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Adaptive techniques for automatic timestep selection are probably the most impor-
tant means to improve efficiency of a given integration method in the numerical
solution of ordinary differential equations. These strategies are usually based on
approximate local truncation error measures or on purely heuristic considerations.
We remark that this process can be viewed as an examples of feedback control prob-
lems. In the present work, we propose two PID timestep control algorithms for
finite element simulations of steady-state and transient 2D viscous flow and coupled
reaction-convection-diffusion processes combined with surface tension effects. We
solve chemical reaction systems, Rayleigh-Benard and Rayleigh-Benard-Marangoni
flows and heat and mass transfer by natural convection.

Numerical experiments confirm that we can find approximate solutions with a
smaller number of steps without any significant loss of accuracy. Moreover, the PID
controller produces a very smooth curve suggesting that a robust control algorithm
is possible. Numerical results also show that the non-dimensional kinetic energy
could be a suitable parameter to improve the timestep selection when coordinated
with the convergence control of nonlinear iterations. Further, computational cost of
the selection procedures are negligible, since they involve only storing a few extra

vectors, computation of norms and evaluation of kinetic energy.



ESTRATEGIAS DE CONTROLE PARA A SELECAO DE PASSO DE TEMPO
PARA ANALISE DE ESCOAMENTOS INCOMPRESSIVEIS ACOPLADOS
COM TRANSPORTE DE CALOR E MASSA

Andréa Maria Pedrosa Valli
Novembro/2001

Técnicas adaptativas para a selecao de passo de tempo sao as mais importantes
ferramentas para melhorar a eficiencia de um método de integracao de sistemas de
ODE’s. Estas estratégias sao geralmente baseadas em medidas do erro de trun-
camento local ou por consideracoes heuristicas. No entanto, este processo pode
ser visto como um problema de controle retroalimentado. No presente trabalho,
propomos dois algoritmos de controle PID de passo de tempo para as simulacoes em
elementos finitos de escoamentos viscosos e incompressiveis acoplados a processos
de reacao, difusao e conveccao combinados com efeitos na tensao superficial. Re-
solvemos sistemas de reagoes quimicas, problemas de Rayleigh-Benard-Marangoni e
transferéncia de calor e massa por convecao natural.

Experimentos numéricos confirmam que encontramos solugoes aproximadas com
um nimero menor de passos sem nenhuma perda significativa de precisao. Os con-
troladores produzem uma curva bastante suave para a variacao do passo, sugerindo
que um algoritmo de controle robusto é possivel. Resultados numéricos demostraram
que a energia cinética é um parametro adequado para a selecao de passo de tempo
quando coordenado com a convergéncia das iteragoes nao lineares. Além disso, os
custos computacionais para os processos de selecao do passo sao despreziveis, uma
vez que involvem apenas o armazenamento de alguns vetores, o calculo de normas

e avaliacao da energia cinética.
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Chapter 1

Introduction

With the evolution of finite element methodology and its extension to more complex
classes of coupled problems there has been an increasing need for improved algo-
rithms and other enhancements such as adaptive grid refinement and coarsening.
Several adaptive timestepping selection strategies have been studied as a means to
provide stable accurate transient (and steady state) solutions more efficiently. This
adaptive timestepping selection process is usually approached by means of local
truncation error analysis. In the same way, the adaptive grid schemes use feedback
from the computed solution on a given intermediate grid to ascertain where the grid
should be locally refined. We remark that both of these processes (adaptive timestep
selection and adaptive grid refinement) can be viewed as examples of feedback con-
trol problems. This brings us to the main theme of the present work - the utilization
of feedback control algorithms for timestep selection in conjunction of finite element
analysis in the simulations of steady-state and transient 2D viscous flow and coupled
reaction-convection-diffusion processes combined with surface tension effects.
Besides the control algorithms for timestep selection, we are also interested in the
numerical simulation of chemical reaction systems, Rayleigh-Benard and Rayleigh-
Benard-Marangoni flows, heat and mass transfer by natural convection and double
diffusive convection. In particular, we want to study the performance of the con-
trollers to solve these classes of application problems, perform numerical experiments
for different parameters that influence the problems, and compare our results with
those found in the literature. Practical applications of the related problems include,
for example, nonisothermal reaction on a catalyst section [33, 58], pattern formation
during solidification and welding in manufacturing processes [78, 7, 25|, physical be-
havior of fluids under microgravity conditions [13, 38, 31], semiconductor crystal

growth and double diffusive and Marangoni instabilities [65, 63, 62, 66, 42].



The first class of problems studied in this work involves nonlinear flow and reac-
tive transport. We solve isothermal reaction inside a porous catalyst and chemical
reaction on a catalyst section with heat effects included [58, 33]. In the second
problem, the process is highly nonlinear because of an exponential chemical reac-
tion term arising from the temperature dependence of the chemical reaction rate.
As a consequence, we need to choose a very small timestep to obtain convergence of
the nonlinear iterations in the transport equation. Therefore, efficient computation
of the transport process in this example demands the use of a timestep selection
algorithm.

The second class of application problems we investigate is Rayleigh-Benard flows
and Rayleigh-Benard-Marangoni flows. When buoyancy forces due to temperature
gradients are the dominant component in driving the flow, we have a Rayleigh-
Benard problem [31, 30, 25]. For example, when a thin horizontal layer of fluid
between two horizontal plates is heated from below, a temperature gradient is gen-
erated across the plates. At a critical Rayleigh number, circular convection cells set
in. If the plate is removed from the upper surface, then the surface tension effects
associated with temperature gradients on the free surface become important. Now
both buoyancy and thermocapillary effects provide the dominant forces driving the
flow, termed Rayleigh-Benard-Marangoni problems [61, 18, 80]. Rayleigh-Benard-
Marangoni problems become very popular as prototypes of complex behavior where
nonlinear theories of pattern formation may be tested.

When heat and species transfer exist within a fluid layer, the temperature and
concentration gradients create a coupled transport mode, called double diffusion.
This phenomenon is found in fluid mixtures of two components having two different
molecular diffusivities, where the potential energy of one component may be released
by differential diffusion, thus driving the convective motion, even though the system
may be gravitation stable [69, 70, 56, 42, 66]. One example of double diffusive
convection is when a hot salty fluid layer (slower diffusion) is underlying a cold
fresh fluid layer (faster diffusion) [63, 62, 66]. In the present work, the third class
of application problems we solve is simultaneous heat and mass transfer by natural
convection above horizontal surfaces [65]. Our future works involves solving the
coupling between Marangoni (thermal and solutal) convection and double diffusion
convection in a multi-cavity system with a non-deforming free surface.

Viscous flow is modeled by the incompressible 2D Navier-Stokes equations, writ-

ten in primitive variables, with a forcing term that may depend on temperature



and concentration. In the transient transport equation, the time rate of change
(evolution) of the species component fields may depend on advection, diffusion and
chemical reactions. There are two primary approaches to the numerical formulation
of the class of coupled problems we are investigating. One approach is called the
decoupled formulation, where the momentum and continuity equations are solved
first, in each timestep or iteration, lagging the temperature and concentration vector
in the forcing term. Then, the transport equations are solved with the computed
velocities as input. The second approach, called the fully-coupled formulation, re-
quires simultaneous coupled solution of the flow and transport systems. Here, we
consider only the decoupled formulation.

Among the most notable finite element formulations for incompressible flows are
the mixed (or multiplier) method [16, 55|, the penalty method [81, 55, 14, 15, 16], the
stabilized formulations, such as, the Streamline-Upwind/Petrov-Galerkin (SUPG)
formulation [44, 11, 23, 68], Galerkin/Least-Squares (GLS) formulation [45, 17, 28],
Pressure-Stabilizing /Petrov-Galerkin (PSPG) formulation [67, 21] and fractional
step formulations [8, 22]. We can also find finite element formulations based on
the stream function-vorticity equations [16, 3]. The finite element method makes
use of a spatial discretization and a weighted residual formulation to arrive at a sys-
tem of matrix equations. The Galerkin method, which is the most common weighted
residual formulation, uses weighting and interpolation functions from the same class
of functions. The success of the Galerkin finite element method in several application
problems is due to its best approrimation minimization property [43], which means
that the difference between the finite element solution and the exact solution is min-
imized with respect to a certain norm. When the problem is convection-dominated,
the Galerkin method loses this property. For general treatments of these issues see,
for example, Carey and Oden [16], Zienkiewicz [81], Hughes [43] and Bathe [4].

The subject of finite element approximations to incompressible flow problems en-
compasses several mixed and penalty formulations. The essential character of mixed
methods is exhibited in the framework of a constrained variational problem, in which
both velocities and pressure must be approximated. The formal development of a
mixed finite element analysis is quite straightforward and the method has been ex-
tensively applied (see, e.g., [57, 35, 54]). The penalty approach for the Navier-Stokes
problem is designed to determine an approximate formulation involving only veloc-
ities and not pressures. Hence the size of the problem is reduced accordingly. The

divergence-free condition V - u = 0 is viewed as a constraint condition embedded



in the variational problem by using a penalty term. In the present work, we are
only interested in the velocity solution and the associated coupled transport pro-
cesses. Hence, for simplicity and convenience we use a penalty method to enforce
the incompressibility constraint.

In computation of incompressible Navier-Stokes equations for convection-domi-
nated flows, the Galerkin method loses the best approzimation property, and solu-
tions are often corrupted by spurious oscillations. In order to overcome or mini-
mize those oscillations, Petrov-Galerkin formulations, which modify the Galerkin’s
weighting functions by adding a perturbation term, have been derived and used with
success in the analysis of convection-dominated flows. The SUPG stabilization tech-
nique was first introduced by Hughes and Brooks in [44], and investigated in detail
by Brooks and Hughes in [11]. The SUPG techniques are consistent stabilization
methods, in the sense that the exact solution still satisfies the stabilized formulation,
just as it satisfies the Galerkin formulation of the problem. The perturbation term
in this method acts only in the streamline direction, chosen as upwind direction,
resulting in good stability and accuracy properties if the exact solution is regular,
showing a convergence improvement over the Galerkin method. Since the applica-
tion problems we are investigating in this work are not convection-dominated, the
penalty method works well for the Navier-Stokes equations.

