrol algorithms. In Chapter 5 we apply the �rsttimestep ontrol algorithm to solve nonlinear ow and reative transport. In Chapter6 we study the performane of the ontrollers to solve Rayleigh-Benard and Rayleigh-Benard-Marangoni problems, and ompare their eÆieny with the sheme proposedby Winget and Hughes. In Chapter 7 we solve simultaneous heat and mass transfer5



by natural onvetion above horizontal surfaes. Finally, in Chapter 8 we presentedsome onlusions and opportunities for future study.
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Chapter 2Formulation and ApproximationIn this hapter we present the lass of oupled ow and transport equations un-der investigation, the �nite element formulations and the solution approah. In the�rst setion, we state the lass of transient oupled problems; then, we desribe thepenalty �nite element formulation for the transient Navier-Stokes equations. Follow-ing this, the SUPG stabilization tehnique for the transient transport equations isdeveloped. Finally, the solution algorithm to obtain approximate transient solutionsfor the veloity �eld, temperature and onentration is presented.2.1 Coupled Visous Flow and TransportWe onsider the stationary and transient ow of a visous inompressible uid asdesribed by the Navier-Stokes equations oupled to the transport of heat and massby onvetion, ondution and reation in the uid inluding surfae tension e�ets.For example, in Rayleigh-Benard-Marangoni ows buoyany is inluded as a tem-perature dependent body fore term in the momentum equation, and the e�et ofthermoapillary surfae tension enters as an applied surfae shear stress that is de-pendent on the surfae temperature gradient [30, 13, 75℄. An exponential hemialreation term arising from the temperature dependene of the hemial reation rateis inluded, oupling the heat and mass transfer equations [33, 71℄. Finally, in dou-ble di�usion problems heat and speies transfer exist within a uid and the surfaetension depends on the surfae temperature and onentration gradients [63, 42℄.The transient Navier Stokes equations for visous ow of an inompressible uidmay be written as�u�t + u � ru� �r2u+ 1�rp = q+ f(T; ) in 
 (2.1)r � u = 0 in 
 (2.2)7



where 
 is the ow domain, u is the veloity vetor, p is the pressure, � = �� isthe kinemati visosity, � is the density, q is an applied body fore and f(T; ) is atemperature (T ) and onentration () dependent body fore. For example, f(T; )may be a buoyany fore given by f(T; ) = g(�T (T �T0)��(�0)) where g is thegravity vetor, �T and � are the thermal and solutal volume expansion oeÆients,and T0 and 0 are referene temperature and onentration. We assume that thereis no slip at the solid walls �
1, u = uw on �
1; (2.3)where uw is the spei�ed wall boundary veloity. The Marangoni problem involvesa shear stress boundary ondition on the free surfae �
2.The temperature of the uid is governed by the energy transport equation. As-suming negligible visous dissipation, we have�p�T�t + �pu � rT �r � (krT ) = h1(T; ) in 
 (2.4)where p is the spei� heat, k is the thermal ondutivity, h1(T; ) is a nonlinearreation soure/sink term, usually assoiated with hemial reations, and  is theonentration of the uid. The boundary onditions are as follows: T = Tw(x; y)(isothermal boundary) or �T�n = 0 (adiabati boundary) on the solid walls �
3 wheren is the unit outward normal, and mixed onditions �T �T�n = h(T � Te) (Robin) on�
4, where �T = k�p is the thermal di�usivity, h is the heat transfer oeÆient forthe medium, Te is the exterior temperature.Finally, the mass transfer equation for a single speies is given by��t + u � r�r � (�r) = h2(T; ) in 
 (2.5)where  is the onentration, � is the mass di�usion oeÆient, and h2(T; ) is anonlinear reation soure/sink term. Conentration, ux or mixed boundary ondi-tions may be applied.For onveniene, we rewrite equations (2.5) for the vetor  of omponent speies.We an handle up to eight di�erent speies and temperature in our ode, that is, = fsg, s = 1; 2; � � � ; ns, where ns is the number of speies. Then, the vetorounterpart of the transient transport equation is,��t + ui ��xi � ��xi (Kij ��xj ) = h2(T; ) (2.6)where repeated indies imply summation over the range of spatial dimensions, ui isveloity omponent i, h2(T; ) is a nonlinear reation soure/sink term, and K =8



fks1s2g is the di�usion tensor with s1; s2 = 1; 2; � � � ; ns. From (2.6) it is lear thatthe time rate of hange (evolution) of the speies omponent �elds depends onadvetion, di�usion and hemial reation, respetively. Boundary onditions forspeies onentration or ux and initial onditions for veloities and onentrationvetors omplete the statement of the problem for (2.1), (2.2), (2.4) and (2.6).Thus, the lass of transient oupled problems we are interested in solving maybe summarized by the following equations:�u�t + u � ru� �r2u + 1�rp = q + f(T; ) in 
 (2.7)r � u = 0 in 
 (2.8)�p�T�t + �pu � rT �r � (krT ) = h1(T; ) in 
 (2.9)��t + u � r�r � (Kr) = h2(T; ) in 
 (2.10)with initial onditions u(0) = u0 (2.11)T (0) = T0 (2.12)(0) = 0 (2.13)and boundary onditions as follows� veloities, ux or free surfae boundary onditionsu = uw or �ru � n = 0 on �
1 (2.14)�ru � n = �(T; ) on �
2 (2.15)� temperature, ux or mixed boundary onditionsT = Tw or krT � n = 0 on �
3 (2.16)krT � n = hT (T � Te) on �
4 (2.17)� speies onentration, ux or mixed boundary onditions = w or Kr � n = 0 on �
5 (2.18)�Kr � n =  �	 on �
6 (2.19)In the next setion we present the penalty �nite element formulation for the Navier-Stokes equations, (2.7), (2.8), (2.11), (2.14) and (2.15).9



2.2 Penalty Formulation for the Navier-StokesEquationsFor simpliity and onveniene we use a penalty method to enfore the inompress-ibility onstraint. The penalty approah for the Navier-Stokes problem is designedto determine an approximate formulation involving only veloities and not pres-sures, but without the added omplexity of requiring speial divergene-free ele-ments. Hene the size of the problem is redued aordingly. The divergene-freeondition r � u = 0 is viewed as a onstraint ondition embedded in the variationalproblem by using a penalty term.Let V be the spae for the veloities, and onsider the following penalized vari-ational formulation for the Navier-Stokes equations [16℄: for � > 0, �nd u� 2 Vsatisfying the initial ondition with u� = uw on �
1 suh thatZ
(�u��t � v + �ru�:rv + (u� � r)u� � v + 1� (r � u�)(r � v)) d
= Z
(q+ f(T; )) � v d
 + Z�
2 �(T; ) � v dl (2.20)for all admissible v 2 V with v = 0 on �
1, where the last integral implies thesurfae shear boundary ondition (2.15) at the free surfae. For a disussion ofoerivity, existene and uniqueness of the solutions see, e.g., [15, 16℄. The pressureapproximation for the penalty formulation is given byp� = �1�r � u� (2.21)Consider now approximation of the variational problem (2.20) using �nite ele-ments. Let V h � V be the �nite element approximation spae for veloities. Inthe usual way, the ow domain 
 is disretized into a union 
h of elements 
e, e= 1, 2,. . . , E. Lagrange pieewise polynomials are used as global basis funtions�j, j = 1, 2,. . . , N , for the approximate subspae V h. The diret approximationof the penalized variational problem (2.20) is to �nd u�h 2 V h satisfying the initialondition with u�h = uw on �
1 suh thatZ
h(�u�h�t � vh + �ru�h:rvh + (u�h � r)u�h � vh) d
+ 1� I(r � u�h)(r � vh) d
= Z
h(q + f(Th; h)) � vh d
 + Z�
2h �(Th; h) � vh dl (2.22)10



for all vh 2 V h, where I denotes redued numerial integration. If the penaltyterm in (2.22) is integrated exatly then the method will not yield solutions u�h thatonverge to uh as � ! 0. The veloity �eld u�h ! 0 as � ! 0 and the onstraintequation r � u = 0 dominates in this limit. The �nite element solution fails the\onsisteny ondition" or the \LBB ondition" and is said to \lok" [see, e.g., [81℄,[55℄, [50℄℄. The seond term is assoiated with the investigations of Ladyzhenskaya[53℄, Babu�ska and Aziz [2℄ and Brezzi [10℄. The \LBB ondition" ditates how tohoose ompatible interpolations for veloities and pressure when using penalty ormixed formulations. To obtain an approximate solution other than the \loking"solution, we use redued integration for evaluating the penalty integral.The penalty term is approximately integrated using a Gauss quadrature rule oflower order than that required for exat integration. The seletive redued inte-gration guarantee onsisteny of the implied pressure �eld approximation and theveloity approximation. In the numerial studies we onsider two speial ases, on-tinuous pieewise bilinear basis for the 4-node bilinear quadrilateral with one-pointGauss quadrature rule for the penalty term and ontinuous pieewise biquadratibasis for the 9-node biquadrati quadrilateral with (2 � 2) Gauss quadrature rulefor the penalty term, whih an be projeted to suppress the spurious mode if thepressure approximation is desired. In the present work, we are only interested inthe veloity solution and the assoiated oupled transport proesses.Introduing the disretization of elements and the basis funtions, the veloitiesare u�hl(x; y) = NXj=1 ulj �j(x; y); (2.23)where l is the veloity omponent index (l = 1, 2 for 2D ow) and ul is the nodalvetor. Using vh = (�i; 0) and (0; �i) at an interior node i, we have the followingnon-linear semidisrete system of ordinary di�erential equationsMdUdt + �AU +D(U) + 1�BU = F(T;C) (2.24)where U = (u1;u2)T andM = � M 00 M � A = � A 00 A � B = � Bx BxyBTxy By � F = � FxFy �
11



with M = [mij℄; mij = Z
h �i�j d
 (2.25)A = [aij℄; aij = Z
h((�i);x(�j);x + (�i);y(�j);y) d
 (2.26)Bx = [(bx)ij℄; (bx)ij = Z
h(�i);x(�j);x d
 (2.27)Bxy = [(bxy)ij℄; (bxy)ij = Z
h(�i);x(�j);y d
 (2.28)By = [(by)ij℄; (by)ij = Z
h(�i);y(�j);y d
 (2.29)Fx = [(fx)i℄; (fx)i = Z
h(q1 + f1(Th; h))�i d
 +Z�
2h �1(Th; h)�i dl (2.30)Fy = [(fy)i℄; (fy)i = Z
h(q2 + f2(Th; h))�i d
 +Z�
2h �2(Th; h)�i dl (2.31)D(U) = Z
h(u�h � r)u�h � vh d
: (2.32)Here, the nonlinearity in the onvetive term D(U) is linearized by suessiveapproximations [16℄ aording to the approximationD(U) � D(Uk�1)Uk = Z
h(u�h;k�1 � r)u�h;k � vh d
 (2.33)with initial iterates given by the solution at the previous step. To deouple the owand transport equations, we evaluate f = f(T;C) at Tn�1 and Cn�1, i.e., at theprevious temperature and speies onentration solutions. Substituting (2.33) into(2.24), we obtain a sequene of linear problems for Uk at iterate k. Given U0, fork = 1; 2; : : :, solveMdUkdt + (�A+D + 1�B)Uk = F(Tn�1;Cn�1) (2.34)with D = � D 00 D � ; dij = Z
h Uk�1 � r�j �i d
 (2.35)until jjUk �Uk�1jjjjUkjj < �sa or k > ksamax (2.36)where �sa is an input tolerane and ksamax is the maximum number of suessiveiterations allowed. To advane the solution from a spei�ed initial state, we integrate12



impliitly using a standard � method, so that at timestep tn:M(Unk �Un�1k )�t + � ��A+D + 1�B�Unk+ (1� �) ��A+D + 1�B�Un�1k= �Fn + (1� �)Fn�1 (2.37)Here � = 1=2 whih orresponds to the familiar Crank-Niolson integrator, andFn = qn + f where f = f(Tn�1;Cn�1). Hene, in eah suessive approximationwithin eah timestep we have to solve linear systems of the formPUnk = Q (2.38)where P = M+ 4t2 (�A +D + 1�B) (2.39)Q = (M� 4t2 (�A+D + 1�B))Un�1k + 4t2 (Fn + Fn�1) (2.40)and n denotes the time index. Solutions of the resulting linear systems are ob-tained using a diret frontal solver [46℄. In the next setion we present the SUPG(Streamline-Upwind/Petrov-Galerkin) �nite element formulation used to �nd ap-proximate solutions for the transport omponent s. Sine the SUPG �nite elementformulation for the heat equation is analogous to the SUPG formulation for thetransport equation, we are not going to repeat the formulation for the temperature.2.3 SUPG Formulation for the Transport Equa-tionsFor the transport equations, we use a SUPG (Streamline-Upwind/Petrov-Galerkin)stabilization tehnique [11, 23℄ to prevent spurious osillation generated by the dom-inane of the advetion terms in the di�erential equation. For simpliity, we showthe �nite element formulation for the mass transfer equation of a single speies s.The same proedure may be used to obtain the SUPG formulation for the energytransport equation (2.9).Consider a �nite element disretization of the domain 
 into a union 
h ofsubdomains (elements) 
e, e = 1, 2,. . . , E. Based on this disretization, we de�nethe �nite element funtion spaes Sh and W h for the onentration orresponding13



to the trial solutions and weighting funtions, respetively. The SUPG weightedresidual formulation for the transport omponent hs isZ
h �wh (�hs�t + uhi �hs�xi ) + �wh�xi ksij �hs�xj � wh h2s(Th; h)� d
+ EXe=1 Z
e � uhmjjuhjj �wh�xm ��hs�t + uhi�hs�xi � ��xi (ksij �hs�xj )� h2s(Th; h)� d
= Z�
6h wh ( hs � 	s) dl (2.41)where the �rst integral represents the Galerkin formulation of the problem, theseond integral is the SUPG stabilization term added to the variational formulation,the last integral is due to the mixed boundary ondition (2.19). We assume thatks1s2 6= 0 only for s1 = s2 = s, s = 1; 2; � � � ; ns, where ks = fksijg, i; j = 1; 2, is thedi�usion tensor for speies omponent s. The parameter � is omputed as suggestedby Codina, O~nate and Cervera in [23℄,� = �~h2 ; (2.42)� = min(Pe3 ; 1); ~h = p2A; (2.43)Pe = jjuhjj~h2~k ; ~k = uThjjuhjjks uhjjuhjj ; (2.44)where A is de�ned as the element area, ~h is the element harateristi length, uhis the veloity vetor and Pe is the loal (element) Pelet number. Introduing the�nite element disretization, the transport omponent hs has the formhs(x; y) = NXj=1 sj  j(x; y); (2.45)where s is the speies omponent index (s = 1; 2; : : : ; ns) and s = fsjg, j =1; 2; � � � ; N , is the nodal vetor. We have in this study ontinuous pieewise ba-sis funtions de�ned by the 4-node bilinear quadrilateral, the 9-node biquadratiquadrilateral and the 6-node quadrati triangle.Introduing (2.45) into (2.41) and setting wh =  i, i = 1, 2,. . . , N , we have theresulting semi-disrete ODE systemN dCdt +R(U)C+ E C = H(T;C) (2.46)where C = (1; 2; : : : ; ns)T ,N = 26664 N 0 � � � 00 N � � � 0... ... . . . ...0 0 � � � N 37775ns�nsR = 26664 R 0 � � � 00 R � � � 0... ... . . . ...0 0 � � � R 37775ns�ns E =
26664 E 0 � � � 00 E � � � 0... ... . . . ...0 0 � � � E 37775ns�ns14