For the transport equations, we use a SUPG formulation to find approximate
solutions for the temperature and species concentration. Although we are using a
SUPG formulation for the transport equation, the perturbation term can always
be turned off if the problem is not convection-dominated. Spatial discretization of
the Navier-Stokes equations gives rise to a non-linear semi-discrete ODE system,
linearized by successive approximations and integrated implicitly using a Crank-
Nicolson scheme. The solutions of the linear systems are obtained using a frontal
solver. In the transport equations, we use a Crank-Nicolson scheme to integrate in
time, the Newton’s method to solve the nonlinear algebraic system, and a frontal
solver for the linear system. Errors and computational efficiency in the transient
solution of the coupled problems are controlled by automatic timestep control algo-
rithms.

Adaptive techniques for automatic timestep selection are probably the most im-
portant means to improve efficiency of a given integration method in the numerical
solution of ordinary differential equations. These strategies are usually based on

approximate local truncation error measures or on purely heuristic considerations.



For example, standard automatic timestep selection algorithms use an estimate of
the local truncation error to adjust the stepsize in accordance with a user-specified
accuracy requirement, as shown in [51, 59, 9, 60]. Gresho, Sani and Engelman in [37]
use a predictor-corrector scheme with a time truncation estimate for error control.
Winget and Hughes [79], Johan, Hughes and Shakib [49] and Jacob and Ebecken [48]
develop stepsize selection schemes based on heuristic rules for transient heat con-
duction, compressible Navier-Stokes equations and structural dynamics problems,
respectively. However, Gustafsson, Lundh and Soderlind [39] showed that adaptive
timestep selection can be viewed as a standard automatic control problem, which
motivated Hairer and Wanner [41] to derive a timestep selection algorithm using
the concept of proportional-integral-derivative (PID) control. Later, Coutinho and
Alves [24] use this approach in their work of finite element simulation of miscible
displacements in porous media. In this work, we propose two PID timestep control
algorithms based on controlling accuracy or the convergence rate of the successive
iterations [71, 74, 75, 76, 73, 72].

The first control utilizes normalized changes in the variables of interest (ve-
locities, temperature, concentration, etc) to compute the local truncation errors.
In the second control, the timestep size is limited by the normalized changes in
the nondimensional kinetic energy or by the rate of convergence of the successive
approximations. The efficiency of these controls are compared with another time-
stepping strategy developed by Winget and Hughes in [79]. We demonstrate that,
with the controllers, we find approximate solutions with a smaller number of steps
without any significant loss of accuracy. In addition, the controllers also produce a
smooth variation of timestep, suggesting that a robust control algorithm is possible.

The outline of this work is as follows. In Chapter 2 we present the class of
transient coupled problems under investigation, the finite element formulations and
the solution algorithm. In Chapter 3 we discuss the two control algorithms for
timestep selection, and we present the algorithm for timestep selection suggested by
Winget and Hughes. In Chapter 4 we provide results of the numerical experiments to
validate the finite element formulations of the Navier-Stokes equations, the transport
equations and our timestep control algorithms. In Chapter 5 we apply the first
timestep control algorithm to solve nonlinear flow and reactive transport. In Chapter
6 we study the performance of the controllers to solve Rayleigh-Benard and Rayleigh-
Benard-Marangoni problems, and compare their efficiency with the scheme proposed

by Winget and Hughes. In Chapter 7 we solve simultaneous heat and mass transfer



by natural convection above horizontal surfaces. Finally, in Chapter 8 we presented

some conclusions and opportunities for future study.



Chapter 2

Formulation and Approximation

In this chapter we present the class of coupled flow and transport equations un-
der investigation, the finite element formulations and the solution approach. In the
first section, we state the class of transient coupled problems; then, we describe the
penalty finite element formulation for the transient Navier-Stokes equations. Follow-
ing this, the SUPG stabilization technique for the transient transport equations is
developed. Finally, the solution algorithm to obtain approximate transient solutions

for the velocity field, temperature and concentration is presented.

2.1 Coupled Viscous Flow and Transport

We consider the stationary and transient flow of a viscous incompressible fluid as
described by the Navier-Stokes equations coupled to the transport of heat and mass
by convection, conduction and reaction in the fluid including surface tension effects.
For example, in Rayleigh-Benard-Marangoni flows buoyancy is included as a tem-
perature dependent body force term in the momentum equation, and the effect of
thermocapillary surface tension enters as an applied surface shear stress that is de-
pendent on the surface temperature gradient [30, 13, 75]. An exponential chemical
reaction term arising from the temperature dependence of the chemical reaction rate
is included, coupling the heat and mass transfer equations [33, 71]. Finally, in dou-
ble diffusion problems heat and species transfer exist within a fluid and the surface
tension depends on the surface temperature and concentration gradients [63, 42].
The transient Navier Stokes equations for viscous flow of an incompressible fluid

may be written as

9 1
a—‘t’+u-Vu—uv2u+—Vp = q+f(T,¢) inQ (2.1)
p

V-u =0 in Q (2.2)



where  is the flow domain, u is the velocity vector, p is the pressure, v = % is
the kinematic viscosity, p is the density, q is an applied body force and f(T,¢) is a
temperature (7') and concentration (¢) dependent body force. For example, f(T, ¢)
may be a buoyancy force given by f(T,¢) = g(fr(T —Ty) — fe(c— ¢p)) where g is the
gravity vector, Oy and . are the thermal and solutal volume expansion coefficients,
and Tj and ¢y are reference temperature and concentration. We assume that there

is no slip at the solid walls 0€2;,
u=u, ond, (2.3)

where u,, is the specified wall boundary velocity. The Marangoni problem involves
a shear stress boundary condition on the free surface 0€2,.
The temperature of the fluid is governed by the energy transport equation. As-

suming negligible viscous dissipation, we have

oT
P gy + peyu- VT =V - (kVT) = hy(T,¢) in Q (2.4)

where ¢, is the specific heat, k is the thermal conductivity, h; (7 ¢) is a nonlinear
reaction source/sink term, usually associated with chemical reactions, and c¢ is the
concentration of the fluid. The boundary conditions are as follows: T = T,,(z,y)
(isothermal boundary) or 2L = 0 (adiabatic boundary) on the solid walls 95 where
n is the unit outward normal, and mixed conditions ar2- = h.(T —T,) (Robin) on
04, where ar = % is the thermal diffusivity, h. is the heat transfer coefficient for
the medium, 7, is the exterior temperature.

Finally, the mass transfer equation for a single species is given by

% +u-Ve—V-(a.Ve) =hy(T,¢) inQ (2.5)
where ¢ is the concentration, . is the mass diffusion coefficient, and hy(T,¢) is a
nonlinear reaction source/sink term. Concentration, flux or mixed boundary condi-
tions may be applied.

For convenience, we rewrite equations (2.5) for the vector ¢ of component species.
We can handle up to eight different species and temperature in our code, that is,
c = {¢c}, s = 1,2,---  ng, where ng is the number of species. Then, the vector

counterpart of the transient transport equation is,
Jc dc 0 Jc

= it K..—) = ho(T 2.
8t+u7'8mi BTZ( ”837_7-) 2(75¢) (26)

where repeated indices imply summation over the range of spatial dimensions, u; is

velocity component i, ha(7), c) is a nonlinear reaction source/sink term, and K =



{k***>} is the diffusion tensor with s1,s9 = 1,2,---,n,. From (2.6) it is clear that
the time rate of change (evolution) of the species component fields depends on
advection, diffusion and chemical reaction, respectively. Boundary conditions for
species concentration or flux and initial conditions for velocities and concentration
vectors complete the statement of the problem for (2.1), (2.2), (2.4) and (2.6).
Thus, the class of transient coupled problems we are interested in solving may

be summarized by the following equations:

1

f p
V-u = 0 in Q (2.8)

or .
Pyt pepu s VI =V (kVT) = m(T,c) in {2 (2.9)
% +u-Ve—- V.- (KVec) = hy(T,c) in Q2 (2.10)
with initial conditions

u(0) = u (2.11)
70) = T, (2.12)
c(0) = c (2.13)

and boundary conditions as follows
e velocities, flux or free surface boundary conditions
u = u, or vVu-n=10 on 0 (2.14)
vVu-n = I(T,c) on 0% (2.15)
e temperature, flux or mixed boundary conditions
T = T, or kVNT-n=0 on 0€)3 (2.16)
kNT -n = hp(T—T,) on 08 (2.17)
e species concentration, flux or mixed boundary conditions
c = ¢y or KVec-n=0 on 085 (2.18)

—-KVe-n = yc— W on 0€ (2.19)

In the next section we present the penalty finite element formulation for the Navier-

Stokes equations, (2.7), (2.8), (2.11), (2.14) and (2.15).



2.2 Penalty Formulation for the Navier-Stokes
Equations

For simplicity and convenience we use a penalty method to enforce the incompress-
ibility constraint. The penalty approach for the Navier-Stokes problem is designed
to determine an approximate formulation involving only velocities and not pres-
sures, but without the added complexity of requiring special divergence-free ele-
ments. Hence the size of the problem is reduced accordingly. The divergence-free
condition V - u = 0 is viewed as a constraint condition embedded in the variational
problem by using a penalty term.