and H = 26664 H1H2...Hns
37775with N = [nij℄; nij = Z
h  i j d
 + Z
h � uhjjuhjj � r i j d
 (2.47)R = [rij℄; rij = Z
h uh � r j i d
 +Z
h �jjuhjjr Ti uh 
 uhr j d
 (2.48)E = [eij℄; eij = Z
h ksijr i � r j d
 + Z�
6h   i j dl (2.49)Hs = [(hs)i℄; (hs)i = Z
h h2s(Th;Ch) i d
 + Z�
6h 	s  i dl+ Z
h � uhjjuhjj � r i h2s(Th;Ch) d
 (2.50)where 
 denotes the tensor outer produt uuT . The streamline upwind funtiondoes not a�et the weighting of the di�usion term in (2.41) beause we have bilinearshape funtions. We haveZ
e � uhjjuhjj � r j ksijr2 i d
 = 0 (2.51)sine, on the interior of eah element,  ;ii is zero. In the numerial experimentswhere the SUPG stabilization term is needed, we use only bilinear elements and theelement domains are retangular. When the element domains are not retangular, ;ii will not in general vanish identially, and thus the term (2.51) may be not zero.However, for reasonable element shapes, this streamline upwind ontribution will besmall and an be negleted. This is not the ase for higher-order elements.We integrate the ODE system of equations (2.46) impliitly using a standard �method with � = 1=2, whih orresponds to the familiar Crank-Niolson method.At timestep tn, we have to solveN (Cn � Cn�1)�t + � [R(Un) + E ℄ Cn+ (1� �) �R(Un�1) + E� Cn�1= �Hn + (1� �)Hn�1 (2.52)Sine the reation term H is a nonlinear funtion of the unknown speies solution,15



we have to solve at eah timestep a nonlinear system of the formL (Cn) = 0 (2.53)where L (Cn) = (N + 4t2 (R(Un) + E))Cn � 4t2 Hn + I (2.54)with I = � (N � 4t2 (R(Un�1) + E))Cn�1 � 4t2 Hn�1 (2.55)and n denotes the timestep index. The nonlinear system (2.53) is solved by Newton'smethod in the present study. Given Cn0 , Un�1 and Un, at eah timestep and k =1; 2; : : :, solve linear systems of the formJ (Cnk � Cnk�1) = �V (2.56)with J = (N + 4t2 (R(Un) + E)) � 4t2 �Hnk�1�Cn (2.57)and V = (N + 4t2 (R(Un) + E))Cnk�1 � 4t2 Hnk�1 + I (2.58)where I is de�ned in (2.55) and Hnk�1 = H(Tnk�1;Cnk�1). Here the solution of thelinear systems (2.56) are also obtained using a diret frontal solver [46℄. In thenext setion the main algorithm to alulate approximate solutions for the veloity�eld, temperature and onentration vetor is onstruted. We also present theNavier-Stokes and transport algorithms in detail.2.4 Deoupled AlgorithmIn the present work, we onsider a deoupled formulation to solve the lass of ou-pled problems of interest. In this approah, the momentum and ontinuity equationsare solved �rst, in eah timestep or iteration, lagging the temperature and onen-tration vetor in the foring term. Then, the transport equations are solved withthe omputed veloities as input.The solution algorithm is obtained by simply 'lagging' the temperature and on-entration vetor h on the right hand side of (2.24). That is, for iterate n = 1,2, � � � we set Th = Tn�1h and h = n�1h in (2.24). This deouples the ow andtransport equations within eah global iteration. Our algorithm to alulate ap-proximate solutions for the veloity �eld and onentration vetor as time progress16



may be summarized by the steps in Figure 2.1. Here U0, T0 and C0 are the initialapproximations for the veloity �eld, temperature and onentration vetor, respe-tively. The timestep size 4t is initialized with (4t)min and is hosen adaptivelyusing the ontrol algorithms disussed in the next hapter. If the steady-state solu-tion is needed, we stop the alulations when the nondimensional kineti energy Kat two di�erent timesteps reahes a di�erene less than an input tolerane, that is,jKn �Kn�1j < �K jKnj; K = Z
 (u�2 + v�2)2 d
 (2.59)or when the approximate solutions at two di�erent timesteps reahes a di�ereneless than input toleranes,kUn �Un�1k < �u kUnk; kTn �Tn�1k < �T kTnk; kCn �Cn�1k < � kCnk(2.60)where n denotes the timestep index, k � k denotes Eulidean norm, u� and v� are thenondimensional veloity omponents, and �K , �u, �T and � are input toleranes.1. Input data: U0, T0, C0, tmax, (4t)min2. Initialize variables: n 1, t0  0, 4t (4t)min3. Repeat(a) tn  tn�1 +4t(b) Calulate the solutions Un, Tn, Cn() If (n > 1) alulate the new 4t using atimestep seletion algorithm(d) Update solutions: Un�1  Un, Tn�1  Tn, Cn�1  Cn(e) n n+ 1until (tn > tmax) Figure 2.1: Main AlgorithmIn step 3(b) of Figure 2.1, we have to alulate the approximated solution Unfor the veloity �eld at time tn. Figure 2.2 shows the algorithm to obtain Un givenUn�1, Tn�1, Cn�1, nsamax and �sa. The suessive approximation proess used tolinearize the non-linear semidisrete system of ordinary di�erential equations (2.24)is desribed in step 4 of the algorithm given in Figure 2.2. This proess is interruptedwhen the ondition in step 4(d) is ahieved or the number of suessive iterationsexeeds a maximum given value nsamax. We onsider the maximum number of17



suessive approximations allowed equal to nsamax = 10. At eah timestep, thetotal number of suessive approximations alulated is given by nsa in step 5.To alulate an approximate solution for the onentration vetor Cn in step3(b) of Figure 2.1, we have to use equations (2.56), (2.57), (2.58) and (2.55). Thetransport algorithmmay be summarized by the steps in Figure 2.3, and an analogousalgorithm an be used to alulate the temperature. If the nonlinear reation soureor sink term in the transport equation (2.6) is a linear funtion of the onentrationvetor or is zero, the approximate solutionCn is obtained with only two iterations instep 4 of Figure 2.3. Here, knmax = 10 is the maximum number of Newton iterationsallowed.To omplete our main algorithm given in Figure 2.1, we have to speify howthe stepsize is adaptively alulated in step 3(). In the next hapter we disuss indetails the ontrol algorithms for the timestep seletion we are using in this workand also the approah used by Winget and Hughes in [79℄.
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1. Input data: Un�1, Tn�1, Cn�1, nsamax, �sa.2. Initialize variables: k  1 , Un0  Un�13. Calulate M, A, D, B, Fn, Fn�1 using (2.25)-(2.31), (2.35).4. Repeat(a) Set Uk�1  Unk�1 in (2.35) and alulate D.(b) Set Un�1k  Un�1, alulate P, Q using (2.39), (2.40).() Solve the linear system (2.38) to obtain Unk.(d) Calulate ond jjUnk�Unk�1jjjjUnk jj(e) Update solution: Unk�1  Unk(f) k  k + 1until (k > nsamax) or (ond < �sa)5. Set Un  Unk and nsa k � 1Figure 2.2: Navier-Stokes Algorithm
1. Input data: Cn�1, Un�1, Un, knmax, �n.2. Initialize variables: k  1, Cn0  Cn�13. Calulate I in (2.55).4. Repeat(a) Calulate J and V using (2.57) and (2.58).(b) Solve the linear system (2.56) to obtain Cnk.() Calulate ond jjCnk�Cnk�1jjjjCnk jj(d) Update solution: Cnk�1  Cnk(e) k  k + 1until (k > knmax) or (ond < �n)5. Set Cn  Cnk Figure 2.3: Transport Algorithm
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Chapter 3Control AlgorithmsThe objetive here is to disuss timestep ontrol algorithms developed to improveeÆieny of odes to solve oupled problems. The outline of this hapter is thefollowing. In the �rst setion, we present our PID ontrol algorithm for timestepseletion based on ontrolling auray. Then, we disuss the ontrol algorithmused when the stepsize is limited by the onvergene rate of nonlinear iterations.Next, we desribe the two ontrol strategies for timestep seletion in simulation oftransient oupled ow and heat and mass transfer problems. Finally, we present thealgorithm for timestep seletion suggested by Winget and Hughes in [79℄, used herefor omparative purposes.3.1 PID Stepsize Control AlgorithmControl an be de�ned as the proess of making a system of variables follow apartiular value, alled the referene value. Closed-loop proess ontrol uses a mea-surement of the ontrolled variable and feedbak of this signal to ompare it witha referene value. The feedbak is supplied from an output sensor of some sort,and feeds an input of the ontroller to tell the ontroller how far the output isfrom its referene value. The ontroller uses this information to orret the outputerror. This kind of proess is used in appliations ranging, for example, from aironditioning thermostats to guidane and ontrol of airraft.A simple feedbak system onsists of an atuator, a ontrol devie often alledthe ontroller, the proess (or plant), and an output sensor, as shown in Figure 3.1.The entral omponent of a feedbak ontrol system is the proess, whose outputis to be ontrolled. In our ase we are interested in proess ontrol. The di�erenebetween the desired output and the atual output of the system measured by ansensor is equal to the error, whih is adjusted by the ontroller. The atuator is the20



devie that an inuene the ontrolled variable of the proess. The output of theontrol devie auses the atuator to modulate the proess in order to redue theerror.Desiredoutput-���� -Error Controller -Atuator - Proess -AtualoutputSensor r� Feedbak6 MeasuredoutputFigure 3.1: A feedbak system blok diagram of a basi losed-loop ontrol systemOne example of a feedbak ontrol system is the room-temperature ontrol sys-tem of a house [36℄. The proess is the house, the thermostat is the output sensor, thegas valve is the ontroller, and the furnae is the atuator. Suppose the thermostatis turned on when both the temperature in the house and the outside temperatureare below the referene temperature. The gas valve will be open ausing the furnaeto �re and heat to be supplied to the house. This is a losed loop system.One of the most widely used algorithms for losed-loop ontrol is the three-termontrol, known as the Proportional-Integral-Di�erential (PID) ontrol loop. Thepopularity of PID ontrollers an be attributed to their funtional simpliity andto their robust performane in a large range of operating onditions. The objetivein using PID ontrol algorithms is to ontrol the output along a smooth urve (vs.time) toward the set-point while minimizing overshoot, that is, the amount thesystem output response proeeds beyond the desire response.A PID ontrol algorithm inludes a term whih is proportional (P) to the outputerror, a term proportional to the integral (I) of the error, and a term proportionalto the derivative (D) of the error, and therefore has the form�S(�) = k��(�) + 1TI Z �0 �(~� )d~� + TD d�(�)d� � (3.1)or � _S(�) = kP _�(�) + kI�(�) + kD��(�) (3.2)where S(�) is the ontroller output deviation, _S(�) implies time rate of hange ofS, �(�) is the error, k is the proportional gain, TI is alled the integral or resettime, TD is the derivative time, and kP , kI and kD are the proportional, integral and21



derivative parameters, respetively. In order to adapt the ontinuous-time model toa disrete environment, we replae derivatives by di�erenes in (3.2) to obtain:�(Sn+1 � Sn) = kP (�n � �n�1) + kI �n + kD (�n � 2�n�1 + �n�2) (3.3)The proportional term ats like a rubber band in an analogous mehanialsystem: it exerts a restoring fore proportional to how muh the rubber band isstrethed from its original shape. The proportional term an redue error responsesto disturbanes as we adjust kD up or down. The integral term is added to redueor eliminate onstant steady state errors. It an do this beause it sums up errorsover time. The derivative feedbak is used in onjuntion with proportional and/orintegral feedbak to inrease the damping of the dynami response. In general, italso improves the stability of the system. These three kinds of ontrol attempt toprovide a good degree of error redution simultaneously with aeptable stabilityand damping [32, 52, 36℄.Designing a partiular PID ontrol loop requires merely tuning the ontroller.The onstants kP , kI , and kD have to be adjust to yield satisfatory ontrol. In-reasing kP and kI tends to redue system errors but may lead to instability, whileinreasing kD tends to improve stability. The seletion of the parameters is basiallya searh in a three-dimensional spae. There are several methods and rules proposedto solve this parameter seletion problem. Dorf and Bishop, [32℄, for instane, showmany design methods using root loi and performane indexes.In the numerial integration of ordinary di�erential equations, automati step-size ontrol is probably the most important means to improve eÆieny of a givenintegration method. Most timestep shemes are based on ontrolling auray asdetermined by trunation error estimates (e.g. Predition-Modi�ation-Corretion).The objetive of timestep seletion is minimize the omputational e�ort to onstrutan approximate solution of a given problem in aordane with a desired auray.This strategy is motivated by the fat that the global error an be bounded in termsof the loal trunation error per unit step [51, 59, 9, 37, 60℄.In general, a typial stepsize ontrol algorithm for integration methods, suh asexpliit Runge-Kutta methods of order p� 1, an be expressed as4tn+1 = �tolen �1=p4tn (3.4)where tol is some input tolerane and en is an estimate of the loal trunation errorin timestep 4tn. If the error is too big in one step, then the step is rejeted and22



re-alulated with a new step. One standard stepsize ontrol algorithm of this typean be found in [39℄. This kind of algorithm normally performs quite well. However,there are di�erential equations and integration methods for whih its performaneis unaeptable. The stepsize osillates tremendously and the number of rejetedsteps is too high. As a onsequene, muh omputation time is spent re-alulatingrejeted steps and hanging the stepsize.Gustafsson, Lind and S�oderlind [39℄ showed that the above problem (3.4) an beviewed as a standard automati ontrol problem. Equation (3.4) an be rewrittenas � (log4tn+1 � log4tn) = 1p (log en � log tol) (3.5)or �(Sn+1 � Sn) = kI �n (3.6)where Sn = log4tn (3.7)�n = log en � log tol (3.8)Equation (3.6) is equivalent to equation (3.3) if we take kP = 0, kI = 1/p and kD =0. Thus, the stepsize ontrol shemes based on the ontrol of maximum hange inkey variables are nothing but versions of the standard integral feedbak ontroller.We reognize log4tn as the ontrol signal or ontrol variable, the deviation (log en�log tol) as the ontrol error, log en as the plant output and log tol as the set point.Figure (3.2) shows a blok diagram of the feedbak ontrol problem. The proesstakes the timestep size 4tn as a input, alulates the solution of the problem, andprodues an error estimate en that is fed bak to the ontroller. The ontroller triesto selet the new timestep in a suh way that the quantity log en omes as lose aspossible to log tol along a smooth urve.
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Figure 3.2: Stepsize seletion viewed as a ontrol problem.Motivated by these ideas, Hairer and Wanner [41℄ design a new stepsize on-trol algorithm using the standard disrete PID ontroller (3.3). Substituting the23