Let V be the space for the velocities, and consider the following penalized vari-
ational formulation for the Navier-Stokes equations [16]: for € > 0, find u® € V

satisfying the initial condition with u® = uy, on 0€2; such that

ou* 1
/( ({; v + vVu"Vv + (u-V)u'-v + ;(V'UE)(V'V)) ds2

_ /(q+f(T,c)).de +/ T(T,c)-vdl (2.20)

(o192

for all admissible v € V with v =0 on 0€2;, where the last integral implies the
surface shear boundary condition (2.15) at the free surface. For a discussion of
coercivity, existence and uniqueness of the solutions see, e.g., [15, 16]. The pressure

approximation for the penalty formulation is given by

1
p=—-V-u (2.21)

€

Consider now approximation of the variational problem (2.20) using finite ele-
ments. Let V? C V be the finite element approximation space for velocities. In
the usual way, the flow domain € is discretized into a union €2, of elements €2, e
=1, 2,..., E. Lagrange piecewise polynomials are used as global basis functions
¢j, 7 =1, 2,..., N, for the approximate subspace V" The direct approximation
of the penalized variational problem (2.20) is to find uj, € V" satisfying the initial

condition with uj, = u,, on 92 such that

a €
/ ( ;f" vy, + vVu:Vv, + (uj - V)uy, - vy) dQ
Qp ’

1
+ =I(V-up)(V-v,)dQ
€

= [ @+ta) v+ [ DTe) v 222

J 082y
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for all v, € V", where I denotes reduced numerical integration. If the penalty
term in (2.22) is integrated exactly then the method will not yield solutions uj, that
converge to u;, as € — 0. The velocity field uj, — 0 as ¢ — 0 and the constraint
equation V - u = 0 dominates in this limit. The finite element solution fails the
“consistency condition” or the “LLBB condition” and is said to “lock” [see, e.g., [81],
[55], [50]]. The second term is associated with the investigations of Ladyzhenskaya
(53], Babuska and Aziz [2] and Brezzi [10]. The “LBB condition” dictates how to
choose compatible interpolations for velocities and pressure when using penalty or
mixed formulations. To obtain an approximate solution other than the “locking”
solution, we use reduced integration for evaluating the penalty integral.

The penalty term is approximately integrated using a Gauss quadrature rule of
lower order than that required for exact integration. The selective reduced inte-
gration guarantee consistency of the implied pressure field approximation and the
velocity approximation. In the numerical studies we consider two special cases, con-
tinuous piecewise bilinear basis for the 4-node bilinear quadrilateral with one-point
Gauss quadrature rule for the penalty term and continuous piecewise biquadratic
basis for the 9-node biquadratic quadrilateral with (2 x 2) Gauss quadrature rule
for the penalty term, which can be projected to suppress the spurious mode if the
pressure approximation is desired. In the present work, we are only interested in
the velocity solution and the associated coupled transport processes.

Introducing the discretization of elements and the basis functions, the velocities

are

=

ug,(,y) Zu bi(x,y), (2.23)

7=1
where [ is the velocity component index (I = 1, 2 for 2D flow) and u' is the nodal
vector. Using v, = (¢;,0) and (0, ¢;) at an interior node i, we have the following

non-linear semidiscrete system of ordinary differential equations

1
M‘;—[j +vAU + D(U) + -BU = F(T, C) (2.24)

where U = (u!,u?)? and

RSN ES
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with

M = [my); mij = | i dSd (2.25)

A = o) —/ (6 a(6). + (60)4(67),) 42 (2.26)

Be = (ol ()= [ (6)(6)0 a0 (2.27)
By = [aluli (s = [ (60400, 00 (2.28)
By = ()l (o= [ ()al8) 19 (2.20)
P = (M (R)i= [ (0 ATen)) 62 +

/a ) F]h(Th,ch)qﬁi dl (2.30)
F,o = () (fy»:'/ﬂ (2 + olThoen)) 65 42 +

| /a N r:(T,,,, cs) 6 dI (2.31)
D(U) — /Qh(u;-V)u;-vh ds. (2.32)

Here, the nonlinearity in the convective term D(U) is linearized by successive

approximations [16] according to the approximation
D(U) =~ D(Up 1)Uy = / (W), 1 - V)uy, - vy dS (2.33)

Qp,

with initial iterates given by the solution at the previous step. To decouple the flow
and transport equations, we evaluate f = f(T,C) at T"! and C"', i.e., at the
previous temperature and species concentration solutions. Substituting (2.33) into
(2.24), we obtain a sequence of linear problems for U, at iterate k. Given Uy, for

k=1,2,... solve

dU 1
M—dfk + (WA+D+=-B)U, = F(T"',Cc" ) (2.34)
It €
with
D O
until
U, —U,_
M < Tga O k> kSt (2.36)
U]

where 7y, is an input tolerance and ksa,,q, is the maximum number of successive

iterations allowed. To advance the solution from a specified initial state, we integrate

12



implicitly using a standard € method, so that at timestep t,:

MUy - Uy )

1
+ 9|:V.A+D+—B:| [0)%
€

At
1
+ (1-9) [VA—i-D + —B} Uyt
€
= 0F" +(1—-0)F"" (2.37)
Here # = 1/2 which corresponds to the familiar Crank-Nicolson integrator, and

F" = q" + f where f = £f(T"',C"'). Hence, in each successive approximation

within each timestep we have to solve linear systems of the form
pUI - Q (2.38)
where
P = M—F%(VA—F’D—F%B) (2.39)
Q = (M- % (vA+D+ %B)) Up !+ % (F"+F) (2.40)

and n denotes the time index. Solutions of the resulting linear systems are ob-
tained using a direct frontal solver [46]. In the next section we present the SUPG
(Streamline-Upwind /Petrov-Galerkin) finite element formulation used to find ap-
proximate solutions for the transport component c,. Since the SUPG finite element
formulation for the heat equation is analogous to the SUPG formulation for the

transport equation, we are not going to repeat the formulation for the temperature.

2.3 SUPG Formulation for the Transport Equa-
tions

For the transport equations, we use a SUPG (Streamline-Upwind/Petrov-Galerkin)
stabilization technique [11, 23] to prevent spurious oscillation generated by the dom-
inance of the advection terms in the differential equation. For simplicity, we show
the finite element formulation for the mass transfer equation of a single species c;.
The same procedure may be used to obtain the SUPG formulation for the energy
transport equation (2.9).

Consider a finite element discretization of the domain €2 into a union €2, of
subdomains (elements) ., e = 1, 2,..., E. Based on this discretization, we define

the finite element function spaces S" and W for the concentration corresponding
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to the trial solutions and weighting functions, respectively. The SUPG weighted

residual formulation for the transport component ¢ is

86’” aChs 8?l)h 8chs
hi ks o h’ S T 9 dQ

E
Uhm awh aChS achs 6 aChS
i 9 (s — hoo(T, 0
* ;/fuhaxm ( ot e B i gy,) (T Ch))

= / wy, (77 cps — W) dl (2.41)
7 0Qgh,

where the first integral represents the Galerkin formulation of the problem, the
second integral is the SUPG stabilization term added to the variational formulation,
the last integral is due to the mixed boundary condition (2.19). We assume that
k*1%2 £ 0 only for 51 = sy = 5, s = 1,2,- -+, n,, where k* = {k;}, 1,7 = 1,2, is the
diffusion tensor for species component s. The parameter 7 is computed as suggested
by Codina, Onate and Cervera in [23],

ah

— 9.49
ro o (2.42)
P B
a = min(?e,l), h =24, (2.43)
iz, B T
pe — luwllh f= gt T (2.44)
2% [[anl] ||

where A is defined as the element area, h is the element characteristic length, uy,
is the velocity vector and Pe is the local (element) Peclet number. Introducing the

finite element discretization, the transport component ¢, has the form
N

ens(2,y) = ciy(z,y), (2.45)

=1

where s is the species component index (s = 1,2,...,n,) and ¢* = {cj}, j =

1,2,---, N, is the nodal vector. We have in this study continuous piecewise ba-

sis functions defined by the 4-node bilinear quadrilateral, the 9-node biquadratic
quadrilateral and the 6-node quadratic triangle.

Introducing (2.45) into (2.41) and setting w;, = v, i = 1, 2,..., N, we have the

resulting semi-discrete ODE system
dC

where C = (¢!, c?,...,¢™)T,
N O 0 R 0O --- O E 0 0
0O N --- 0 0O R --- 0 0 E 0
N=1| . . . R=|. . . . £=
0 0 N 0 0 R 0 0 E
NgXMNg NgXMNg NgXMNg
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and

H,
o |
H,,
with
N = [ngl; ny= Yi; dQ + / T Un - Vipip; dS2 (2.47)
Ja, Ja, ]
R = [ry]; Tij_/ uy, - Vb dS) +
Qp,
/ TV, ® u, Vi, dQ (2.48)
o, ]

Jy 7 006

H, — [(h)]:  (he)i = / hos (Th, Ci) th dQ + / U, oy dl
'Qh, ‘agﬁh

+/ T 74, hoy (Th, Cp) d€Y (2.50)
, ||l

where ® denotes the tensor outer product uu’. The streamline upwind function
does not affect the weighting of the diffusion term in (2.41) because we have bilinear
shape functions. We have

/ Ty kS V2 dQ = 0 (2.51)
J Qe

|||

since, on the interior of each element, ¢ ;; is zero. In the numerical experiments
where the SUPG stabilization term is needed, we use only bilinear elements and the
element domains are rectangular. When the element domains are not rectangular,
14 will not in general vanish identically, and thus the term (2.51) may be not zero.
However, for reasonable element shapes, this streamline upwind contribution will be
small and can be neglected. This is not the case for higher-order elements.

We integrate the ODE system of equations (2.46) implicitly using a standard 6
method with § = 1/2, which corresponds to the familiar Crank-Nicolson method.
At timestep t,,, we have to solve

N(Cn o Cnfl) N
At
+

 [R(U") + & C"
(1-0) [R(U™) + & C
OH" + (1) H" (2.52)

Since the reaction term 7 is a nonlinear function of the unknown species solution,
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we have to solve at each timestep a nonlinear system of the form

L(C") =0 (2.53)
where
cen=w+SRu o - e s
with
I=-(N- % (R(U™ Y +&)C ! — % H (2.55)

and n denotes the timestep index. The nonlinear system (2.53) is solved by Newton’s

method in the present study. Given CJ, U""! and U", at each timestep and k =

1,2,..., solve linear systems of the form
J(Cr —Ciy)=-V (2.56)
with 5
At Nt OH},
J =N+ 5> (R(U™) +&)) — > acknl (2.57)
and
At n n n
V=WN+ - (R(U") 4+ &))Cr_y — — Hi + T (2.58)

where 7 is defined in (2.55) and H} ; = H(T} ,,C} ;). Here the solution of the
linear systems (2.56) are also obtained using a direct frontal solver [46]. In the
next section the main algorithm to calculate approximate solutions for the velocity
field, temperature and concentration vector is constructed. We also present the

Navier-Stokes and transport algorithms in detail.

2.4 Decoupled Algorithm

In the present work, we consider a decoupled formulation to solve the class of cou-
pled problems of interest. In this approach, the momentum and continuity equations
are solved first, in each timestep or iteration, lagging the temperature and concen-
tration vector in the forcing term. Then, the transport equations are solved with
the computed velocities as input.

The solution algorithm is obtained by simply 'lagging’ the temperature and con-
centration vector c, on the right hand side of (2.24). That is, for iterate n = 1,
2, -~ weset T, = T} " and ¢, = ¢} ' in (2.24). This decouples the flow and

transport equations within each global iteration. Our algorithm to calculate ap-

proximate solutions for the velocity field and concentration vector as time progress
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may be summarized by the steps in Figure 2.1. Here U°, T° and C° are the initial
approximations for the velocity field, temperature and concentration vector, respec-
tively. The timestep size At is initialized with (At),,;, and is chosen adaptively
using the control algorithms discussed in the next chapter. If the steady-state solu-
tion is needed, we stop the calculations when the nondimensional kinetic energy K

at two different timesteps reaches a difference less than an input tolerance, that is,
*2 *2
ut+ v
K" — K" Y < 7 | K", K:/%dQ (2.59)
Q

or when the approximate solutions at two different timesteps reaches a difference

less than input tolerances,

" =0 < U, T - T < ||, fICT - CM Y < e IC7
(2.60)
where n denotes the timestep index, || - || denotes Euclidean norm, u* and v* are the

nondimensional velocity components, and 7, 7,, 7r and 7. are input tolerances.

1. Input data: U?, T C° t,u, (AH)min
2. Initialize variables: mn <+ 1, ty+ 0, At <+ (A)min
3. Repeat

(a) t, < tp_1 + A\t
(b) Calculate the solutions U", T", C"

(c) If (n>1) calculate the new Af¢ using a
timestep selection algorithm

(d) Update solutions: U" '« U", T" '+ T, C* '+ C"

(e) n+<n+1

until (4, > times)

Figure 2.1: Main Algorithm

In step 3(b) of Figure 2.1, we have to calculate the approximated solution U”
for the velocity field at time ¢,,. Figure 2.2 shows the algorithm to obtain U" given
U™ T ', C" ', nsaye and 7,,. The successive approximation process used to
linearize the non-linear semidiscrete system of ordinary differential equations (2.24)
is described in step 4 of the algorithm given in Figure 2.2. This process is interrupted
when the condition in step 4(d) is achieved or the number of successive iterations

exceeds a maximum given value nsa,,q... We consider the maximum number of
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successive approximations allowed equal to nsa,.. = 10. At each timestep, the
total number of successive approximations calculated is given by nsa in step 5.

To calculate an approximate solution for the concentration vector C” in step
3(b) of Figure 2.1, we have to use equations (2.56), (2.57), (2.58) and (2.55). The
transport algorithm may be summarized by the steps in Figure 2.3, and an analogous
algorithm can be used to calculate the temperature. If the nonlinear reaction source
or sink term in the transport equation (2.6) is a linear function of the concentration
vector or is zero, the approximate solution C” is obtained with only two iterations in
step 4 of Figure 2.3. Here, kn,,q, = 10 is the maximum number of Newton iterations
allowed.

To complete our main algorithm given in Figure 2.1, we have to specify how
the stepsize is adaptively calculated in step 3(c). In the next chapter we discuss in
details the control algorithms for the timestep selection we are using in this work

and also the approach used by Winget and Hughes in [79].
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. Input data: U™ ', T ', C"', nsamer, Tea-

Initialize variables: k<« 1 , U}« U"!

. Calculate M, A, D, B, F", F" ! using (2.25)-(2.31), (2.35).
. Repeat

(a) Set Uy < U} ; in (2.35) and calculate D.
(b) Set Uy '+ U"!, calculate P, Q using (2.39), (2.40).
(c) Solve the linear system (2.38) to obtain U}.

uyr_ur
(d) Calculate COﬂd(—-M_%TﬁﬁjJ
k
(e) Update solution: U} ;+«+ U}

(f) k+k+1
until (k > nsame) or (cond < 74,)

. Set U" < U} and nsa<+k—1

Figure 2.2: Navier-Stokes Algorithm

. Input data: C"', U, U", knmaw, Tn-

Initialize variables: k<« 1, Cj« C"!

. Calculate Z in (2.55).

. Repeat

(a) Calculate J and V using (2.57) and (2.58).
(b) Solve the linear system (2.56) to obtain C}.

cr_cr
(c) Calculate cond %
k
(d) Update solution: C} ;< C}

(e) k< k+1

until (k > kn,e.) or (cond < 1,)

5. Set C" «+ C}

Figure 2.3: Transport Algorithm
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Chapter 3

Control Algorithms

The objective here is to discuss timestep control algorithms developed to improve
efficiency of codes to solve coupled problems. The outline of this chapter is the
following. In the first section, we present our PID control algorithm for timestep
selection based on controlling accuracy. Then, we discuss the control algorithm
used when the stepsize is limited by the convergence rate of nonlinear iterations.
Next, we describe the two control strategies for timestep selection in simulation of
transient coupled flow and heat and mass transfer problems. Finally, we present the
algorithm for timestep selection suggested by Winget and Hughes in [79], used here

for comparative purposes.

3.1 PID Stepsize Control Algorithm

Control can be defined as the process of making a system of variables follow a
particular value, called the reference value. Closed-loop process control uses a mea-
surement of the controlled variable and feedback of this signal to compare it with
a reference value. The feedback is supplied from an output sensor of some sort,
and feeds an input of the controller to tell the controller how far the output is
from its reference value. The controller uses this information to correct the output
error. This kind of process is used in applications ranging, for example, from air
conditioning thermostats to guidance and control of aircraft.

A simple feedback system consists of an actuator, a control device often called
the controller, the process (or plant), and an output sensor, as shown in Figure 3.1.
The central component of a feedback control system is the process, whose output
is to be controlled. In our case we are interested in process control. The difference
between the desired output and the actual output of the system measured by an

sensor is equal to the error, which is adjusted by the controller. The actuator is the
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device that can influence the controlled variable of the process. The output of the
control device causes the actuator to modulate the process in order to reduce the

error.

Desired ™ Error Controller Actuator Process _.—>Actual
output output
Measured Sensor Feedback
output

Figure 3.1: A feedback system block diagram of a basic closed-loop control system

One example of a feedback control system is the room-temperature control sys-
tem of a house [36]. The process is the house, the thermostat is the output sensor, the
gas valve is the controller, and the furnace is the actuator. Suppose the thermostat
is turned on when both the temperature in the house and the outside temperature
are below the reference temperature. The gas valve will be open causing the furnace
to fire and heat to be supplied to the house. This is a closed loop system.

One of the most widely used algorithms for closed-loop control is the three-term
control, known as the Proportional-Integral-Differential (PID) control loop. The
popularity of PID controllers can be attributed to their functional simplicity and
to their robust performance in a large range of operating conditions. The objective
in using PID control algorithms is to control the output along a smooth curve (vs.
time) toward the set-point while minimizing overshoot, that is, the amount the
system output response proceeds beyond the desire response.

A PID control algorithm includes a term which is proportional (P) to the output
error, a term proportional to the integral (I) of the error, and a term proportional

to the derivative (D) of the error, and therefore has the form

—S(r) =k {9(7) + Ti /OT O(7)dT + Tp db(r) } (3.1)

I. dT
or

~S(7) = kp(7) + k10(1) + kpb(7) (3.2)

where S(7) is the controller output deviation, S(7) implies time rate of change of
S, O(7) is the error, k is the proportional gain, 7} is called the integral or reset

time, Ty is the derivative time, and kp, k; and kp are the proportional, integral and
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derivative parameters, respectively. In order to adapt the continuous-time model to

a discrete environment, we replace derivatives by differences in (3.2) to obtain:
(Sppt — Su) = kp (B — Op ) Ekr O+ kp (0 — 20, 1+ 0,5)  (3.3)

The proportional term acts like a rubber band in an analogous mechanical
system: it exerts a restoring force proportional to how much the rubber band is
stretched from its original shape. The proportional term can reduce error responses
to disturbances as we adjust kp up or down. The integral term is added to reduce
or eliminate constant steady state errors. It can do this because it sums up errors
over time. The derivative feedback is used in conjunction with proportional and/or
integral feedback to increase the damping of the dynamic response. In general, it
also improves the stability of the system. These three kinds of control attempt to
provide a good degree of error reduction simultaneously with acceptable stability
and damping [32, 52, 36].

Designing a particular PID control loop requires merely tuning the controller.
The constants kp, kr, and kp have to be adjust to yield satisfactory control. In-
creasing kp and k; tends to reduce system errors but may lead to instability, while
increasing kp tends to improve stability. The selection of the parameters is basically
a search in a three-dimensional space. There are several methods and rules proposed
to solve this parameter selection problem. Dorf and Bishop, [32], for instance, show
many design methods using root loci and performance indexes.

In the numerical integration of ordinary differential equations, automatic step-
size control is probably the most important means to improve efficiency of a given
integration method. Most timestep schemes are based on controlling accuracy as
determined by truncation error estimates (e.g. Prediction-Modification-Correction).
The objective of timestep selection is minimize the computational effort to construct
an approximate solution of a given problem in accordance with a desired accuracy.
This strategy is motivated by the fact that the global error can be bounded in terms
of the local truncation error per unit step [51, 59, 9, 37, 60].

In general, a typical stepsize control algorithm for integration methods, such as

explicit Runge-Kutta methods of order p — 1, can be expressed as

tl ]/P
Atn+1:<i) At, (3.4)

€n

where tol is some input tolerance and e, is an estimate of the local truncation error

in timestep At,. If the error is too big in one step, then the step is rejected and
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re-calculated with a new step. One standard stepsize control algorithm of this type
can be found in [39]. This kind of algorithm normally performs quite well. However,
there are differential equations and integration methods for which its performance
is unacceptable. The stepsize oscillates tremendously and the number of rejected
steps is too high. As a consequence, much computation time is spent re-calculating
rejected steps and changing the stepsize.