de�nitions (3.7) and (3.8) into (3.3), we obtain� (log4tn+1 � log4tn) = kI(log en � log tol) +kP [(log en � log tol)� (log en�1 � log tol)℄ +kD [(log en � log tol)� 2(log en�1 � log tol) +(log en�2 � log tol)℄whih an be rearranged as,4tn+1 = (en�1en )kP (tolen )kI ( en�12enen�2 )kD 4tn; (3.9)where tol is some input tolerane, en is the measure of the hange of the quantitiesof interest in timestep 4tn, and kP , kI and kD are the PID parameters. Equation(3.9) an be rewritten using the normalized hanges in the variables of interest,e�n = en=tol, e�n�1 = en�1=tol and e�n�2 = en�2=tol,4tn+1 = (en�1en )kP ( 1en )kI ( en�12enen�2 )kD 4tn: (3.10)where we drop the supersript * for simpliity.Three onseutive estimates of the solution are needed to alulate the loalnormalized trunation errors en�2, en�1 and en in (3.10). In the present work, weonsider two di�erent ways to de�ne en. First, we may use the hanges in nodalveloities, temperature and onentration vetor to ompute en taking,en = max (eu; eT ; e) (3.11)where eu = e�utolu e�u = kUn �Un�1kkUnk (3.12)eT = e�TtolT e�T = kTn �Tn�1kkTnk (3.13)e = e�tol e� = kCn �Cn�1kkCnk (3.14)where tolu, tolT and tol are user supplied toleranes orresponding to the normalizedhanges in veloities, temperature and onentration vetor, respetively. Seond,we may de�ne en omputing hanges in the nondimensional kineti energy given byK = Z
 (u�2 + v�2)2 d
; (3.15)24



where u� and v� are the nondimensional veloity omponents. Now en is de�ned byen = e�KtolK ; e�K = jKn �Kn�1jjKnj (3.16)where tolK is a given tolerane. The nondimensional kineti energy is also a suitableparameter for monitoring the behavior of the uid and for onstruting bifurationdiagrams. Here we also use the kineti energy to obtain the steady-state solution.The algorithm for ontrolling the timestep has two main parts. First, a stepsize is assumed, and using the newly omputed solution, an a posteriori estimate ismade of the error in the step. Seond, this error measure is used to aept or rejetthe solution and modify the timestep aordingly. If the error is unaeptable, thenew solution is disarded and we restart the time integration in the previous stepwith a redued step size. If the error is aeptable, a new timestep is alulatedusing equation (3.9) and we proeed with the time integration. Here, the size of thetimestep is limited by the hanges in veloities, temperature and onentrations.The initial data for the timestep ontrol algorithm should be: two onseutiveestimates of the solution Un�1, Un, Tn�1, Tn, Cn�1, Cn, the urrent time t, thetimestep size 4t, the timestep index n and the number of suessive approximationsnsa. We have to de�ne the ontrol data: the minimum timestep size 4tmin, themaximum timestep size 4tmax, the PID parameters kP , kI , kD, the toleranes tolu,tolT , tol, and the maximum number of suessive approximations nsamax. Weinitialize the normalized errors, en�2  1:0 and en�1  1:0, the timestep size atthe previous step, 4tn = 4tprev  4tmin, and the number of rejeted timesteps,nrej  0. Our PID timestep seletion algorithm to alulate the new timestep size4tn+1 = 4t at time tn = t may be summarize by the steps in Figure 3.3.If a timestep gives an unaeptable value of en, the step is rejeted. Then the stepis repeated with a saled timestep size based on the magnitude of the error relativeto the tolerane. However, we �nd in numerial experiments that the number ofrejetions is very small, produing a smooth sequene of timesteps. In our algorithm,if the sequene of iterates of the nonlinear system is onverging at a slow rate, thetimestep is also rejeted. That is, if the number of suessive approximations nsais greater than the maximum number of suessive approximations allowed nsamax,the step size is rejeted.In almost all systems, atuators saturate beause the dynami range of pratialatuators is usually limited. Whenever ontrol saturation happens, the integrationwith the PID ontrol law has to stop or this may result in substantial overshoot.25



This problem is alled the windup e�et [36℄. So, to prevent an exessive growth orredution of the step size 4t, we supply timestep limiters 4tmin and 4tmax whihlimit the ontrol signal (anti-windup e�et). The e�et of the anti-windup is toredue both overshoot and the ontrol e�ort in the feedbak system. Omission ofthis tehnique may lead to deterioration of response and even instability.Although feedbak ontrol theory provides sophistiated tehniques to hoosePID parameters, robustness is required when a general �nite element method isused for a wide range of di�erent simulations. We perform parametri studies of thePID ontroller for values similar to those used by Gustafsson et al. [39℄ and also byCoutinho and Alves [24℄. We investigate values for kP ranging from 0.03 to 0.20,kI from 0.03 to 0.40 and kD from 0.003 to 0.02. Subsequent numerial experimentsdemonstrate that the PID ontroller is very robust for all the appliations studiedhere, and that we an adopt the following parameters: kP = 0.075, kI = 0.175 andkD = 0.01.3.2 Convergene Rate Control AlgorithmGustafsson and S�oderlind [40℄ establish a model for ontrolling the onvergene rateof the iterative method that relates the onvergene rate to the stepsize. Integratingan ODE, _y = f(y) (3.17)by impliit time-stepping methods leads to the nonlinear equationy =  h f(y) +	 (3.18)where h is the stepsize,  is a onstant of moderate size, harateristi of the dis-retization method, and 	 is a known vetor. Applying a �xed-point iteration to(3.18) yields yn+1 =  h f(yn) +	 (3.19)Let the error in the solution be denoted by en = yn�y. Using equations (3.18) and(3.19), and assuming that Jen = f(yn)� f(y) where J is a mean value Jaobian, weobtain en+1 =  hJ en (3.20)from whih it follows that jjen+1jj �  h jjJjj jjenjj: (3.21)26



1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, t, �t, n, nsa.2. Control data: 4tmin, 4tmax, kP, kI, kD, tolu, tolT, tol,nsamax.3. Initialize variables: en�2  1:0, en�1  1:0, 4tprev  4tmin,nrej  0.4. Calulate en using (3.11)-(3.14).5. If ((en > 1:0) or (nsa > nsamax)) and (4t > 4tmin) thenrejet the timestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1() t t�4t(d) n n� 1(e) fator = 1en(f) if (fator > 0:8) fator = 0:8(g) 4t max(fator4t;4tmin)(h) 4tprev  4t2=4tprevelse(i) alulate 4t ( en�1en )kP ( 1en )kI ( en�12en en�2 )kD 4tprev(j) 4t  max (4t, 4tmin)(k) 4t  min (4t, 4tmax)(l) 4tprev  4t(m) en�2  en�1, en�1  enendif Figure 3.3: PID Stepsize Control Algorithm
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Hene the onvergene rate depends on the stepsize h and the (unknown) JaobianJ. The stepsize-onvergene relation may be modeled by� = � h; (3.22)where � �  jjJjj and � is the onvergene rate depending on the spetral radiusof hJ. This model is on�rmed by atual omputations in [40℄ showing that theonvergene rate is in pratie largely (but not perfetly) proportional to h. To avoidexpensive eigenvalues estimates, � is obtained by using three onseutive iteratesyn�2, yn�1, and yn, as follows� = max�n = maxn kyn � yn�1kkyn�1 � yn�2k : (3.23)Assuming that the stepsize is limited by the onvergene rate of nonlinear iter-ations and that the hange in � from step to step is small, the new stepsize shouldbe hosen as �tn+1 = �ref� �tn (3.24)where �ref is a referene rate of onvergene and � is the estimated rate of on-vergene (3.23). Now the ontroller tries to keep the estimated onvergene rateas lose as possible of a referene value. The low quality of the estimate (3.23) ofthe onvergene rate � together with variations in � imply that it is usually notworthwhile trying a more sophistiated strategy than (3.24).We must �nd what onvergene rate �ref the ontroller should aim for to givethe most eÆient integration. This question an be analyzed using the tehniquepresented in [40℄. In general, any value 0:2 < �ref < 0:4 would be aeptable, and�ref � 0:2 gives performane near to optimal [40℄. It is neessary to oordinate theonvergene ontrol algorithm (3.24) with the stepsize ontrol strategy (3.9) so thateÆieny is maintained.3.3 The Timestep Control AlgorithmsWe propose two timestep ontrol algorithms based on ontrolling auray or theonvergene rate of the suessive iterations. These algorithms will be used to �ndtimestep sizes in steady-state and transient hemial reation systems, Rayleigh-Benard-Marangoni ows and heat and mass transfer problems. The algorithms arevery simple and easy to implement. 28



The �rst ontrol uses only the PID ontrol for timestep seletion (3.9) withhanges in veloities, temperature and onentrations. The Control 1 is de�ned by4t = �en�1en �kP � 1en�kI � en�12enen�2�kD4tprev (3.25)with en = max (eu; eT ; e); (3.26)where eu = e�utolu e�u = kUn �Un�1kkUnk (3.27)eT = e�TtolT e�T = kTn �Tn�1kkTnk (3.28)e = e�tol e� = kCn �Cn�1kkCnk (3.29)and �t represents the new timestep size and 4tprev is the timestep size at theprevious step. In the seond ontrol, the size of the timestep is limited by the hangesin the kineti energy or by the rate of onvergene of the suessive approximations.We take the minimum between the two values. The Control 2 is given by�t = min(�t�;�tr); (3.30)where �t� = �ref� �tprev (3.31)4tr = �en�1en �kP � 1en�kI � en�12enen�2�kD4tprev (3.32)with en = e�KtolK ; e�K = jKn �Kn�1jjKnj : (3.33)We should modify the algorithm given in Figure 3.3 to inlude both ontrols. Weneed the alulation of �t� in (3.31) to obtain the new timestep �t in (3.30). Thevalue of the estimated rate of onvergene � has to be alulated at every stepand passed to the PID timestep algorithm as a parameter. The referene rate ofonvergene �ref should be a onstant de�ned in the algorithm. Control 1 andControl 2 are embodied in the algorithm given in Figure 3.4. The variable ontrolin the algorithm indiates if the new timestep size �t is alulated using Control 1or Control 2. In the next setion we briey disuss the automati timestep seletionstrategy proposed by Winget and Hughes in [79℄.29



1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, Kn�1, Kn, t, �t, n,�, nsa.2. Control data: 4tmin, 4tmax, kP, kI, kD, tolu, tolT, tol, tolK,nsamax, �ref, ontrol.3. Initialize variables: en�2  1:0, en�1  1:0, 4tprev  4tmin,nrej  0.4. If ontrol = 1 thenalulate en using (3.26)-(3.29)elsealulate en using (3.33).5. If ((en > 1:0) or (nsa > nsamax)) and (4t > 4tmin) thenrejet the timestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1, Kn  Kn�1() t t�4t(d) n n� 1(e) fator = 1en(f) if (fator > 0:8) fator = 0:8(g) 4t max(fator4t;4tmin)(h) 4tprev  4t2=4tprevelse(i) alulate 4t ( en�1en )kP ( 1en )kI ( en�12en en�2 )kD 4tprev(j) If ontrol = 2 then(j1) alulate �t� using (3.31)(j2) 4t  min (4t�, 4t)(k) 4t  max (4t, 4tmin)(l) 4t  min (4t, 4tmax)(m) 4tprev  4t(n) en�2  en�1, en�1  enendif Figure 3.4: Algorithm for Control 1 and Control 2
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3.4 The Winget and Hughes ApproahWinget and Hughes [79℄ in their work on �nite element simulation of transient heatondution develop timestep seletion strategies based on heuristi rules. Errors andomputational eÆieny in the transient solution are ontrolled by this automatitimestep seletion strategy. The algorithm for ontrolling the timestep error hastwo parts: an posteriori error estimate for the newly omputed solution, and analgorithm that uses this error measure to aept or rejet the solution and modifythe timestep aordingly. The main ideas of the their approah are desribed below.The seletion of the timestep �t is based on ontrolling the maximum normalizederror en of quantities of interest with respet to user spei�ed error toleranes. Theobjetive is minimize this error, but at the same time keep �t as large as possible toavoid exessive \work" in obtaining the solution for a given time interval. As longas en � 1 the solution satis�es the user spei�ed error toleranes and solution erroris aeptable. Observe that a very small solution error indiates that the stepsizeshould be inreased to redue the amount of \work" required to integrate the timeinterval under onsideration. If the error is unaeptable, en > 1, the new solutionis rejeted and the time integration at the previous step is restarted with a reduedstepsize.Thus, the seletion of �t as a funtion of en is based on the two rules: atno time should a timestep be aeptable if en > 1, and the step size �t shouldbe inreased until en = O(1). The initial data for the algorithm should be: twoonseutive estimates of the solution Un�1, Un, Tn�1, Tn, Cn�1, Cn, the urrenttime t, the timestep size 4t and the timestep index n. We need to de�ne thefollowing parameters: the minimum timestep size4tmin, the maximum timestep size4tmax, N , M , egood, � and �. We initialize the variables nupdat 0, mupdat 0and �  1:25. The algorithm may be summarized by the steps in Figure 3.5.Observe in Figure 3.5 that if en > 1:0 then the solution is unaeptable: �t isreplaed by ��t, � < 1, the step growth rate � is reset to the initial value 1.25, andthe time integration is restarted at the previous step. If egood < en � 1 then thesolution is aeptable, the algorithm proeeds with the time integration using theurrent �t. If en � egood for N suessive steps then the solution is 'overly' aurate.So, �t is replaed by ��t, � > 1. The purpose of step (h) is to provide a variablestep size growth rate whih allows �t to be inreased at a fast enough rate to raiseen = O(1) for even the fastest deaying exponential. The ost e�etiveness of the31