Gustafsson, Lind and Soderlind [39] showed that the above problem (3.4) can be

viewed as a standard automatic control problem. Equation (3.4) can be rewritten

as
— (log Aty — log At,) = % (loge, — logtol) (3.5)
or
~(Sn41 — Sn) = ki by (3.6)
where
S, = logAt, (3.7)
0, = loge, — logtol (3.8)

Equation (3.6) is equivalent to equation (3.3) if we take kp = 0, k; = 1/p and kp =
0. Thus, the stepsize control schemes based on the control of maximum change in
key variables are nothing but versions of the standard integral feedback controller.
We recognize log At,, as the control signal or control variable, the deviation (loge, —
logtol) as the control error, loge, as the plant output and logtol as the set point.

Figure (3.2) shows a block diagram of the feedback control problem. The process
takes the timestep size At, as a input, calculates the solution of the problem, and
produces an error estimate ¢, that is fed back to the controller. The controller tries
to select the new timestep in a such way that the quantity loge, comes as close as
possible to logtol along a smooth curve.

tol

At Error
Plant

Controller

Feedback

Figure 3.2: Stepsize selection viewed as a control problem.

Motivated by these ideas, Hairer and Wanner [41] design a new stepsize con-

trol algorithm using the standard discrete PID controller (3.3). Substituting the

23



definitions (3.7) and (3.8) into (3.3), we obtain

— (log Atn1 —logAt,) = ki(loge, — logtol) +
kp [(loge, — logtol) — (loge, 1 — logtol)] +
kp[(loge, —logtol) — 2(loge, 1 — logtol) +

(loge, o — logtol)]

which can be rearranged as,

n— t l n— 2
Dty = (F ) (M () Ay, (39)

€n €n €n€n—2

where tol is some input tolerance, e, is the measure of the change of the quantities
of interest in timestep At,, and kp, k; and kp are the PID parameters. Equation
(3.9) can be rewritten using the normalized changes in the variables of interest,

eX =epy/tol, e | =e, 1/tol and e} , = e, o/tol,

n

€n—1 )kp(i kr enf]Q

€n €n En€n—2

Aty = ( ko At (3.10)

where we drop the superscript * for simplicity.

Three consecutive estimates of the solution are needed to calculate the local
normalized truncation errors e, o, €, 1 and e, in (3.10). In the present work, we
consider two different ways to define e,. First, we may use the changes in nodal

velocities, temperature and concentration vector to compute e, taking,

en, = max (€, er, €.) (3.11)
where
et HIJn __[Jnf]H
by = Sy e | 3.12
er M S
= = 3.13
€r toly €r |rTnH ( )
ooy
b, = ¢ po 1 — > 3.14
7 ol o Ic] (3.14)

where tol,, toly and tol. are user supplied tolerances corresponding to the normalized
changes in velocities, temperature and concentration vector, respectively. Second,

we may define e, computing changes in the nondimensional kinetic energy given by

*2 *2
P Gt A (3.15)
Ja 2 ’

24



where u* and v* are the nondimensional velocity components. Now e,, is defined by

i T S
L= K S | 3.16
= Yol ‘K K] (3.16)

where tol is a given tolerance. The nondimensional kinetic energy is also a suitable
parameter for monitoring the behavior of the fluid and for constructing bifurcation
diagrams. Here we also use the kinetic energy to obtain the steady-state solution.

The algorithm for controlling the timestep has two main parts. First, a step
size is assumed, and using the newly computed solution, an a posteriori estimate is
made of the error in the step. Second, this error measure is used to accept or reject
the solution and modify the timestep accordingly. If the error is unacceptable, the
new solution is discarded and we restart the time integration in the previous step
with a reduced step size. If the error is acceptable, a new timestep is calculated
using equation (3.9) and we proceed with the time integration. Here, the size of the
timestep is limited by the changes in velocities, temperature and concentrations.

The initial data for the timestep control algorithm should be: two consecutive
estimates of the solution U"™', U", T" ' T" C" ' C", the current time ¢, the
timestep size At, the timestep index n and the number of successive approximations
nsa. We have to define the control data: the minimum timestep size At,,;,, the
maximum timestep size At,,.., the PID parameters kp, k;, kp, the tolerances tol,,
tolr, tol., and the maximum number of successive approximations nsa,,.,. We
initialize the normalized errors, €, 5 < 1.0 and e, ; < 1.0, the timestep size at
the previous step, At, = Atprey < Atpin, and the number of rejected timesteps,
nrej < 0. Our PID timestep selection algorithm to calculate the new timestep size
At, ., = At at time ¢, =t may be summarize by the steps in Figure 3.3.

If a timestep gives an unacceptable value of e, the step is rejected. Then the step
is repeated with a scaled timestep size based on the magnitude of the error relative
to the tolerance. However, we find in numerical experiments that the number of
rejections is very small, producing a smooth sequence of timesteps. In our algorithm,
if the sequence of iterates of the nonlinear system is converging at a slow rate, the
timestep is also rejected. That is, if the number of successive approximations nsa
is greater than the maximum number of successive approximations allowed nsa g,
the step size is rejected.

In almost all systems, actuators saturate because the dynamic range of practical
actuators is usually limited. Whenever control saturation happens, the integration

with the PID control law has to stop or this may result in substantial overshoot.
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This problem is called the windup effect [36]. So, to prevent an excessive growth or
reduction of the step size /At, we supply timestep limiters At,,;, and /At,,,, which
limit the control signal (anti-windup effect). The effect of the anti-windup is to
reduce both overshoot and the control effort in the feedback system. Omission of
this technique may lead to deterioration of response and even instability.

Although feedback control theory provides sophisticated techniques to choose
PID parameters, robustness is required when a general finite element method is
used for a wide range of different simulations. We perform parametric studies of the
PID controller for values similar to those used by Gustafsson et al. [39] and also by
Coutinho and Alves [24]. We investigate values for kp ranging from 0.03 to 0.20,
k; from 0.03 to 0.40 and kp from 0.003 to 0.02. Subsequent numerical experiments
demonstrate that the PID controller is very robust for all the applications studied
here, and that we can adopt the following parameters: kp = 0.075, k; = 0.175 and
kp = 0.01.

3.2 Convergence Rate Control Algorithm

Gustafsson and Soderlind [40] establish a model for controlling the convergence rate
of the iterative method that relates the convergence rate to the stepsize. Integrating

an ODE,
y =f(y) (3.17)

by implicit time-stepping methods leads to the nonlinear equation
y=vhf(y)+ P (3.18)

where h is the stepsize, 7 is a constant of moderate size, characteristic of the dis-
cretization method, and ¥ is a known vector. Applying a fixed-point iteration to
(3.18) yields

Yot1 =7 hE(yn) + ¥ (3.19)

Let the error in the solution be denoted by e, =y, —y. Using equations (3.18) and
(3.19), and assuming that Je,, = f(y,) — f(y) where J is a mean value Jacobian, we

obtain

e,r1=7hJe, (3.20)

from which it follows that

len|l < v h [ lenl] (3.21)
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. Input data: U™', Uu%, ™', T, C*', C", t, At, n, nsa.

. Control data: Atmin, Dtpmez, kp, kr, kp, tol,, tolr, tol.,
NSAmaz -

Initialize variables: e, o9 < 1.0, e,-1 « 1.0, Atpey — Dtpin,

nrej <— 0.
. Calculate e, using (3.11)-(3.14).

If ((e, > 1.0) or (nsa > nsa,,.)) and (At > At,,;,) then
reject the timestep:

(a) nrej < nrej +1

(b) UM U™ ", TP« T* ', C" - C"!

(c) t+t—At

(d n<n-1

(e) factor = i

(£) if (factor > 0.8) factor = 0.8

(g) At <« max(factor At, Atyin)

(h) Atpren < At Ntprey

else

(i) calculate At + (e’;—;l)kp(é)k’(%)kl’ VAN -
(37) At < max (At, Atmin)

(k) At « min (At, Atmas)

(1) Atprey < At

(m) €n-2 < €n-1, €p-1 < €y

endif

Figure 3.3: PID Stepsize Control Algorithm
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Hence the convergence rate depends on the stepsize h and the (unknown) Jacobian

J. The stepsize-convergence relation may be modeled by
a=uvh, (3.22)

where v < 7||J|| and « is the convergence rate depending on the spectral radius
of vhJ. This model is confirmed by actual computations in [40] showing that the
convergence rate is in practice largely (but not perfectly) proportional to h. To avoid
expensive eigenvalues estimates, « is obtained by using three consecutive iterates

Vn-2, Yn_1, and y,, as follows

(3.23)

_ _ HYn - Ynf1||
= max «,, = max .
n ||Yn71 - YanH

Assuming that the stepsize is limited by the convergence rate of nonlinear iter-
ations and that the change in v from step to step is small, the new stepsize should
be chosen as

Aty = 28 A, (3.24)
«

where o, is a reference rate of convergence and « is the estimated rate of con-
vergence (3.23). Now the controller tries to keep the estimated convergence rate
as close as possible of a reference value. The low quality of the estimate (3.23) of
the convergence rate a together with variations in v imply that it is usually not
worthwhile trying a more sophisticated strategy than (3.24).

We must find what convergence rate o,.s the controller should aim for to give
the most efficient integration. This question can be analyzed using the technique
presented in [40]. In general, any value 0.2 < a,.f < 0.4 would be acceptable, and
ares & 0.2 gives performance near to optimal [40]. It is necessary to coordinate the
convergence control algorithm (3.24) with the stepsize control strategy (3.9) so that

efficiency is maintained.