algorithm depends on the subtle interplay between inreasing and dereasing stepsizes.The omputed step size should always be within user spei�ed bounds, �tmin� �t � �tmax. If �t is redued below �tmin, the user should be informed, andthe integration should proeed with �t = �tmin. The algorithm will generate anaurate solution for any value of � less than one if the lower bound �tmin is notenountered. In pratie they have found the values � = 0:5, egood = 0:25, N = 2,� = 1:25,M = 3, and � = 1:1 to perform well. In the next hapters, the eÆieny ofour two ontrol strategies for timestep seletion will be ompared with this approahsuggested by Winget and Hughes for some validation problems, hemial reationsystems, Rayleigh-Benard-Marangoni ows and double di�usive problems.
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1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, t, �t, n.2. Define Parameters: 4tmin, 4tmax, N = 2, M = 3, egood = 0:25,� = 1:1, � = 0:5.3. Initialize variables: nupdat 0, mupdat 0, �  1:25,nrej  0.4. Calulate en using (3.26)-(3.29).5. If (en > 1:0) and (4t > 4tmin) then rejet thetimestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1() t t�4t(d) n n� 1(e) �  1:25(f) 4t max(�4t;4tmin)else(g) If (en � egood) then(g1) nupdat nupdat+ 1(g2) If (nupdat = N) then(g21) nupdat 0(g22) 4t �4t(g23) mupdat mupdat+ 1(h) If (mupdat =M) then(h1) mupdat 0(h2) �  � �(h3) 4t �4t(i) 4t max(4t;4tmax)endif Figure 3.5: Winget and Hughes Approah
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Chapter 4Validation ProblemsThe main objetive of this hapter is the presentation of numerial experiments tovalidate the �nite element formulations for the Navier-Stokes and transport equa-tions, and our timestep ontrol algorithms. The validation is done separately foreah formulation using benhmark problems found in the literature or partiularnumerial examples onstruted to have known solutions. First, we present threetest problems to validate the Navier-Stokes equations. Then, four numerial ex-periments support our SUPG formulation for the transport equations. In the lastsetion, a numerial study is presented to assess the auray of the solutions whenour timestep ontrol strategies is applied. We also investigate the robustness of ourontroller.4.1 Navier-Stokes EquationsThis example is motivated by a partiular test problem introdued by Johnsonand Pitkaranta [50℄ for the Stokes ow and also studied by Song et al. [64℄ andCarey and Krishnan [14℄. The problem inludes a onstruted example with knownanalyti solution. Of partiular interest here is to examine the rates of onvergenewith respet to the mesh size for this test problem and ompare them with thetheoretial estimates obtained in [14℄.The equations desribing the problem are the transient Navier-Stokes equations(2.7) and (2.8) subjet to presribed boundary onditions (2.14). The analytisolution for this problem is de�ned by the smooth veloity omponentsu(t; x; y) = (t+ 1)2x2(1� x)2(2y � 6y2 + 4y3)v(t; x; y) = (t+ 1)2y2(1� y)2(�2x+ 6x2 � 4x3) (4.1)and the pressure �eld p(x; y) = x2 � y2 (4.2)34



on the unit square 
 = (0; 1) � (0; 1). This veloity �eld is divergent free andsatis�es the no-slip ondition u = 0 on the boundary of the square �
1. We assumethat f() = 0 in (2.7). Substituting (4.1) and (4.2) in the transient Navier-Stokesequation (2.7), we �nd that the body fore q = (q1; q2) is equal toq1(t; x; y) = 2(t+ 1)x2(1� x)2(2y � 6y2 + 4y3) +u(t; x; y)(t+ 1)2(2x� 6x2 + 4x3)(2y � 6y2 + 4y3) +v(t; x; y)(t+ 1)2(2� 12y + 12y2)(1� x)2 +(t+ 1)22(x� 0:02((1� 6(x� x2))(y � 3y2 + 2y3) +(1� x)2x2(�3 + 6y))) (4.3)q2(t; x; y) = 2(t+ 1)y2(1� y)2(�2x + 6x2 � 4x3)�u(t; x; y)(t+ 1)2y2(�2 + 12x� 12x2)(1� y)2 +v(t; x; y)(t+ 1)2(2y � 6y2 + 4y3)(�2x + 6x2 � 4x3) +(t + 1)22(y + 0:02((1� 6(y � y2))(�x + 3x2 � 2x3) +(1� y)2y2(3� 6x))): (4.4)The visosity is hosen as 0.01, and we take a onstant penalty parameter of � =10�8. The maximum nodal veloity is approximately 1:2� 10�2, whih orrespondsto a Reynolds number of 1.2.The approximate solutions are omputed for a sequene of uniform meshes withmesh size h = 12 , 14 , 18 , 116 and 132 , and all the approximations are shown for the �rsttimestep, that is, t0 = 10�5. The initial ondition is taken as the exat solution at theinitial time t = 0. We onsider bilinear elements with 1-point Gauss quadrature forthe penalty term (Case 1) and biquadrati elements with 2�2 Gauss quadrature forthe penalty term (Case 2). Our objetive now is to examine the rates of onvergenewith respet to the mesh size h and to ompare with the theoretial estimates.Table 4.1 shows the error in the approximate veloity in the L2-norm (k � k0)and H1-norm (k � k1) for the re�ned meshes in Case 1 (bilinear). The error in theapproximate veloity is plotted against mesh size h on a log-log sale in Figure 4.1.The respetive approximate slopes of 1.9026 and 0.9797 indiate global rates ofonvergene. The theoretial rates of onvergene in Case 1 in the k � k0 and k � k1norms are equal to 2 and 1, respetively.In Case 2 (biquadrati), the errors in the veloity in the norms k�k0 and k�k1 areshown in Table 4.2. Figure 4.2 shows the error in the approximate veloity plotted35



Mesh Size L2-norm H1-normh = 1/2 :7746371E � 02 :5754133E � 01h = 1/4 :2463945E � 02 :3099890E � 01h = 1/8 :6504252E � 03 :1551478E � 01h = 1/16 :1641288E � 03 :7734176E � 02h = 1/32 :4107556E � 04 :3861947E � 02Table 4.1: The L2-norm andH1-norm of error in the veloity solution in Case 1 (bilinear).
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Figure 4.1: Optimal global rates of onvergene for the veloity in Case 1 (bilinear).against mesh size h on a log-log sale. Now, the theoretial rates of onvergene inthe k �k0 and k �k1 norms are equal to 3 and 2, respetively. The slopes of the urvesyield rates of onvergene for the veloity 2.9628 and 2.0154 in the k � k0 and k � k1norms, respetively. Hene we �nd that the veloity approximations in both asesonverge towards the exat solution at optimal rates.Mesh Size L2-norm H1-normh = 1/2 :1021730E � 02 :1866761E � 01h = 1/4 :1404786E � 03 :4521962E � 02h = 1/8 :1786013E � 04 :1117877E � 02h = 1/16 :2242721E � 05 :2786661E � 03h = 1/32 :2806901E � 06 :6961698E � 04Table 4.2: The L2-norm and H1-norm of error in the veloity solutions in Case 2 (bi-quadrati).The seond numerial experiment is the bakward-faing step problem, whih hasbeome popular as a benhmark problem addressed by numerous authors developingow simulation odes. It onsists of a uid owing in a straight hannel whih36
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Figure 4.2: Optimal global rates of onvergene for the veloity in Case 2 (biquadrati).abruptly widens on one side. Results of physial experiments are given in Armalyet al. [1℄, and numerial results obtained using di�erent �nite element methods anbe found, for example, in Gartling [34℄ and Cruhaga [26℄. Griebel, Dornseifer andNeunhoe�er [38℄ solve the problem for di�erent Reynolds numbers using a �nitedi�erene approah. Numerial results using our penalty �nite element formulationare ompared with those published by Griebel, Dornseifer and Neunhoe�er in [38℄.The problem involves a visous inompressible ow over an isothermal two-dimensional bakward-faing step. Introduing the dimensionless variablesx� = xL; y� = yL; t� = tu1L ; u� = uu1 ; v� = vv1 ; p� = p� p1�1u21 (4.5)with given salar onstants L, u1, p1, �1, and substituting these relations into (2.7)and (2.14), we obtain the dimensionless Navier-Stokes equations of the problem�u�t + u � ru� 1Re�u+rp = 0 in 
 (4.6)r � u = 0 in 
 (4.7)where we dropped the supersript * for simpliity, and Re = �1u1L� is the Reynoldsnumber. Figure 4.3 shows the geometry of the problem and the boundary onditions.We assume walls : u = v = 0;inlet : u = 1:0; v = 0;exit at x = 30 : �u�x = 0; �v�x = 0:37



The initial veloity is u = 1:0, v = 0 in the upper half of the domain and u =v = 0 in the lower half. The obstale domain representing the step is the retangle[0; 7:5℄ � [0; 0:75℄ and the inow veloity at the left wall has the onstant valueu = 1:0. The length L measured from the step to the end of the alulation domainwas seleted to make the reattahment length independent of the alulation domain,and the boundary ondition at the outow setion was taken as that of a fullydeveloped ow. We solve the problem towards to steady-state for two Reynoldsnumbers, Re = 100 and Re = 500.
U = 1.0, V = 0

U = V = 0
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Figure 4.3: Bakward-faing step geometry with hannel dimensions and boundary on-ditions.The retangular hannel downstream of the step was divided into two regionsfor purposes of mesh generation. In the upstream region 0 � x � 15 the mesh isuniformly distributed aross the hannel and in the streamwise diretion. Elementsizes in the uniform grid region are (�x;�y) = (0:1875; 0:3), whih represents 40�5and 80�5 elements in the bottom (0 � y � 0:75) and top (0:75 � y � 1:5) upstreamregions, respetively. For the downstream region 15 � x � 30 and 0 � y � 1:5 themesh is uniform aross the hannel but smoothly graded in the ow diretion. Fori = 2; : : : ; nx, the nodes in the grid are alulated using the expression,x(i) = 15 + 15 � ( i� 1nx� 1)1:2 (4.8)where nx = 30 is the number of elements in the downstream region. We have 30�10elements in the downstream region. Elements near x = 30 are approximately twiethe length of elements near x = 15. For this mesh about two-thirds of the totalnumber of elements are loated in the upstream region. We have 600 elements inthe upstream region and 300 elements in the downstream region. The steady statesolution is obtained when kun�un�1k < 10�7 kunk. We used a �xed time step sizeof �t = 0:01 at the beginning of the proess and then we keep the time step sizeat �t = 0:1. Results were obtained using the four-node ontinuous bilinear veloityelements with 1-point Gauss quadrature for the penalty term.38



The basi harater of the bakward-faing step ow at Re = 100 and Re = 500is well known and is illustrated in the ontour plots of Figure 4.4. Note that the�gures show only the part of the omputational domain 6 � x � 20, sine thisontains all the essential features. The streamlines shown in Figure 4.4 reveal that,for Re = 100, the ow widens immediately behind the step and an eddy is formed.When visosity is further redued (Re = 500), the main ow is drawn downward,ausing it to separate from the upper boundary and leading to the formation of aseond eddy. Note that the �rst eddy inreases in size with inreasing Reynoldsnumber (Re = 500).

Figure 4.4: Flow over a bakward-faing step, streamlines at Re = 100 (top) and Re =500 (bottom).The lengths x1 and x2 of the upper and lower eddies as well the horizontal dis-tane x3 from the step to the upper eddy's point of separation are values often usedto haraterize the resulting ow, see Figure 4.5. Table 4.3 shows the harateristilengths - eah normalized by the step height s - obtained by Griebel, Dornseifer andNeunhoe�er in [38℄ for Re = 100 and Re = 500.Griebel et al.Re x1=s x2=s x3=s100 3.8 - -500 8.3 9.1 6.2Table 4.3: Flow over a bakward-faing step - harateristi lengthsFor Re = 100, we an observe in Figure 4.4 that the ow separates at the step39



Figure 4.5: Charateristi lengths.orner and forms a reirulation eddy with a reattahment point on the lower wallapproximately at x = 10:35 whih orresponds to x1 = 2:85 (x1=s = 3:8). This eddyinreases in size to x = 13:725 (x1=s = 8:3) with the inreasing Reynolds number(Re = 500). A seond eddy forms on the upper wall, for Re = 500, beginningapproximately at x = 12:15 (x3=s = 6:2) and terminating at x = 18:975 (x2=s =9:1). So, our results are in very good agreement with the results obtained by Griebel,Dornseifer and Neunhoe�er in [38℄.The third example is also a problem involving a steady visous inompressibleow over an isothermal two-dimensional bakward-faing step. Now, the standardstep geometry was simpli�ed by exluding the hannel upstream of the step (seeFigure 4.6). This problem has been addressed by numerous authors but we are goingto ompare our results with the results presented by Gartling in [34℄. The boundaryonditions for the step geometry inluded the usual no-slip veloity spei�ation forall solid surfae walls as shown in Figure 4.6. The inlet veloity �eld is spei�ed asa parallel ow given by u(y) = 24y(0:5 � y) and v(y) = 0 for 0 � y � 0:5. Thisprodues a maximum inow veloity of umax = 1:5 and an average inow veloity ofuavg = 1:0. We onsider homogeneous natural outow boundary ondition as shownin Figure 4.6. The problem is solved for a Reynolds number of Re = 800.
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Figure 4.6: Bakward-faing step geometry with hannel dimensions and boundary on-ditions.We use a mesh similar to the one used in the last example. In the upstream40



region 0 � x � 15 the mesh is uniformly distributed aross the hannel and in thestreamwise diretion. The lengths of the element size for the uniform grid region are(�x;�y) = (0:1; 0:0833), whih represents 150� 12 elements. For the downstreamregion 15 � x � 30 the mesh is uniform aross the hannel but smoothly gradedin the ow diretion. The nodes in the grid are alulated using (4.8). We have50�12 = 600 elements in the downstream region and 1800 elements in the upstreamregion. The steady state solution is obtained when kun � un�1k < 10�4 kunk.Results were omputed using the four-node ontinuous bilinear veloity elementswith 1-point Gauss quadrature for the penalty term, and we used a �xed time stepsize of �t = 0:01.The basi harater of the bakward-faing step ow at Re = 800 is illustratedin the streamfuntion ontour plots of Figure 4.7. The plot shows only part of thehannel sine few phenomena of interest our downstream of this point. Gartling in[34℄ found that the ow separates at the step orner and forms a large reirulationeddy with a reattahment point on the lower wall approximately at x = 6:10. Aseond stronger eddy is formed on the upper wall beginning approximately at x =4:85 and terminating at x = 10:48. Our results are in good agreement with theresults obtained by Gartling in [34℄.
Figure 4.7: Flow over a bakward-faing step, streamfuntion ontours at Re = 800.4.2 Transport EquationsOur �rst experiment is a test problem onstruted to have in the unit square domain[0; 1℄� [0; 1℄ and for t > 0 the analyti solution = 102(t+ 1)2x(x� 1)y(y � 1); (4.9)where  is the solution of the transport equation (2.19) onsidering one speiesomponent. The veloity �eld is the same used in the �rst example of the previous41



setion 4.1, whose veloity omponents areu(t; x; y) = (t+ 1)2x2(1� x)2(2y � 6y2 + 4y3)v(t; x; y) = (t+ 1)2y2(1� y)2(�2x + 6x2 � 4x3):We assume the di�usion tensor k11 = k22 = 1, k12 = k21 = 0 in (2.19), and thenonlinear reation term is taken to beh(x; y) = �2 + f; (4.10)where the funtion f is given byf = ��t + u ��x + v ��y � k11 �2�x2 � k22 �2�y2 + 2:The initial solution is de�ned as the exat solution at the initial time t = 0. Wespeify essential boundary onditions, (t; x; y) = 0 from (2.18) evaluated on theboundary of the unit square domain 
. For this test problem, of partiular interestis to examine the rates of onvergene of the onentration with respet to the meshsize h and the time step �t, and ompare them with the theoretial estimates.The transport equation is solved using the bilinear, biquadrati and six-nodetriangular elements desribed earlier for a sequene of uniform meshes with meshsize h = 12 ; 14 ; 18 ; 116 , and 132 . In the ase of bilinear elements, we also ompute thesolution at h = 164 . For the onvergene study with respet to h we keep a onstantsmall timestep of �t = 10�5. All the approximations are shown for the �rst timestep t = 10�5.The L2-norm of the error in the onentration solution for bilinear and six-nodetriangular elements is shown in Table 4.4. The L2-norm andH1-norm of the error forthe onentration using bilinear elements are plotted against mesh size in Figure 4.8on a log-log sale. The respetive slopes 1.9708 and 1.0202 indiate the global ratesof onvergene, and are in good agreement with the theoretial preditions 2 and 1,respetively.For biquadrati elements we obtain relative errors in the L2-norm of order lessthan 10�8 for any number of elements. This means that we obtain the exat solutionwithin roundo� error, as expeted. Optimal global rates of onvergene are alsoobtained for six-node triangular elements in both norms as shown in Figure 4.9.The rates of onvergene for the onentration approximation in the L2-norm andH1-norm for this example are 2.9480 and 1.9699, respetively.We also examined the order of onvergene of the solution with respet to thetime step �t. In view of the above onvergene results we selet for this study42



Mesh Size 4-node bilinear 6-node triangularh = 1/2 :12873418E + 01 :30613016E + 00h = 1/4 :35371359E + 00 :43871262E � 01h = 1/8 :90379168E � 01 :56366812E � 02h = 1/16 :22716094E � 01 :70867673E � 03h = 1/32 :56865900E � 02 :88027891E � 04Table 4.4: The L2-norm of the error in onentration for 4-node bilinear and 6-nodetriangular elements.
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Figure 4.8: Rates of onvergene for the onentration approximation in the L2-normand H1-norm with bilinear funtions
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Figure 4.9: Rates of onvergene for the onentration approximation in the L2-normand H1-norm with six-node triangular elements43



biquadrati basis funtions and a mesh with 2 � 2 elements. The approximatesolutions are ompared at the time t = 0:1 for values of �t equal to 10�2; 10�3; 10�4in Table 4.5. The error in the L2-norm is plotted against �t on a log-log sale inFigure 4.10. We know that the theoretial trunation error for the Crank-Niolsonsheme is O(�t2), and we see an approximate slope of 2.0397.Time Step Size L2-norm of the error�t = 10�2 :16462243E � 01�t = 10�3 :13438152E � 03�t = 10�4 :13711075E � 05Table 4.5: The L2-norm of error in the onentration solution for a mesh with 2�2biquadrati elements.
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Figure 4.10: Rates of onvergene for the onentration approximation in the L2-normusing Crank-Niolson method with 2� 2 biquadrati elementsThe seond experiment is a test problem found in [11℄ to demonstrate the e�e-tiveness of the streamline upwind method in preventing both \wiggles" and spuriousrossing di�usion. The ow is unidiretional, onstant (kk = 1), and skew to themesh (� = �=8) with disontinuous inow boundary ondition and homogeneousnatural outow boundary ondition as shown in Figure 4.11. The di�usivity oeÆ-ient is equal to k = 10�6 resulting in a Pelet number of Pe = 106. The steady-statesolution is obtained when kn � n�1k < 10�6 knk. The initial onditions are = 1 x = 0; 0 � y � 0:25 = 0 x = 0; 0:25 < y � 144



The problem is advetion dominated, and the solution is essentially one of pureadvetion. The \exat" solution is an advetion of the inow boundary in theow diretion. We use a 10-by-10 mesh of equal sized square elements, 2-by-2Gaussian quadrature to integrate all element ontributions, and a �xed timestepsize of �t = 0:01. Figure 4.12 shows the results using the Galerkin sheme and theSUPG formulation. We observe that as expeted the SUPG sheme is signi�antlybetter than the Galerkin method in reduing the spurious osillations on the oarsegrid.

Figure 4.11: Advetion skew to the mesh: problem statement.
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Figure 4.12: Advetion skew to the mesh with homogeneous natural outow boundaryondition: elevation of  - SUPG (left) and Galerkin (right).45



The third experiment is also a problem presented in [11℄. The ow is a rigidrotation about the enter of a unit square domain, 
 = [�0:5; 0:5℄� [�0:5; 0:5℄, withveloity omponents given by u = �y and v = x;and the di�usivity oeÆient is k = 10�6. On the external boundary of the square is set to zero, and on the internal 'boundary' OA,  is presribed to be a osinehill, as shown in Figure 4.13.
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Figure 4.13: Advetion in a rotating ow �eld: problem statement.We used a 30-by-30 mesh of equal sized square elements, and a �xed timestep sizeof �t = 0:01. The steady-state solution is obtained when kn � n�1k < 10�3 knk.The initial onditions are = os(2�(y + 0:25)) on OA = 0 on the rest of the domainThe problem is also advetion dominated. The exat solution is essentially a pureadvetion of the OA boundary ondition along the irular streamlines. The eleva-tion of  using the SUPG sheme is shown in Figure 4.14, and is in good agreementwith the exat solution.The last experiment with the SUPG method is a test problem presented in [20℄.The domain of the problem is the unit square, 
 = [0; 1℄ � [0; 1℄, disretized usinga uniform mesh of 20 � 20 bilinear elements. The di�usion oeÆient is set to46
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size. Our results are in good agreement with those presented in [20℄ for all threeases.
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Figure 4.15: Case 1 (left top), Case 2 (right top) and Case 3 (bottom).4.3 Timestep Control AlgorithmsOur main objetive now is to assess the auray of the solutions when the timestepontrol strategies studied previously are applied to a spei�ed problem. For thisinvestigation, we are going to apply Control 1 to the �rst validation problem for thetransport equations. We also want to verify whether the PID ontroller is robust ornot. Thus, we perform parametri studies for di�erent values of PID parameters kP ,kI and kD, and ompare our timestep ontrol algorithm to the strategy developed by48



Winget and Hughes [79℄. We use in these experiments a grid with 2� 2 biquadratielements. The initial timestep size is 10�4, and we allow a minimum and a maximumtime step sizes of 10�4 and 10�3, respetively. Changes in nodal onentration arealulated with an input tolerane of 10�5, and the alulations stop when the timeis greater than 0.1. We perform parametri studies of the timestep ontroller forvalues similar to those used by Gustafsson et al. [39℄ and also by Coutinho andAlves [24℄. We hoose values of kP ranging from 0.03 to 0.20, kI from 0.03 to 0.40,and kD from 0.003 to 0.02. We also study the ase where kP = kD = 0.Table 4.6 shows the L2-norm of the error in the onentration solution, the num-ber of time iterations, ntstep, the number of rejeted steps, nreje, the total numberof Newton iterations, newt, and the omputational e�ort, effort, de�ned here asnewt divided by the number Newton iterations obtained using a �xed timestep sizeof 10�4. We an see from Table 4.6 that the error in the approximate solution atthe �nal time is of order 10�6 for all ases studies. Moreover, with the PID ontrolstrategy we �nd approximate solutions with a muh smaller number of time stepswithout any signi�ant loss of auray. Observe that we need 100 time steps toobtain a solution with the same auray when the minimum �xed time step is used(Table 4.6). The step size seletion strategy developed by Winget and Hughes took66 time steps with no rejeted steps.ase kP , kI, kD error ntstep nreje newt effort1 0.05 0.05 0.005 .37023368E-05 66 0 132 0.662 0.1 0.3 0.015 .38890581E-05 62 0 124 0.623 0.075 0.175 0.01 .38512072E-05 62 0 124 0.624 0.1 0.16 0.011 .38680409E-05 63 0 126 0.635 0.06 0.13 0.008 .38456781E-05 63 0 126 0.636 0.08 0.216 0.0116 .38684855E-05 62 0 124 0.627 0.15 0.32 0.017 .38897674E-05 62 1 126 0.638 0.2 0.4 0.02 .38896720E-05 62 2 128 0.649 0.04 0.04 0.004 .36271440E-05 67 0 134 0.6710 0.03 0.03 0.003 .35057604E-05 69 0 138 0.6911 0.0 0.175 0.0 .38528566E-05 62 0 124 0.6212 0.075 0.175 0.0 .38512100E-05 62 0 124 0.6213 No ontrol .13711077E-05 100 0 200 114 Winget & Hughes .32976399E-05 66 0 132 0.66Table 4.6: Results for Control 1 using bilinear elements on a 2�2 grid.The PID ontroller is very robust as we an also see from Table 4.6. Althoughfeedbak ontrol theory provides tehniques to hoose the PID parameters, robust-49



ness is required when a general �nite element method is used for a wide range ofdi�erent simulations. The variation in the number of time iterations is very smallif we keep kP in the range 0.03 to 0.20, kI from 0.03 to 0.40, and kD from 0.003 to0.02. In the numerial problems presented in the next Chapter, we see that theseparameters are also suitable for the examples studied there. For these reasons, we�x the values of the PID parameters equal to kP = 0:075, kI = 0:175 and kD = 0:01in all the numerial experiments performed subsequently. To provide examples ofthe evolution of timesteps we show in Figures 4.16 and 4.17 Cases 3 and 14, wherewe may verify that the PID solution presents a smooth variation of timesteps whenonfronted with the Winget and Hughes test problems.
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Chapter 5Chemial Reation SystemsIn this hapter we apply our adaptive timestep ontrol algorithm to solve numeri-al appliations involving isothermal reation inside a porous atalyst and hemialreation on a atalyst setion with heat e�ets inluded. We ompare the perfor-mane of Control 1 and the time-stepping strategy proposed by Winget and Hughesin [79℄. One objetive is to validate our ode when Control 1 is applied to ombineddi�usion-reation proesses with heat e�ets inluded. We also want to demonstratethe eÆieny of our PID ontroller to solve nonlinear ow and reative transportproblems.5.1 Isothermal Reation5.1.1 Dimensionless EquationsWhen a atalyst partile made from a porous material impregnated with a atalytisubstane is submerged in a gas stream, the reatant A di�uses into the partile,reats on the atalyti surfae, and the produt B di�uses out, A! B. We assumethat the proess is isothermal, i.e., the heat generated by the reation an be ne-gleted, and homogeneous, the hemial hange takes plae in the entire volume ofthe uid. We also assume that the reation mehanism is known [33, 7℄.Consider a atalyst setion exposed to reatant A with onentration ̂ at thesurfae. The rate of disappearane of reatant A is given by the following seond-order, irreversible reation R = �k2where  is the onentration of reatant A in the neighborhood of the surfae, andk is a rate onstant. The governing equation of the problem is��t �Dr2 = �k2 (5.1)52



with boundary onditions �k ��x = 0 on �
2 (5.2) = ̂ on �
1 (5.3)and initial ondition (x; y; 0) = ̂0(x; y) in 
 (5.4)where D is the e�etive di�usivity measured experimentally, 
 = [0; L℄ � [0; L℄ isthe setion, �
1 is the right side of the domain, and �
2 = �
� �
1.The problem is saled as follows: x� = x=L, y� = y=L, t� = tD=L2, and � = =̂.Substituting these relations into (5.1), (5.2), (5.3) and (5.4), we obtain the saledform of the equations ��t �r2 = ��22 (5.5)��x = 0 on �
2 (5.6) = 1 on �
1 (5.7)(x; y; 0) = 0(x; y) in 
 (5.8)where we drop the supersript * for simpliity, 
 = [0; 1℄� [0; 1℄ is the dimensionlesssetion, �
1 is the right side of the domain, �
2 = �
 � �
1 and � is the Thielemodulus de�ned as � =pk̂L2=D:5.1.2 Isothermal Reation in a Catalyst SlabWe are interested in steady-state solutions of the problem for di�erent values of theThiele modulus �. We assume that the steady-state ours when kn+1 � nk <� kn+1k, where n denotes the timestep index, k � k denotes Eulidean norm, and �is equal to 10�7 in this example. Sine we are simulating a 1-D problem, we hoosein all ases a mesh with 16� 1 bilinear elements. We use Control 1, (3.25), (3.26),(3.27) and (3.29), to alulate all approximate steady-state solutions.The e�etiveness fator � gives the ratio of the amount reated with di�usion tothe amount that would be reated if the onentration were everywhere the same,and equal to the value at the boundary. In this example, the e�etiveness fator anbe de�ned by the equation � = R 10 �22dxR 10 �21dx : (5.9)53