3.3 The Timestep Control Algorithms

We propose two timestep control algorithms based on controlling accuracy or the
convergence rate of the successive iterations. These algorithms will be used to find
timestep sizes in steady-state and transient chemical reaction systems, Rayleigh-
Benard-Marangoni flows and heat and mass transfer problems. The algorithms are

very simple and easy to implement.
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The first control uses only the PID control for timestep selection (3.9) with

changes in velocities, temperature and concentrations. The Control 1 is defined by

e e CINR e, 2\ M
At = < ”1> (—) ( ol ) Atyrey (3.25)
€n €n €n€n—2

with
en = Mmax (€, er, €.), (3.26)
where
6* HIJn __[Jnf]H
., = v S A 3.27
N (320
er T e A S |
_ _ 3.28
T ol o IT7] (3:28)
|-
- & . 3.29
7 Tl ‘o Ic| (3:29)

and At represents the new timestep size and At,,., is the timestep size at the
previous step. In the second control, the size of the timestep is limited by the changes
in the kinetic energy or by the rate of convergence of the successive approximations.

We take the minimum between the two values. The Control 2 is given by

At = min(At,, At,), (3.30)
where
Aty = DAL, (3.31)
o
kp kr 2\ kp
i 1 e
At, = (F 1) <_> (P ! ) Atyres (3.32)
€n €n €n€n—2
with .
627 * |l(n - K"
n = , = 3.33
€n tOlK €k ‘}(n‘ ( )

We should modify the algorithm given in Figure 3.3 to include both controls. We
need the calculation of At, in (3.31) to obtain the new timestep At in (3.30). The
value of the estimated rate of convergence a has to be calculated at every step
and passed to the PID timestep algorithm as a parameter. The reference rate of
convergence .y should be a constant defined in the algorithm. Control 1 and
Control 2 are embodied in the algorithm given in Figure 3.4. The variable control
in the algorithm indicates if the new timestep size At is calculated using Control 1
or Control 2. In the next section we briefly discuss the automatic timestep selection

strategy proposed by Winget and Hughes in [79].
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. Input data: U*!, u?, ™!, ", C*°!, Cc*, K*L, K", t, At, n,
a, nsa.

. Control data: Atmin, Dtmas, kp, kr, kp, tol,, tolr, tol., tolx,
NSOmag s Oref, control

Initialize variables: e, o < 1.0, e,_1 < 1.0, Atpey < Ditpin,
nrej < 0.

If control =1 then

calculate e, using (3.26)-(3.29)
else

calculate e, using (3.33).

If ((e, > 1.0) or (nsa > nsa,,..)) and (At > At,,;,) then
reject the timestep:
(a) nrej < nrej +1
() UP U™, T"«T" !, C"«C"', K"« K"!
(c) t+t— At
(d) n+<n-1
(e) factor ::é%
(£) if (factor > 0.8) factor = 0.8
(g) At <« max(factor At, Atyn)

(h) Atpreu — ATfQ/Atpreu
else

(1) calculate Af ¢ (“b)br(Lyhi(filyko Ap

(j) If control =2 then

(j1) calculate At, using (3.31)
(j2) At + min (At,, At)

(k) At + max (At, Atpin)
(1) At < min (At, Atyez)
(m) Atyey < At

(Il) €n_9 < €h_1, €1 < €y

endif

Figure 3.4: Algorithm for Control 1 and Control 2
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3.4 The Winget and Hughes Approach

Winget and Hughes [79] in their work on finite element simulation of transient heat
conduction develop timestep selection strategies based on heuristic rules. Errors and
computational efficiency in the transient solution are controlled by this automatic
timestep selection strategy. The algorithm for controlling the timestep error has
two parts: an posteriori error estimate for the newly computed solution, and an
algorithm that uses this error measure to accept or reject the solution and modify
the timestep accordingly. The main ideas of the their approach are described below.

The selection of the timestep At is based on controlling the maximum normalized
error e, of quantities of interest with respect to user specified error tolerances. The
objective is minimize this error, but at the same time keep At as large as possible to
avoid excessive “work” in obtaining the solution for a given time interval. As long
as e, < 1 the solution satisfies the user specified error tolerances and solution error
is acceptable. Observe that a very small solution error indicates that the stepsize
should be increased to reduce the amount of “work” required to integrate the time
interval under consideration. If the error is unacceptable, e, > 1, the new solution
is rejected and the time integration at the previous step is restarted with a reduced
stepsize.

Thus, the selection of At as a function of e, is based on the two rules: at
no time should a timestep be acceptable if e, > 1, and the step size At should
be increased until e, = O(1). The initial data for the algorithm should be: two
consecutive estimates of the solution U™™', U", T"' T" C" ' C", the current
time ¢, the timestep size At and the timestep index n. We need to define the

following parameters: the minimum timestep size At the maximum timestep size

At
and v < 1.25. The algorithm may be summarized by the steps in Figure 3.5.

min>
mazs Ny M, €g004, 1 and pr. We initialize the variables nupdat < 0, mupdat < 0

Observe in Figure 3.5 that if e, > 1.0 then the solution is unacceptable: At is
replaced by puAt, u < 1, the step growth rate v is reset to the initial value 1.25, and
the time integration is restarted at the previous step. If ego0q < €, < 1 then the
solution is acceptable, the algorithm proceeds with the time integration using the
current At. If e, < eg004 for N successive steps then the solution is 'overly” accurate.
So, At is replaced by vAt, v > 1. The purpose of step (h) is to provide a variable
step size growth rate which allows At to be increased at a fast enough rate to raise

e, = O(1) for even the fastest decaying exponential. The cost effectiveness of the
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algorithm depends on the subtle interplay between increasing and decreasing step
sizes.

The computed step size should always be within user specified bounds, At,,;,
< At < Atpes. If At is reduced below At,,;,, the user should be informed, and
the integration should proceed with At = At,,;,. The algorithm will generate an
accurate solution for any value of p less than one if the lower bound At,,;, is not
encountered. In practice they have found the values = 0.5, egp0q = 0.25, N = 2,
v =125 M = 3, and n = 1.1 to perform well. In the next chapters, the efficiency of
our two control strategies for timestep selection will be compared with this approach
suggested by Winget and Hughes for some validation problems, chemical reaction

systems, Rayleigh-Benard-Marangoni flows and double diffusive problems.
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. Define Parameters: At

. Input data: U"!, Uu?, ™%, T, C"!, C", t, At, n.

Atpuws N=2, M =3, €go00 =0.25,

min ? maz ?

n=11, p=20.5.

Initialize variables: nupdat < 0, mupdat < 0, v <+ 1.25,
nrej <— 0.

. Calculate e, using (3.26)-(3.29).

If (e, >1.0) and (At > At
timestep:

min) then reject the
(a) nrej < nrej +1

(b) UM« U™, Tn T 1, ¢" ¢ cn!

(c) t+t— At

(A n+n-—1

(e) v+ 1.25

(f) At <« max(pAt, A\t

min)
else

(g) If (e, < e€gooq) then
(g1) nupdat < nupdat + 1
(g2) If (nupdat = N) then
(g21) nupdat < 0
(g22) At v At
(g23) mupdat <~ mupdat + 1
(h) If (mupdat = M) then
(h1) mupdat < 0
(h2) v <+ nv
(h3) At < nAt

(1) At <« max(At, At

ma'r)

endif

Figure 3.5: Winget and Hughes Approach

33




Chapter 4

Validation Problems

The main objective of this chapter is the presentation of numerical experiments to
validate the finite element formulations for the Navier-Stokes and transport equa-
tions, and our timestep control algorithms. The validation is done separately for
each formulation using benchmark problems found in the literature or particular
numerical examples constructed to have known solutions. First, we present three
test problems to validate the Navier-Stokes equations. Then, four numerical ex-
periments support our SUPG formulation for the transport equations. In the last
section, a numerical study is presented to assess the accuracy of the solutions when
our timestep control strategies is applied. We also investigate the robustness of our

controller.

4.1 Navier-Stokes Equations

This example is motivated by a particular test problem introduced by Johnson
and Pitkaranta [50] for the Stokes flow and also studied by Song et al. [64] and
Carey and Krishnan [14]. The problem includes a constructed example with known
analytic solution. Of particular interest here is to examine the rates of convergence
with respect to the mesh size for this test problem and compare them with the
theoretical estimates obtained in [14].

The equations describing the problem are the transient Navier-Stokes equations
(2.7) and (2.8) subject to prescribed boundary conditions (2.14). The analytic

solution for this problem is defined by the smooth velocity components

U(t,’[),y) = (t+1)27"2(1 7T)2(2y76y2+4y3) (4 1)
v(t,z,y) = (t+1)2y*(1 —y)*(—2x + 62% — 42%) '
and the pressure field
p(a,y) = 2% — o (4.2)
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on the unit square = (0,1) x (0,1). This velocity field is divergent free and
satisfies the no-slip condition u = 0 on the boundary of the square 02;. We assume
that f(c) = 0 in (2.7). Substituting (4.1) and (4.2) in the transient Navier-Stokes
equation (2.7), we find that the body force q = (¢1, ¢2) is equal to

qi(t,ry) = 2(t+1)2°(1 - 2)°(2y — 6y° +4y°) +

u(t, =, y)(t +1)*(2z — 62” + 42°) (2y — 6y° + 4y°) +

o(t, 2, y)(t+ 1)2(2 — 12y + 12¢9%) (1 — 2)* +

(t+1)22(xz — 0.02((1 — 6(z — 2%))(y — 3y* + 2y°) +

(1 - 2)%2*(=3 + 6y))) (4.3)

ot o,y) = 2t+1)y*(1 - y)* (=22 + 62" — 42”) —

u(t, =, y)(t+1)%y*(—2 + 12z — 122°)(1 — y)* +
o(t,x,y)(t+1)%(2y — 6y* + 4y”) (22 + 62° — 42°) +
(t+1)*2(y +0.02((1 — 6(y — v*))(—x + 32* — 22°) +

(1-y)%y*(3 — 62))). (4.4)

The viscosity is chosen as 0.01, and we take a constant penalty parameter of € =
108, The maximum nodal velocity is approximately 1.2 x 10~2, which corresponds
to a Reynolds number of 1.2.

The approximate solutions are computed for a sequence of uniform meshes with

11 and ==, and all the approximations are shown for the first

mesh size h = 2, T 5 16 355

timestep, that is, ¢, = 10~°. The initial condition is taken as the exact solution at the
initial time ¢ = (0. We consider bilinear elements with 1-point Gauss quadrature for
the penalty term (Case 1) and biquadratic elements with 2 x 2 Gauss quadrature for
the penalty term (Case 2). Our objective now is to examine the rates of convergence
with respect to the mesh size h and to compare with the theoretical estimates.

Table 4.1 shows the error in the approximate velocity in the L%-norm (]| - ||o)
and H'-norm (|| - ||;) for the refined meshes in Case 1 (bilinear). The error in the
approximate velocity is plotted against mesh size h on a log-log scale in Figure 4.1.
The respective approximate slopes of 1.9026 and 0.9797 indicate global rates of
convergence. The theoretical rates of convergence in Case 1 in the || - |[o and || - |1
norms are equal to 2 and 1, respectively.

In Case 2 (biquadratic), the errors in the velocity in the norms || -||o and || - ||, are

shown in Table 4.2. Figure 4.2 shows the error in the approximate velocity plotted
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Mesh Size L?-norm H'-norm

h=1/2 T746371FE — 02 || .5754133F — 01
h=1/4 .2463945F — 02 || .3099890F — 01
h=1/8 .6504252F — 03 || .1551478F — 01
h = 1/16 1641288F — 03 || 7734176 F — 02
h =1/32 || .4107556FE — 04 || .3861947FE — 02

Table 4.1: The L?-norm and H'-norm of error in the velocity solution in Case 1 (bilinear).
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Figure 4.1: Optimal global rates of convergence for the velocity in Case 1 (bilinear).

against mesh size h on a log-log scale. Now, the theoretical rates of convergence in
the || - ||o and || - [[1 norms are equal to 3 and 2, respectively. The slopes of the curves
yield rates of convergence for the velocity 2.9628 and 2.0154 in the || - ||o and || - |1
norms, respectively. Hence we find that the velocity approximations in both cases

converge towards the exact solution at optimal rates.

Mesh Size L?-norm H'-norm

h = 1/2 1021730FE — 02 || 1866761 F — 01
h = 1/4 1404786 FE — 03 || .4521962F — 02
h = 1/8 1786013FE — 04 || .1117877E — 02
h = 1/16 2242721 F — 05 || .2786661F — 03
h =1/32 2806901 F — 06 || .6961698F — 04

Table 4.2: The L?-norm and H'-norm of error in the velocity solutions in Case 2 (bi-
quadratic).

The second numerical experiment is the backward-facing step problem, which has
become popular as a benchmark problem addressed by numerous authors developing

flow simulation codes. It consists of a fluid flowing in a straight channel which
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Figure 4.2: Optimal global rates of convergence for the velocity in Case 2 (biquadratic).

abruptly widens on one side. Results of physical experiments are given in Armaly
et al. [1], and numerical results obtained using different finite element methods can
be found, for example, in Gartling [34] and Cruchaga [26]. Griebel, Dornseifer and
Neunhoeffer [38] solve the problem for different Reynolds numbers using a finite
difference approach. Numerical results using our penalty finite element formulation
are compared with those published by Griebel, Dornseifer and Neunhoeffer in [38].

The problem involves a viscous incompressible flow over an isothermal two-

dimensional backward-facing step. Introducing the dimensionless variables

Y t*_tu“ L p*_p—poo
L’ L’ Uno Voo Poc 2,

(4.5)

with given scalar constants L, s, Poo, Poos and substituting these relations into (2.7)

and (2.14), we obtain the dimensionless Navier-Stokes equations of the problem

9) 1
a—?+u-Vu—§Au+Vp =0 in (4.6)

V-ou = 0 in Q (4.7)

where we dropped the superscript * for simplicity, and Re = % is the Reynolds
number. Figure 4.3 shows the geometry of the problem and the boundary conditions.

We assume

walls : u=uv=0;
inlet u=1.0, v=0;
ou Ov
xit at x = 30 — =0, — =0.
exit at x o Ee
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The initial velocity is v = 1.0, v = 0 in the upper half of the domain and u =
v = 0 in the lower half. The obstacle domain representing the step is the rectangle
[0,7.5] x [0,0.75] and the inflow velocity at the left wall has the constant value
u = 1.0. The length L measured from the step to the end of the calculation domain
was selected to make the reattachment length independent of the calculation domain,
and the boundary condition at the outflow section was taken as that of a fully
developed flow. We solve the problem towards to steady-state for two Reynolds

numbers, Re = 100 and Re = 500.

e U=V=0
U=10V=0
0.75 Ux =Vx =0
0.0
U=V=0
0.0 7.5 30.0

Figure 4.3: Backward-facing step geometry with channel dimensions and boundary con-
ditions.

The rectangular channel downstream of the step was divided into two regions
for purposes of mesh generation. In the upstream region 0 < x < 15 the mesh is
uniformly distributed across the channel and in the streamwise direction. Element
sizes in the uniform grid region are (Az, Ay) = (0.1875,0.3), which represents 40 x 5
and 80 x 5 elements in the bottom (0 < y < 0.75) and top (0.75 < y < 1.5) upstream
regions, respectively. For the downstream region 15 < z < 30 and 0 < y < 1.5 the

mesh is uniform across the channel but smoothly graded in the flow direction. For

1t =2,...,nx, the nodes in the grid are calculated using the expression,
(i) =15+ 15 (i_l)l-2 (4.8)
x(1) = * )
nr — 1

where nx = 30 is the number of elements in the downstream region. We have 30 x 10
elements in the downstream region. Elements near x = 30 are approximately twice
the length of elements near x = 15. For this mesh about two-thirds of the total
number of elements are located in the upstream region. We have 600 elements in
the upstream region and 300 elements in the downstream region. The steady state
solution is obtained when [[u” —u" '|| < 107 ||[u”||. We used a fixed time step size
of At = 0.01 at the beginning of the process and then we keep the time step size
at At = 0.1. Results were obtained using the four-node continuous bilinear velocity

elements with 1-point Gauss quadrature for the penalty term.

38



The basic character of the backward-facing step flow at Re = 100 and Re = 500
is well known and is illustrated in the contour plots of Figure 4.4. Note that the
figures show only the part of the computational domain 6 < x < 20, since this
contains all the essential features. The streamlines shown in Figure 4.4 reveal that,
for Re = 100, the flow widens immediately behind the step and an eddy is formed.
When viscosity is further reduced (Re = 500), the main flow is drawn downward,
causing it to separate from the upper boundary and leading to the formation of a
second eddy. Note that the first eddy increases in size with increasing Reynolds

number (Re = 500).

i 8 9 10 11 12 13 14 15 16 17 18 19 20

0 T FUUN DUTUR PUUw: Fovu OO UUee Foued PUu DN BSOOS Free

6 7 8 9 10 11 12 13 14 16 16 17 18 19 20

Figure 4.4: Flow over a backward-facing step, streamlines at Re = 100 (top) and Re =
500 (bottom).

The lengths z; and x5 of the upper and lower eddies as well the horizontal dis-
tance x3 from the step to the upper eddy’s point of separation are values often used
to characterize the resulting flow, see Figure 4.5. Table 4.3 shows the characteristic
lengths - each normalized by the step height s - obtained by Griebel, Dornseifer and
Neunhoeffer in [38] for Re = 100 and Re = 500.

Griebel et al.
Re | x1/s | xa/s | x3/s
100 | 3.8 - -
500 | 83 | 9.1 | 6.2

Table 4.3: Flow over a backward-facing step - characteristic lengths

For Re = 100, we can observe in Figure 4.4 that the flow separates at the step
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Figure 4.5: Characteristic lengths.

corner and forms a recirculation eddy with a reattachment point on the lower wall
approximately at x = 10.35 which corresponds to z; = 2.85 (#1/s = 3.8). This eddy
increases in size to x = 13.725 (z1/s = 8.3) with the increasing Reynolds number
(Re = 500). A second eddy forms on the upper wall, for Re = 500, beginning
approximately at x = 12.15 (x3/s = 6.2) and terminating at x = 18.975 (13/s =
9.1). So, our results are in very good agreement with the results obtained by Griebel,
Dornseifer and Neunhoeffer in [38].

The third example is also a problem involving a steady viscous incompressible
flow over an isothermal two-dimensional backward-facing step. Now, the standard
step geometry was simplified by excluding the channel upstream of the step (see
Figure 4.6). This problem has been addressed by numerous authors but we are going
to compare our results with the results presented by Gartling in [34]. The boundary
conditions for the step geometry included the usual no-slip velocity specification for
all solid surface walls as shown in Figure 4.6. The inlet velocity field is specified as
a parallel flow given by u(y) = 24y(0.5 — y) and v(y) = 0 for 0 < y < 0.5. This
produces a maximum inflow velocity of u,,,, = 1.5 and an average inflow velocity of
Ugng = 1.0. We consider homogeneous natural outflow boundary condition as shown

in Figure 4.6. The problem is solved for a Reynolds number of Re = 800.

U=VvV=20
05 1= u = 24y(0.5)
0.0 V=0 Ux=Vx=0
0.5 U=Vv=0
0.0 30.0

Figure 4.6: Backward-facing step geometry with channel dimensions and boundary con-
ditions.

We use a mesh similar to the one used in the last example. In the upstream
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region 0 < x < 15 the mesh is uniformly distributed across the channel and in the
streamwise direction. The lengths of the element size for the uniform grid region are
(Az, Ay) = (0.1,0.0833), which represents 150 x 12 elements. For the downstream
region 15 < z < 30 the mesh is uniform across the channel but smoothly graded
in the flow direction. The nodes in the grid are calculated using (4.8). We have
50 x 12 = 600 elements in the downstream region and 1800 elements in the upstream
region. The steady state solution is obtained when |[u” — u" '] < 10~* |lu"|.
Results were computed using the four-node continuous bilinear velocity elements
with 1-point Gauss quadrature for the penalty term, and we used a fixed time step
size of At =0.01.

The basic character of the backward-facing step flow at Re = 800 is illustrated
in the streamfunction contour plots of Figure 4.7. The plot shows only part of the
channel since few phenomena of interest occur downstream of this point. Gartling in
[34] found that the flow separates at the step corner and forms a large recirculation
eddy with a reattachment point on the lower wall approximately at + = 6.10. A
second stronger eddy is formed on the upper wall beginning approximately at x =
4.85 and terminating at x = 10.48. Our results are in good agreement with the

results obtained by Gartling in [34].