Finlayson [33℄ alulates approximate solutions for the problem on the inter-val [0,1℄ using the orthogonal olloation method. He shows that for one interiorolloation point the e�etiveness fator an be expressed by� = 16 + 524 [�2:5 + (6:25 + 10�2)1=2℄2�4 : (5.10)The approximation is aurate for � � 2, and for larger values of � a higher ap-proximation is required to improve the results. The e�etiveness fator � is plottedversus the Thiele modulus � in Figure 5.1 for the olloation method and Galerkinmethod. We an see that the two urves oinide for � � 1:2.For large values of � Petersen [58℄ shows that an asymptoti solution is available.In this ase the general formula beomes� =r23 1�: (5.11)Figure 5.2 shows the e�etiveness fator � plotted against the Thiele modulus �for values of � � 3. Observe that aurate solutions are also obtained for largevalues of �. Consequently, the Galerkin formulation ombined with Control 1 givesadequate approximations for all values of �. The numerial �nite element solutionsfor di�erent values of the Thiele modulus are shown in Figure 5.3.5.2 Nonisothermal Reation5.2.1 Dimensionless EquationsConsider a �rst-order, irreversible reation in a atalyst setion 
 = [�L; L℄�[�L; L℄with reation rate given by R = �a  exp(��E=R̂T );where T is the absolute temperature, �E is the ativation energy, R̂ is the gasonstant, and a is onstant. The orresponding governing equations are:�p�T�t + �pu � rT � kr2T = a  exp(��ER̂T ) (5.12)��t + u � r�Dr2 = �a  exp(��ER̂T ); (5.13)with initial onditions T (x; y; 0) = ~h1(x; y)(x; y; 0) = ~h2(x; y); (5.14)54
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1�krT � n = hg(T � ~T ) on �
2 (5.15)�Dr � n = kg(� ~) on �
2;where � is the density, p is the spei� heat, k is the thermal ondutivity, D is thedi�usivity, hg is the heat transfer oeÆient, kg is the mass transfer oeÆient, n isthe unit outward normal, and �
 = �
1 [ �
2 is the boundary of the domain.The equations an be saled as follows: x� = xL , y� = yL , u� = u tsL , v� = v tsL ,� = 0 , T � = TT0 , and t� = tts . Substituting these relations into (5.12), (5.13), (5.14)and (5.15), we obtain the dimensionless unsteady equations for the nonisothermalproblem �T�t + u � rT � 1M1r2T = �2�M1 exp((1� 1T )) (5.16)��t + u � r� 1M2r2 = ��2M2 exp((1� 1T )); (5.17)with initial onditions T (x; y; 0) = h1(x; y)(x; y; 0) = h2(x; y); (5.18)
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and boundary onditionsrT � n = r � n = 0 on �
1�rT � n = Nu2 (T � g1(t)) on �
2 (5.19)�r � n = Sh2 (� g2(t)) on �
2;where we drop the supersript * for simpliity, M1 = �pL2=kts, M2 = L2=Dts,Nu = hg2L=D is the Nusselt number, Sh = kg2L=D is the Sherwood number,� = pk0L2=D is the Thiele modulus, and 
 = [0; 1℄ � [0; 1℄ is the dimensionlesssetion. Here k0 = a exp(�). The dimensionless variables  and � are de�ned as = �ER̂T0 ;� = (��HR)0DkT0 ;where ��HR is the heat of reation.5.2.2 Nonisothermal Reation on a Catalyst SetionFirst we solve the steady-state nonisothermal ase under onditions in whih theNusselt and Sherwood numbers are very large [33℄. The boundary onditions arerT � n = r � n = 0 on �
1T = 1:1 on �
2 = 1:0 on �
2where �
2 is the right side of the unit square 
, and �
1 = �
��
2. The funtionsh1 and h2 in (5.18) de�ning the initial onditions areh1(x; y) = h2(x; y) = 1 + sin(�x)sin(�y):The veloity �eld is given by the numerial solution of the Stokes ow [50, 64, 14℄,de�ned by the transient Navier-Stokes equations (2.7) and (2.8) subjet to presribedboundary onditions (2.14). The analyti solution for this problem is de�ned by thesmooth veloity omponentsu(x; y) = 100x2(1� x)2(2y � 6y2 + 4y3)v(x; y) = 100y2(1� y)2(�2x+ 6x2 � 4x3)and the pressure �eld is p(x; y) = 100(x2�y2). The steady-state solution is obtainedwhen the veloity �eld at two di�erent timesteps reahes a di�erene less than an57



input tolerane. The visosity is � = 0:01, and we take a penalty parameter of� = 10�8. This veloity �eld is divergene free and satis�es the no-slip onditionu = 0 on the entire boundary of the square �
. To �nd the veloity �eld we usebiquadrati basis funtions in a 4�4 grid with 2�2 point integration of the penaltyterm. Figure 5.4 shows the veloity for the Stokes problem.
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the PID parameters the number of time iterations, ntstep, the number of rejetedsteps, nreje, the number of Newton iterations, newt, and the omputational e�ort,effort, de�ned as newt divided by the number Newton iterations obtained usinga �xed timestep size of 10�3. We need about 800 Newton iterations to obtain thesolution applying the PID ontrol, in ontrast with 2998 Newton iterations (ase 10)when a �xed timestep is used. We have in this example a 3.75 times improvementin the omputational e�ort to ompute the solution within the same auray.ase kP , kI , kD ntstep nreje newt effort1 0.075 0.175 0.01 240 7 800 0.272 0.1 0.3 0.015 232 11 792 0.263 0.05 0.05 0.005 282 1 897 0.304 0.1 0.16 0.011 242 7 807 0.275 0.06 0.13 0.008 247 6 819 0.276 0.08 0.216 0.0116 237 9 800 0.277 0.2 0.4 0.02 229 14 791 0.268 0.03 0.03 0.003 315 0 981 0.339 0.0 0.175 0.0 241 8 807 0.2710 No Control 1101 0 2998 111 Winget & Hughes 264 8 876 0.29Table 5.1: Results for the PID timestep ontroller and Winget and Hughes approahThe PID ontrol is robust sine the number of Newton iterations does not hangemuh for di�erent hoies of PID parameters. We an also observe that the numberof rejeted timesteps is relatively small. The results for the Winget and Hughesapproah [79℄ are presented in ase 11. The PID ontroller �nds the steady-statesolution a little faster than the Winget and Hughes approah. Figure 5.5 and 5.6show respetively the timestep size against time for ase 1 and the Winget andHughes approah. We observe that the PID ontrol produes a very smooth urve,while in ontrast, the Winget and Hughes approah yields a urve with several steps.The initial temperature pro�le and the steady state solution are shown in Figure5.7. Note that all the steady-state solutions are indistinguishable.Next we solve the unsteady problem (5.16), (5.17), (5.18) and (5.19) with M1 =176, M2 = 199, Nu = 55:3, Sh = 66:5,  = 20, � = 0:6, � = 0:8, g1(x) = 1:1 andg2(x) = 1:0. The veloity �eld is the same alulated in the steady-state problem(Figure 5.4). The approximate solutions are alulated using a grid with 8�8 bilinearelements. We �rst obtained the approximate solution for a onstant timestep sizeof �t = 0.05. Figure 5.8 shows the transient temperature distribution in a atalyst59
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Figure 5.5: Timestep variation using the PID ontroller for ase 1 (steady-state problem).

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

T
im

e 
S

te
p

Time

Winget and Hughes approach

Figure 5.6: Timestep variation using Winget and Hughes approah (steady state prob-lem).
60



1.2

1.4

1.6

te
m

p
er

at
u

re

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

X Y

Z

temperature
1.9375
1.875
1.8125
1.75
1.6875
1.625
1.5625
1.5
1.4375
1.375
1.3125
1.25
1.1875
1.125
1.0625

t = 545

1.2

1.4

1.6

te
m

p
er

at
u

re

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8

1

y

X Y

Z

temperature
1.9375
1.875
1.8125
1.75
1.6875
1.625
1.5625
1.5
1.4375
1.375
1.3125
1.25
1.1875
1.125
1.0625

t = 0
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setion at times t = 0, 1, 5, 10 and 20.For a �xed time equal to 20, we ompare approximate solutions using the PIDontroller and Winget and Hughes approah. We start with a timestep size of 0.05,and we allow minimum and maximum time steps of 0.05 and 5, respetively. Thesolutions are obtained with a tolerane of 10�6 for the hanges in nodal temperatureand onentration. The PID parameters are kP = 0:075, kI = 0:175 and kD = 0:01.Table 5.2 shows the results for eah ase studied. We obtain the solution with423 Newton iterations using the PID ontroller, and we need 1223 Newton iterationswith a �xed timestep of 0.05. Thus, we have obtained this solution 2.89 times fasterwith no auray loss. Here we also obtain the solution using the PID ontroller alittle faster than using Winget and Hughes approah. Figure 5.9 and 5.10 show thetimestep size against time for the PID ontroller and Winget and Hughes approah,respetively. Observe that the PID ontrol produes a very smooth urve, while theWinget and Hughes approah yields a urve with several steps.ase ntstep nreje newt effortNo Control 400 0 1223 1PID Control 104 1 423 0.34Winget&Hughes 112 1 433 0.35Table 5.2: Results for the transient atalyst problem with timestep ontrol and Wingetand Hughes approah.
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Figure 5.8: Evolution of temperature solution using bilinear elements on a 8�8 grid
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Figure 5.9: Timestep variation using the PID ontroller (transient problem).
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Chapter 6Rayleigh-Benard-MarangoniProblemsThe objetive of this hapter is to ompare the eÆieny of Control 1 and Control 2with the sheme given by Winget and Hughes in [79℄. In partiular, we want to studythe performane of the ontrollers to solve Rayleigh-Benard-Marangoni problems.We perform numerial experiments for di�erent parameters of Rayleigh-Benard andRayleigh-Benard-Marangoni ows and ompare our results with those found in theliterature.6.1 Dimensionless EquationsNatural onvetion of an inompressible uid an be driven by buoyany fores dueto temperature gradients and thermoapillary fores aused by gradients in the sur-fae tension [6, 18, 29, 80℄. When buoyany is the dominant omponent in drivingthe ow, they are termed Rayleigh-Benard ows. When both buoyany and thermo-apillary e�ets provide the dominant fores driving the ow, the assoiated oupledow and transport problem is termed the Rayleigh-Benard-Marangoni problem. Weare partiularly interested in the interation of buoyany and thermoapillary fores,and their e�ets in a mirogravity environment where buoyany is small. However,the work is equally important for thin uid layers in a normal gravity environment.The e�et of buoyany is inluded as a temperature dependent body fore termin the momentum equations by means of the Boussinesq approximation [38℄. Theapplied temperature �eld indues a surfae tension equivalent to the appliation ofa shear stress at the horizontal free surfae. The veloity �eld enters the onvetiveterm in the heat transfer equation. The equations desribing Rayleigh-Benard-Marangoni ows are the oupled Navier Stokes equations for visous ow of an65



inompressible uid and the heat transfer equation,�u�t + u � ru� �r2u+ 1�rp = �T (T � T0)g in 
� I (6.1)r � u = 0 in 
� I (6.2)�p�T�t + �pu � rT �r � (krT ) = 0 in 
� I (6.3)where u is the veloity, p is the pressure, 
 is the ow domain, T is the temperature,T0 is the referene temperature, � is the kinemati visosity, � is the density, �T isthe thermal oeÆient, g is the gravity vetor, p is the spei� heat, k is the thermalondutivity, and I = [0; �t℄ is the time interval.We assume that there is no slip at the solid walls �
1, i.e., u = uw where uw isthe spei�ed wall boundary veloity. Temperature, ux or mixed thermal boundaryonditions may be applied. The Marangoni problem involves a shear stress boundaryin the free surfae �
2. The surfae stress, �fb, tangent to the free boundary is equalto the gradient in the surfae tension �,�fb = �ru � n = r� � � = ��T rT � � (6.4)where �T = ���T is determined empirially for a given uid and � is a unit tangentvetor. We assume here that � varies linearly with T , so �T is a onstant for a givenuid.The equations (6.1), (6.2) and (6.3) are saled as follows: x� = xL , y� = yL ,t� = t�L2 , u� = uL� , v� = vL� , T � = T�T0�T and p� = (p�)L2�2 where �T is a saling fator.Substituting these relations into (6.1), (6.2) and (6.3), we obtain the dimensionlessformulation of the equations�u�t + u � ru�r2u+rp = RaPrTg in 
� I (6.5)r � u = 0 in 
� I (6.6)�T�t + u � rT � 1Prr2T = 0 in 
� I (6.7)where we dropped the supersript * for simpliity. The non-dimensional onstantsare: the Rayleigh number Ra = �T�TgL3�� and the Prandtl number Pr = �� , where� = k�p is the thermal di�usivity. The boundary ondition on the free surfae (6.4)beomes ru � n = �MaPr rT � � (6.8)where Ma = �T�TL��� is the Marangoni number. Equations (6.5), (6.6) and (6.7)onstitute a oupled system of equations to be solved for veloity, pressure andtemperature. The �nite element formulation and the oupled algorithm to solve theproblem are desribed in Chapter 2. 66



6.2 Rayleigh-Benard FlowsThe lassi Rayleigh-Benard problem orresponds to ow between two horizontalplates where the top plate is held at a onstant (ool) temperature and the bot-tom plate is held at a higher onstant temperature. At ritial Rayleigh numberthe heated uid near the bottom plate beomes less dense and begins rise whilethe (ool) uid near the top is more dense and desends. This leads to irularonvetion ells in two dimensions. If the plate is removed from the upper sur-fae, then the thermoapillary surfae tration due to temperature gradients on thefree surfae also beomes important. This is a diret onsequene of the depen-dene of surfae tension on temperature (Marangoni e�et). Now, both buoyanyand thermoapillary e�ets may be important in driving the ow for this lassialRayleigh-Benard-Marangoni problem.The �rst ase studied involves natural onvetion in a unit square 
 = [0; 1℄�[0; 1℄with temperatures T = 1, T = 0 on the left and right walls respetively, adiabati topand bottom wall (no free surfae), with Pr = 0:71 and di�erent Rayleigh numbers,Ra, of 103, 104 and 105. The omputed Nusselt number at the left wall,Nu0 = Z 10 qdy; (6.9)where q is the heat ux, and the stream funtion at the midpoint,  mid, are om-pared to benhmark omputations given by Davis in [31, 30℄. The benhmark asereports the quantities to four signi�ant �gures, and the reported auray is within1 per ent for all Rayleigh numbers. Davis and Carey in [27℄ obtain parallel mul-tilevel solution of this problem with superior auray due to high-p �nite elementsimulations. We ompare approximate solutions using �xed timestep sizes, Control1, Control 2, the Winget and Hughes approah (W&H) and the benhmark solution,as shown in Table 6.1.The approximate veloities and temperature are alulated using 9-node isopara-metri quadrilaterals elements in a uniformmesh of 16�16 elements at Ra = 103; 104and 32� 32 elements at Ra = 105. The initial timestep size in all ases is hosen toallow onvergene of the suessive iterations at the beginning of the proess. Thatis, if we start with a timestep size greater than the initial timesteps hosen here,the suessive approximation iterations failed to onverge after a few time steps.We start with a timestep size of 0.01 at Ra = 103; 104 and 0.001 at Ra = 105. Weassume that the steady-state ours when the kineti energy at two di�erent timesteps reahes a relative di�erene less than a given tolerane, tolst. We establish67



that the steady-state ours when tolst = 10�4 at Ra = 103 and tolst = 10�3 atRa = 104; 105.Table 6.1: Comparison of spei� results to benhmark aseFixed �t Control 1 Control 2 W&H BenhmarkRa Nu0  mid Nu0  mid Nu0  mid Nu0  mid Nu0  mid103 1.118 1.175 1.119 1.175 1.117 1.174 1.119 1.175 1.117 1.174104 2.255 5.067 2.236 5.077 2.246 5.064 2.249 5.066 2.238 5.071105 4.550 9.134 4.518 9.036 4.553 9.120 4.503 8.925 4.509 9.111Table 6.2 ontains the perentage relative di�erenes between the values alu-lated by eah ase studied and the orresponding values of the benhmark solutionfor di�erent Rayleigh numbers. The results are in good agreement for all ases, withperentage errors no more than 1% in all quantities for Control 1 and Control 2, seeTable 6.2. However, observe that the di�erenes inrease as Ra inreases due to thegrowing diÆulty of the problem. The Winget and Hughes approah also produesgood results with perentage errors no more than 2% in all quantities. The streamfuntion ontours and temperature ontours for Ra = 103, Ra = 104 and Ra = 105are shown in Figure 6.1 and Figure 6.2, respetively. The ontour values are thesame as in Davis [31℄ and show exellent agreement with his results.Table 6.2: Perentage errorsFixed �t Control 1 Control 2 W&HRa Nu0  mid Nu0  mid Nu0  mid Nu0  mid103 0.1 0.1 0.2 0.1 0.0 0.0 0.2 0.1104 0.8 0.1 0.1 0.1 0.4 0.1 0.5 0.1105 0.9 0.3 0.2 0.8 1.0 0.1 0.1 2.0Now we ompare the omputational e�ort to alulate the solution for eah asestudied. The omputational e�ort is measured by the total number of suessiveapproximations needed to alulate the veloity �eld using one of the approahesdivided by the number of suessive approximations obtained using a �xed timestepsize. For eah ase, we alulate the number of time iterations, ntstep, the numberof rejeted steps, nreje, the total number of suessive approximations, nsa, andthe omputational e�ort, effort. The PID parameters in all ases are kp = 0:075,ki = 0:175 and kd = 0:01 [75, 74, 71℄. Sine Control 2 uses the hange in the kineti68



Figure 6.1: Stream funtions ontours for Ra = 103 (equally spaed (0.1174) between-1.0566 and 0), Ra = 104 (equally spaed (0.5071) between -4.5639 and 0) and Ra = 105(equally spaed (0.9607) between -9.507 and 0).
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Figure 6.2: Temperature ontours for Ra = 103, Ra = 104 and Ra = 105 (equally spaed(0.1) between 1 and 0).
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energy to obtain the timestep size, we show in Figure 6.3 the nondimensional kinetienergy for Ra = 103, Ra = 104 and Ra = 105.

Figure 6.3: Nondimensional kineti energy plotted as a funtion of time for Ra = 103,Ra = 104 and Ra = 105.The results for Ra = 103 are shown in Table 6.3. We start with a minimumtimestep size of 0.01, and we allow a maximum timestep size of 0.1. We de�nea tolerane of 0.1 for hanges in nodal veloities and temperature. The toleraneorresponding to the normalized hanges in kineti energy is equal to one. Thereferene rate of onvergene is equal to 0.2. We an observe in Table 6.3 thatthe number of suessive approximations neessary to alulate the approximatesolutions is redued for all approahes. However, Control 2 presents the best results.We obtain the solution with 24 suessive iterations using Control 2, and we need 64iterations with the �xed timestep size. Thus, we are able to alulate the solution2.4 times faster using Control 2 without any signi�ant loss of auray. For Control2, the hoie of the timestep is dominated by the hanges in the kineti energy inall iterations.Figure 6.4 shows the timestep size and the number of suessive approximationsagainst time using Control 1, Control 2 and the Winget and Hughes approah forRa = 103. In this example, the kineti energy is the most suitable parameter tohoose the timestep, sine Control 2 gives the best result. It is worthwhile notingalso that Control 2 begins to at before any other approah and, after a few steps,71



Table 6.3: Computational e�ort for the natural onvetion problem, Ra = 103.Ra = 103 ntstep nreje nsa effortFixed �t 24 0 58 1Control 1 11 0 32 0.55Control 2 8 0 24 0.41Winget&Hughes 15 0 41 0.71provides a timestep equal to the maximum stepsize allowed, 0.1.Table 6.4 shows the results for Ra = 104. We start with a minimum timestep of0.01, and we allow a maximum timestep size of 0.1. We de�ne toleranes of 0.2, 0.1and 0.5 for hanges in nodal veloities, temperature and kineti energy, respetively.The referene rate of onvergene is equal to 0.19. Here we also improve eÆienyfor all approahes, reduing the number of suessive approximations neessary toalulate the approximate solutions. Control 1 and Control 2 are equivalent interms of eÆieny. The hoie of the timestep in Control 2 is dominated by theonvergene rate of the suessive iterations, with only two time iterations limited bythe hanges in the kineti energy. Control 1, whih is based on ontrolling auray,gives timestep sizes larger than the ones alulated by Control 2, see Figure 6.5.Table 6.4: Computational e�ort for the natural onvetion problem, Ra = 104.Ra = 104 ntstep nreje nsa effortFixed �t 14 0 56 1Control 1 10 0 47 0.84Control 2 10 0 45 0.80Winget&Hughes 12 0 52 0.93Table 6.5 shows the results for Ra = 105. We start with a minimum timestepsize of 0.001, and we allow a maximum timestep size of 0.1. We de�ne a toleraneof 0.1 for hanges in nodal veloities and temperature. The tolerane orrespondingto the normalized hanges in kineti energy is equal to one. The referene rateof onvergene is equal to 0.25. Now, Control 2 is dominated by the hanges inthe kineti energy, with only 4 iterations alulated aording to the onvergenerate of the suessive iterations. All approahes redue the number of suessiveapproximations to obtain the solution, but Control 2 gives the best result. Thetotal number of suessive approximations obtained by Control 1 an be redued ifwe de�ne large toleranes for hanges in nodal veloities and temperature. However,72



the results will loose auray, yielding errors greater than 1% as the ase of theWinget and Hughes approah (see Table 6.2).Table 6.5: Computational e�ort for the natural onvetion problem, Ra = 105.Ra = 105 ntstep nreje nsa effortFixed �t 108 0 363 1Control 1 48 5 260 0.72Control 2 39 0 189 0.52Winget&Hughes 48 3 244 0.67Figure 6.6 shows the timestep size and the number of suessive approximationsagainst time using Control 1, Control 2 and the Winget and Hughes approah forRa = 105. Sine the size of the timestep inreases signi�antly when time progressfor Control 1 and the Winget and Hughes approah, the number of suessive it-erations to obtain onvergene of the nonlinear proess at eah orresponding timealso inreases. This fat is responsible for the larger number of suessive iterationsalulated by these two approahes when ompared with Control 2.In the seond experiment the two horizontal walls are �xed at di�erent temper-atures. In the previous example involving lateral walls at di�erent temperatures,even small temperature di�erenes lead to a temperature-driven onvetion. In on-trast with the on�guration of the previous example, in this ase the temperaturedi�erene must exeed a ritial Rayleigh number value before any ow sets in. A-ording to Bejan in [5℄, natural onvetion will develop only for Rayleigh numbersRa >� 1108. Moreover, the inuene of the lateral walls (arrying no slip ondi-tions) produes three-dimensional e�ets, and hene the ow may be approximatedas two-dimensional in only two ases: if the lateral walls are far enough apart thattheir e�et may be negleted and if the depth of the horizontal walls is very small(Hele-Shaw ow).We investigate the formation of Rayleigh-Benard ells in this example treatingthe ow in a two-dimensional simulation. We onsider the ow in an air-�lledretangular ontainer with aspet ratio 4:1 (length:width), insulated lateral walls,Pr = 0:72 and Ra = 30000. The temperatures on the bottom surfae and top surfaeare T = 1 and T = 0, respetively. The approximate veloity and temperature arealulated using biquadrati shape funtions with a grid of 32 � 8 elements, andthe ontrol algorithms for timestep seletion. We onsider the steady-state problemand the omputed veloity �eld, streamlines and temperature ontours are shown73



Figure 6.4: Timestep variation (top) and number of suessive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approah for Ra = 103.
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Figure 6.5: Timestep variation (top) and number of suessive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approah for Ra = 104.
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Figure 6.6: Timestep variation (top) and number of suessive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approah for Ra = 105.
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in Figure 6.7. There are six reirulation ells, and the results agree with thoseobtained by Griebel, Dornseifer and Neunhoe�er in [38℄.Now, we assume that the steady-state is reahed when kUn � Un�1k < 3 �10�3 kUnk and kTn � Tn�1k < 10�3 kTnk. We set a tolerane of 0.01 for hangesin nodal veloities and temperature and 0.8 for hanges in the kineti energy. Westart with a timestep size of 0.001, and we allow minimum and maximum time stepsof 0.001 and 0.5, respetively. This starting timestep is the largest for whih weobtained onvergene in the suessive iterations. The referene rate of onvergeneof nonlinear iterations is hosen equal to 0.35 in this example. The PID parametersare kp = 0:075,ki = 0:175 and kd = 0:01. Table 6.6 shows the omputational e�ortfor this problem alulated for eah ase studied.Table 6.6: Computational e�ort for the ow in a ontainer with aspet ratio 4:1.ntstep nreje nsa effortFixed �t 241 0 731 1Control 1 192 0 643 0.88Control 2 89 1 380 0.52Winget&Hughes 193 0 644 0.88As we an see in Table 6.6, we obtain the solutions with a redued number ofsuessive approximation iterations using all the ontrollers. However, Control 2gives the smallest omputational e�ort. With a �xed timestep size of 0.001 we need731 iterations, and only 380 iterations when Control 2 is applied. Thus, the solutionis obtained 1.9 times faster using Control 2. In this example, Control 1 and theapproah used by Winget and Hughes are equivalents in terms of the omputationale�ort. Figure 6.8 shows the timestep size against time and the number of suessiveapproximation iterations using Control 1, Control 2 and the Winget and Hughesapproah.6.3 Rayleigh-Benard-Marangoni FlowsThis numerial experiment involves buoyany fores due to temperature gradientsand thermoapillary fores aused by gradients in the surfae tension. The objetiveis to ompare pure buoyany-driven ow with thermo-apillary-driven ow. The owdomain and boundary onditions orrespond to those in the �rst example of theprevious setion (T = 1 and T = 0 on the left and right walls, respetively), exept77



Figure 6.7: Vetor �eld, streamlines, and temperature ontours for the ow in a ontainerwith aspet ratio 4:1that the top is now a at free surfae. The Rayleigh number is 103, the Prandtlnumber is Pr = 0:71, and the problem is solved at di�erent Marangoni numbersMa. The approximate steady-state veloities and temperature are alulated usingbiquadrati elements in a uniform mesh with size h = 116 . Here we assume that thesteady-state ours when kUn+1�Unk < �u kUn+1k and kTn+1�Tnk < �T kTn+1k,where n denotes the timestep index, k � k denotes Eulidean norm, and �u and �Tare input toleranes.First, we �nd solutions at Ma = 1, 100 and 1000 (see Figure 6.9). At Ma = 1,the e�et of the surfae tension is small and the streamlines are roughly irular.The solution is similar in struture to the lassi buoyany driven ow studied inthe �rst example, Figure 6.1. At Ma = 100, the e�et of the thermoapillaryfore at the free surfae is more pronouned. The streamlines are onentrated nearthe top boundary. At Ma = 1000, the ow is being strongly driven at the topboundary as seen in similar experiments presented by Zebib, Homsy and Meiburg[80℄. Seond, we onsider the ase of a uid where the surfae tension ats in thediretion ontrary to the ow. This is the ase for ertain uids when inpuritiesare presented, see MLay and Carey in [61℄. Figure 6.10 shows the stream funtion78



Figure 6.8: Timestep variation (top) and number of suessive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approah for the ow in a ontainerwith aspet ratio 4:1.
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ontours for Ma = �10 and Ma = �100. The ontours at Ma = �10 look similarto the solution at Ma = 1 due to the small thermoapillary e�et. At Ma = �100,the surfae tension e�et is strong enough to reverse the ow on the top surfae andtwo ells are formed.To study the behavior of the PID timestep seletion in the seond problem, weselet the ase where Ma = 100. The steady-state solution is obtained at �u =10�3 and �T = 10�4. We start with a minimum timestep size of 0.001, and weallow a maximum timestep of 0.1. Solutions are obtained with toleranes of 0.2and 0.1 for hanges in nodal veloities and temperature, respetively. The toleraneorresponding to the normalized hanges in kineti energy is equal to one. Thereferene rate of onvergene is equal to 0.2. Figure 6.11 shows the time evolutionof the nondimensional kineti energy for Pr = 0:71, Ra = 1000 and Ma = 100.Note that the kineti energy presents smooth osillations, damped as the solutionprogresses towards the steady-state.As we an see in Table 6.7, we obtain the solutions with 57 suessive approxi-mation iterations using Control 2. With a �xed timestep size of 0.001, we need 272iterations. Thus, the solutions are obtained 4.8 times faster using Control 2. Here,the hoie of the timestep in Control 2 is dominated by the hanges in the kinetienergy, with only three time iterations limited by the hanges in the onvergenerate of the suessive iterations. Figure 6.12 shows the timestep variation and thenumber of suessive approximations against time using Control 1, Control 2 and theWinget and Hughes approah, respetively. We an observe that Control 1 yields asmoother sequene of time steps than the Winget and Hughes approah. However,these two approahes are equivalent in terms of eÆieny. Control 2 alulates thesolutions with the smallest omputational e�ort.
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Figure 6.9: Stream funtion ontours for Ma = 1 (equally spaed (0.150625) between-1.32 and -0.115), Ma = 100 (equally spaed (0.206625) between -1.81 and -0.157) andMa = 1000 (equally spaed (0.4383) between -3.9234 and -0.417).

Figure 6.10: Stream funtion ontours forMa = �10 (equally spaed (0.143875) between-1.26 and -0.109) and Ma = �100 (equally spaed (0.133) between -0.71 and 0.354).81



Figure 6.11: Nondimensional kineti energy plotted as a funtion of time for Pr = 0:71,Ra = 1000 and Ma = 100 in a unit square.

Table 6.7: Computational e�ort for the Rayleigh-Benard-Marangoni problem, Pr = 0:71,Ra = 1000 and Ma = 100 in a unit square.Case ntstep nreje nsa effortFixed �t 118 0 272 1Control 1 23 0 75 0.28Control 2 13 0 57 0.21Winget&Hughes 25 0 80 0.29
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Figure 6.12: Timestep variation (top) and number of suessive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approah for Pr = 0:71, Ra =1000 and Ma = 100 in a unit square.
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Chapter 7Heat and Mass Transfer ProblemsIn this Chapter, we solve simultaneous heat and mass transfer by natural onvetionabove horizontal surfaes. Numerial results for di�erent problems with severalparameters that inuene the onvetion are obtained and ompared with reportedexperiments.7.1 Dimensionless EquationsWe study natural onvetion with ombined buoyanies of heat and mass di�usionover horizontal surfaes using a numerial experiment similar to the problem re-ported in [65℄. The geometry and oordinate system are shown in Figure 7.1, wherethe length of the horizontal surfae is L, the temperature of the lower heated sur-fae is Tw and the onentration of the di�using speies is w. We assume that theow is two-dimensional and laminar, the thermo-physial properties of the uid areonstant, and visous dissipation are negligible. Under these assumptions, the ow,thermal, and onentration �elds adjaent to the horizontal surfae an be desribedby the following equations,�u�x + �v�y = 0 (7.1)�u�t + u�u�x + v�u�y = � 1� �p�x + �(�2u�x2 + �2u�y2 ) (7.2)�v�t + u�v�x + v�v�y = � 1� �p�y + �(�2v�x2 + �2v�y2 )� g�T (T � T1) + g�(� 1) (7.3)�T�t + u�T�x + v�T�y = �T (�2T�x2 + �2T�y2 ) (7.4)��t + u��x + v ��y = �( �2�x2 + �2�y2 ) (7.5)
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Figure 7.1: Geometry and oordinate system.in 
� I, where I = (0; �t℄ is the time interval, u is the horizontal omponent of theveloity, v is the vertial omponent of the veloity,  is the onentration of thedi�using speies, T is the temperature, p is the pressure, � is the density, � is thekinemati visosity, g is the gravitational aeleration, �T is the oeÆient of thermalexpansion, � is the volumetri oeÆient due to onentration, T1 and 1 are thereferene remote temperature and onentration, �T is the thermal di�usivity and� is the speies di�usion oeÆient.In order to make the results more general in their appliability, the above equa-tions are saled using the following dimensionless variables:x� = xL; y� = yL; t� = tu0L ; u� = uu0 ; v� = vv0 ;u0 =pg�T�TL; T � = T � T1�T ; � = � 1� ; p� = p�u20 (7.6)where �T = Tw�T1 and � = w�1 are the initial temperature and onentrationdi�erenes, respetively. Substituting these relations into (7.1)-(7.5), we get thenondimensional form of mass onservation, two momentum, energy onservationand speies onservation equations�u�x + �v�y = 0 (7.7)�u�t + u�u�x + v�u�y = � �p�x + 1pGr (�2u�x2 + �2u�y2 ) (7.8)�v�t + u�v�x + v�v�y = � �p�y + 1pGr (�2v�x2 + �2v�y2 )� T + N (7.9)�T�t + u�T�x + v�T�y = 1pGrPr (�2T�x2 + �2T�y2 ) (7.10)��t + u��x + v ��y = 1pGrS( �2�x2 + �2�y2 ) (7.11)85



where we have dropped the supersript * for simpliity. The non-dimensionalonstants are: the thermal Grashof number Gr = g�T�TL3�2 , the Prandtl numberPr = ��T , the Shmidt number S = �� and the Buoyany number N = ���T�T .In the momentum equation (7.9), the buoyany ratio N is the de�ning parameterfor the relative strengths between speies and thermal buoyanies. The thermalbuoyany ats vertially upward. The diretion of speies-generated buoyany foredepends on the moleular weight of the speies relative to the medium in whih itdi�uses. Boundary and initial onditions omplete the mathematial statement ofthe problem and will be disussed in the next setion.7.2 Numerial ExperimentsWe solve the problem (7.7)-(7.11) assuming that the Prandtl and Shmidt numbersare equal and as a onsequene, the thermal and onentration �elds are idential.First, we onsider a numerial experiment for thermal onvetion, i.e., N = 0, overa horizontal surfae with a entral plume, and our results are ompared to exper-imental data given by Ishiguro et al. in [47℄ and numerial alulations presentedby Sripada and Angirasa in [65℄. Then, we alulate the approximate solutions fora test problem shown by Sripada and Angirasa in [65℄ with N = �1.The arti�ial boundary onditions, for the retangular domain 0 � x � 1; 0 �y � 0:5, are shown in Figure 7.2. At the lower wall (y = 0; 0 < x < 1), we assumeno slip ondition, u = v = 0, and temperature and speies onentration equal to1, T =  = 1, for the simulation. On the vertial sides, we assume zero vertialveloity, v = 0, and zero ux for the horizontal veloity, �u�x = 0. In the inow, weimpose temperature and speies onentration equals to zero, Tin = in = 0, and inthe outow, we assume temperature and speies onentration ux equals to zero,�T�x jout = ��x jout = 0. This an be aomplished in the ode by testing for the sign ofthe appropriate veloity omponent on the boundary. On the open horizontal top(y = 0:5, 0 � x � 1), onditions similar to the vertial sides are applied: u = 0,�v�y = 0, Tin = in = 0 and �T�y jout = ��y jout = 0. For the initial onditions, we assumethat u = v = 0 and T =  = 0 for all values of x and y. This physially means thatthe lower surfae is impulsively heated at t = 0, and the speies onentration issimultaneously inreased to a onstant value on the surfae.In the �rst experiment, we solve the problem for thermal onvetion, i.e., N = 0,over a horizontal surfae with a entral plume. Numerial alulations are arried86



Figure 7.2: Arti�ial Boundary Conditions of the Problem.out for Pr = S = 7, and Gr = 0:2� 105. The approximate veloities, temperatureand speies onentration are alulated using 9-node isoparametri quadrilateralelements in a uniform mesh of 32� 16 elements, and we use a �xed timestep size of10�3. The steady-state is ahieved when the nondimensional kineti energy at twodi�erent timesteps reahes a di�erene less than 10�4. The Nusselt number, de�nedas Nu = R 10 (��T�y )y=0 dx, is obtained and ompared with the numerial experimentsof [65℄ and the experimental data of [47℄, see Table 7.1. The agreement is found tobe good. NuSripada et al. [65℄ 12.22Ishiguro et al. [47℄ 12:8� 0:1Present 12.936Table 7.1: Comparison with experimental data [47℄ and numerial alulations [65℄ forN = 0 (Pr = S = 7, and Gr = 0:2 � 105).In the seond experiment, we assume Pr = S = 0:7, GrT = 105 and N =�1. The �nite element mesh and the timestep size are the same used in the �rstexample. When N = �1 for Pr = S, the thermal and speies buoyanies are equalin magnitude and opposite in diretion with thermal buoyany ating vertiallyupward, and the speies buoyany opposing it. Hene, they anel out eah other,resulting in no ow at all. When N � 0, the ow resembles that of pure thermalonvetion. Here the uid is entrained from the side, and partly from the top, asshown by the veloity �eld in Figure 7.3. The ow and transport are steady in this87



example. The isotherm ontours are shown in Figure 7.4, and we observe the entralplume whih rises vertially upward, as expeted. The patterns math well with theow visualizations of Ishiguro et al. in [47℄ and ontour plots presented by Sripadaand Angirasa in [65℄.

Figure 7.3: Veloity �eld for Gr = 105, N = �1 and Pr = S = 0:7.

Figure 7.4: Isotherm ontours for Gr = 105, N = �1 and Pr = S = 0:7.We next solve the problem with adaptive timestepping using Control 1 and theapproah suggested by Winget and Hughes. We start with a minimum timestepsize of 0.001, and we allow a maximum timestep size of 0.1. We de�ne toleranesof 0.001 and 0.01 for hanges in nodal veloities and temperature for any timestep,respetively. The PID parameters here are again kp = 0:075, ki = 0:175 and kd =88



0:01. First, we show in Figure 7.5 the nondimensional kineti energy plotted asa funtion of time for Gr = 105, N = �1 and Pr = S = 0:7. Then, we plotthe timestep variation in Figure 7.6. We observed that the ontroller allows thetimestep grows in a small time interval around t = 4, whih orresponds to theinterval where the kineti energy derease from its maximum value. Further, wemay note in Figure 7.6 that the maximum timestep is just 1.4 times the minimumspei�ed value. However, just after the instant whih the kineti energy starts togrow again, the timestep size assumes its minimum value, �t = 0:001, and it remainsonstant until the end of the alulations. We see that the ontroller hooses thetimesteps in onformity with the physial behavior of the solution.Table 7.2 shows the total number of time steps, ntstep, the number of rejetedsteps, nreje, the total number of suessive approximations, nsa, and the to-tal number of Newton iterations, nnewt, when we solve the problem with a �xedtimestep size of 10�3 and adaptive timestepping using Control 1. We an observe inTable 7.2 that the number of suessive approximations and Newton iterations ne-essary to alulate the approximate solutions are redued using Control 1, althoughthis improvement is not very signi�ant. Numerial experiments indiate that theomplexity of the problem requires small timesteps and toleranes to have onver-gene of the suessive approximation proess in the Navier-Stokes equations. Thatis, the minimum timestep hosen is already the biggest value allowed to maintainthe user-spei�ed auray requirement and to obtain onvergene of the suessiveapproximations. Parametri studies demonstrated that the problem was not relatedto the hoie of the PID parameters. We also solved the problem using the approahsuggested by Winget and Hughes. In this ase the timestep seletion algorithm didnot produe timestep sizes bigger than the minimum value, whih on�rms the over-all behavior of Control 1. Due to omputational and time limitations, we do notdisuss in the present work more numerial experiments related to this appliationproblem.Table 7.2: Comparison results using �xed timestep size and Control 1.ntstep nreje nsa nnewtFixed �t 12001 0 36003 36003Control 1 11785 45 35835 35490
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Figure 7.5: Nondimensional kineti energy for Gr = 105, N = �1 and Pr = S = 0:7.

Figure 7.6: Timestep variation using Control 1 forGr = 105, N = �1 and Pr = S = 0:7.
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Chapter 8ConlusionsIn this dissertation we introdued two adaptive timestep seletion shemes based onfeedbak ontrol theory to inrease the robustness of our �nite element formulationof oupled inompressible visous ow and transient heat and mass transfer withsurfae e�ets inluded. We solved hemial reation systems, Rayleigh-Benard andRayleigh-Benard-Marangoni ows, heat and mass transfer by natural onvetionfor several ase problems with di�erent parameters that inuene the numerialexperiments. The �nite element ow formulation is based on a penalty Galerkinmethod and the transport equations utilize a SUPG formulation. The algorithmemploys an iteratively deoupled sheme. In the appliation problems, we wereinterested in obtaining steady-state and transient solutions using �xed timestepsizes and adaptive timestep sizes to test the eÆieny of our ontrollers to solve therelated lass of oupled problems. We also ompared our ontrollers with a timestepseletion algorithm found in the literature.A standard timestep seletion algorithm uses a estimate of the loal trunationerror to adjust the stepsize in aordane with a user-spei�ed auray requirement.This kind of algorithm normally performs quite well. However, there are di�erentialequations and integration methods for whih its performane is unaeptable. Thestepsize osillates tremendously and the number of rejeted steps is too high. Asa onsequene, muh omputation time is spent realulating rejeted steps andhanging the stepsize. To overome this potential problems, we investigated twoPID ontrol algorithms for timestep seletion based on ontrolling auray or theonvergene rate of the suessive iterations. We performed parametri studies fordi�erent values of PID parameters (kP , kI, kD) for two test problems, to verifywhether the PID ontroller is robust or not. Although feedbak ontrol theoryprovides tehniques to hoose PID parameters, robustness is required when a general91



�nite element method is used for a wide range of di�erent situations. The ontrollerwas found to be very robust, allowing us to �x the values of the PID parameters forall the numerial experiments performed subsequently.Another important issue is to assess solution auray when the timestep ontrolstrategies are applied to a spei�ed problem. For this investigation, we used avalidation problem for the transport equations and a Rayleigh-Benard problem, andresults were ompared with �xed timestep, the adaptive timestep sheme suggestedby Winget and Hughes, and our PID ontrol approahes. Based on the numerialstudies, it was onluded that we may �nd approximate solutions with a smallernumber of steps without any signi�ant loss of auray. For example, in the seondproblem both approahes produed good results with perentage errors no morethan 1% for all ases. The ontrollers produed a smooth variation of timesteps,while the Winget and Hughes approah yielded a urve with several steps. Theresults suggest that a robust ontrol algorithm is possible. Further, omputationalost of the seletion proedures are negligible, sine they involve only storing a fewextra vetors, omputation of norms and evaluation of kineti energy.In Chapter 5 we demonstrated the eÆieny of our �rst ontrol to solve non-linear ow and reative transport. We were interested in state-state and transientsolutions, and the performane of Control 1 to redue omputational osts. Wemeasured the omputational e�ort by the number of Newton iterations, and wewere able to obtain solutions with a muh smaller number of steps without anysigni�ant loss of auray. For instane, we have a 3.75 times improvement in theomputational e�ort to ompute the solution in the nonisothermal reation problem.This very good improvement in the omputational e�ort is due to the very smalltimestep needed to obtain onvergene of the nonlinear iterations in the beginningof the transport alulations. In this example, eÆient omputation of the trans-port proess demands the use of a timestep seletion algorithm, sine the proess ishighly nonlinear beause of an exponential hemial reation term.The eÆieny of Control 2 was veri�ed in the numerial simulations of theRayleigh-Benard-Marangoni problems. In this ase, the omputational e�ort wasmeasured by the total number of suessive approximations needed to alulate theveloity �eld using one of the ontrollers divided by the number of suessive ap-proximations obtained using a �xed timestep size. We observed that the numberof suessive approximations neessary to alulate the approximate solutions is re-dued for all approahes, and Control 2 presented the best results. In some of the92



test problems, the hoie of the timestep in Control 2 was dominated by the on-vergene rate of the suessive iterations, and in other ases by the hanges in thekineti energy. However, in all ases the kineti energy appeared to be a suitableparameter to improve the timestep seletion when oordinated with the onvergenerate ontrol of the nonlinear iterations.Numerial studies on simultaneous heat and mass transfer by natural onve-tion above horizontal surfaes were performed with �xed timestep sizes in Chapter7. Preliminary results obtained using Control 1 have shown that the problem re-quires very small timesteps to maintain the user-spei�ed auray requirement.The ontroller allows the timestep size to grow from the minimum value allowed,but redues the timestep to this value after some steps. After that, the ontrollerkeeps the timestep size to the minimum value until the steady-state is reahed. Para-metri studies demonstrated that the problem was not related to the hoie of thePID parameters. The timestep seletion algorithm suggested by Winget and Hughesdid not produe timestep sizes bigger than the minimum value, whih on�rms theoverall behavior of Control 1. Experiments indiate that the omplexity of the prob-lem requires small timesteps to have onvergene of the suessive approximationproess in the Navier-Stokes equations. However, more numerial experiments areneessary to better understand the physis and the performane of the ontrollers.Future studies inlude solving the oupling between Marangoni onvetion anddouble di�usion onvetion in a multi-avity system with a moving free surfae. Im-portant pratial appliations are related to this type of problems, and we also needto investigate the performane of the ontrollers to solve them. For this study, weneed iterative solutions of the linear systems instead of the diret frontal solver useduntil now. Preliminary numerial studies with the GMRES method and the penaltyformulation indiated that another �nite element formulation for the Navier-Stokesequations may be more suitable to this lass of appliation problems. Another nat-ural extension of this work is the utilization of the ontrollers for timestep seletionin the �nite element simulations of 3D visous ows involving heat transfer andsurfae tension e�ets. We also need to investigate partitioned analysis proeduresfor oupled systems to improve the eÆieny of the numerial alulations [12℄. Inthe partitioned solution approah, the solution is separately advaned in time overeah partition hosen in aordane with physial or omputational harateristis.Finally, a related PID ontroller was developed by Valli, Catabriga and Coutinho in[77, 19℄ to selet the CFL ondition to aelerate onvergene toward steady state93



for a loal-time-stepping strategy in ompressible gas dynami simulation.
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