0 1 2 3 4 5 6 7 8 9 10

Figure 4.7: Flow over a backward-facing step, streamfunction contours at Re = 800.

4.2 Transport Equations

Our first experiment is a test problem constructed to have in the unit square domain

[0,1] x [0,1] and for ¢t > 0 the analytic solution
c=10*(t +1)%z(x — Dy(y — 1), (4.9)

where ¢ is the solution of the transport equation (2.19) considering one species

component. The velocity field is the same used in the first example of the previous
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section 4.1, whose velocity components are

ut,z,y) = (t+1)%2%(1 —2)*(2y — 69> + 4y°)
v(t,z,y) = (t+1)2y*(1 — y)*(—2z + 62> — 42%).
We assume the diffusion tensor k13 = koo = 1, k19 = koy = 0 in (2.19), and the

nonlinear reaction term is taken to be
h(Ta y) = 7(32 + fa (410)

where the function f is given by

oe oc oc 0%c 0%*c
+Uu— +v— — kyy— — ky9s—— + .

/= ot ox oy 0x? oy?

The initial solution is defined as the exact solution at the initial time ¢ = 0. We
specify essential boundary conditions, ¢(t,z,y) = 0 from (2.18) evaluated on the
boundary of the unit square domain 2. For this test problem, of particular interest
is to examine the rates of convergence of the concentration with respect to the mesh
size h and the time step Atf, and compare them with the theoretical estimates.

The transport equation is solved using the bilinear, biquadratic and six-node
triangular elements described earlier for a sequence of uniform meshes with mesh
1

111 1 Iy
3275 5> 76> and z5. In the case of bilinear elements, we also compute the

1
64"

size h =
solution at h = For the convergence study with respect to h we keep a constant
small timestep of At = 107°. All the approximations are shown for the first time
step t = 1075,

The L?-norm of the error in the concentration solution for bilinear and six-node
triangular elements is shown in Table 4.4. The L?-norm and H'-norm of the error for
the concentration using bilinear elements are plotted against mesh size in Figure 4.8
on a log-log scale. The respective slopes 1.9708 and 1.0202 indicate the global rates
of convergence, and are in good agreement with the theoretical predictions 2 and 1,
respectively.

For biquadratic elements we obtain relative errors in the L?-norm of order less
than 10~® for any number of elements. This means that we obtain the exact solution
within roundoff error, as expected. Optimal global rates of convergence are also
obtained for six-node triangular elements in both norms as shown in Figure 4.9.
The rates of convergence for the concentration approximation in the L?-norm and
H'-norm for this example are 2.9480 and 1.9699, respectively.

We also examined the order of convergence of the solution with respect to the

time step At. In view of the above convergence results we select for this study
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Mesh Size | 4-node bilinear || 6-node triangular
h=1/2 12873418 FE + 01 || 30613016 F + 00
h=1/4 35371359E + 00 || .43871262F — 01
h=1/8 90379168 FE — 01 || .56366812F — 02
h=1/16 || .22716094F — 01 || .70867673F — 03
h =1/32 || .56865900F — 02 || .88027891F — 04

Table 4.4: The L2-norm of the error in concentration for 4-node bilinear and 6-node

triangular elements.
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Figure 4.8: Rates of convergence for the

and H'-norm with bilinear functions
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Figure 4.9: Rates of convergence for the concentration approximation in the L?-norm
and H'-norm with six-node triangular elements
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biquadratic basis functions and a mesh with 2 x 2 elements. The approximate
solutions are compared at the time ¢t = 0.1 for values of At equal to 1072,1073,10~*
in Table 4.5. The error in the L?-norm is plotted against At on a log-log scale in
Figure 4.10. We know that the theoretical truncation error for the Crank-Nicolson

scheme is O(A#?), and we see an approximate slope of 2.0397.

Time Step Size | L*-norm of the error
At =102 16462243 F — 01
At =103 .13438152F — 03
At =107 A3711075F — 05

Table 4.5: The L?-norm of error in the concentration solution for a mesh with 2x2
biquadratic elements.

T T T T T
L2-norm —<—
6 | 4

4+ slope = 2.0397 4

- log |lerror||

L L L L
05 1 15 25 3 35

2
- log ht

Figure 4.10: Rates of convergence for the concentration approximation in the L?-norm
using Crank-Nicolson method with 2 x 2 biquadratic elements

The second experiment is a test problem found in [11] to demonstrate the effec-
tiveness of the streamline upwind method in preventing both “wiggles” and spurious
crossing diffusion. The flow is unidirectional, constant (||c|[| = 1), and skew to the
mesh (f = 7/8) with discontinuous inflow boundary condition and homogeneous
natural outflow boundary condition as shown in Figure 4.11. The diffusivity coeffi-
cient is equal to & = 107 resulting in a Peclet number of Pe = 10°. The steady-state

solution is obtained when ||¢" — ¢ !|| < 107 ||¢"||. The initial conditions are

c = 1 r=0, 0<y<0.25
c = 0 r=0, 025 <y <1
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The problem is advection dominated, and the solution is essentially one of pure
advection. The “exact” solution is an advection of the inflow boundary in the
flow direction. We use a 10-by-10 mesh of equal sized square elements, 2-by-2
Gaussian quadrature to integrate all element contributions, and a fixed timestep
size of At = 0.01. Figure 4.12 shows the results using the Galerkin scheme and the
SUPG formulation. We observe that as expected the SUPG scheme is significantly

better than the Galerkin method in reducing the spurious oscillations on the coarse

grid.
de
—_ 0
Ay
C=0
T3 flow direction ac
Z_0
e
Y 0
25| ¢©=!
k4
=1
) 1.0 |

Figure 4.11: Advection skew to the mesh: problem statement.

Figure 4.12: Advection skew to the mesh with homogeneous natural outflow boundary
condition: elevation of ¢ - SUPG (left) and Galerkin (right).
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The third experiment is also a problem presented in [11]. The flow is a rigid
rotation about the center of a unit square domain, Q = [—0.5,0.5] x [—0.5, 0.5], with

velocity components given by
u=—-—y and v=ux,

and the diffusivity coefficient is & = 1075, On the external boundary of the square

¢ is set to zero, and on the internal ’boundary’ OA, ¢ is prescribed to be a cosine

hill, as shown in Figure 4.13.

O 000000000
RoPRNWRNIDNDOR

C=0

Flow direction

Cc=0 L C=0

C=0

Figure 4.13: Advection in a rotating flow field: problem statement.

We used a 30-by-30 mesh of equal sized square elements, and a fixed timestep size
of At = 0.01. The steady-state solution is obtained when [|c" — ¢" || < 1073 ||c"||.

The initial conditions are

¢ = cos(2n(y+0.25)) on OA

¢c = 0 on the rest of the domain

The problem is also advection dominated. The exact solution is essentially a pure
advection of the OA boundary condition along the circular streamlines. The eleva-
tion of ¢ using the SUPG scheme is shown in Figure 4.14, and is in good agreement
with the exact solution.

The last experiment with the SUPG method is a test problem presented in [20].
The domain of the problem is the unit square, 2 = [0, 1] x [0, 1], discretized using

a uniform mesh of 20 x 20 bilinear elements. The diffusion coefficient is set to
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Figure 4.14: Advection in a rotating flow field: elevation of ¢ (SUPG scheme).

k = 10~*. The nonlinear reaction source term in (2.19) is defined as h = 1 — s¢

where s > 0 is the absorption coefficient. The velocity field is
u = [[uf (cos(r/3), sin(r/3)).

so that it is not aligned with the finite element mesh. Three different cases are
considered, corresponding to dominant advection (Case 1), dominant reaction (Case

2) and combination of advection and reaction effects (Case 3). These cases are:

Case 1 : |u|| =1, s = 0.0001
Case 2 : |ul| =0.0001, s=1
Case 3 : |lul| = 0.5, s=1

Results for the the three cases are shown in Figure 4.15 using the SUPG formulation.
For the first case, the solution shows some oscillations near the boundary layer
created due to the small diffusion coefficient. In Case 3 the effect of convection
and reaction are both present, and there are oscillations due to the presence of
convection. The oscillations are dominated by those due to the convection since
Ab = % is much smaller than Pe. The dimensionless number Ab is a measure of

the relative importance of the absorption and diffusion terms, where A is the element
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size. Our results are in good agreement with those presented in [20] for all three

cases.

Figure 4.15: Case 1 (left top), Case 2 (right top) and Case 3 (bottom).

4.3 Timestep Control Algorithms

Our main objective now is to assess the accuracy of the solutions when the timestep
control strategies studied previously are applied to a specified problem. For this
investigation, we are going to apply Control 1 to the first validation problem for the
transport equations. We also want to verify whether the PID controller is robust or
not. Thus, we perform parametric studies for different values of PID parameters kp,

kr and kp, and compare our timestep control algorithm to the strategy developed by
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Winget and Hughes [79]. We use in these experiments a grid with 2 x 2 biquadratic
elements. The initial timestep size is 10~%, and we allow a minimum and a maximum
time step sizes of 10~% and 103, respectively. Changes in nodal concentration are
calculated with an input tolerance of 1075, and the calculations stop when the time
is greater than 0.1. We perform parametric studies of the timestep controller for
values similar to those used by Gustafsson et al. [39] and also by Coutinho and
Alves [24]. We choose values of kp ranging from 0.03 to 0.20, k; from 0.03 to 0.40,
and kp from 0.003 to 0.02. We also study the case where kp = kp = 0.

Table 4.6 shows the L?-norm of the error in the concentration solution, the num-
ber of time iterations, ntstep, the number of rejected steps, nrejec, the total number
of Newton iterations, newt, and the computational effort, c.fs., defined here as
newt divided by the number Newton iterations obtained using a fixed timestep size
of 104,

the final time is of order 10~° for all cases studies. Moreover, with the PID control

We can see from Table 4.6 that the error in the approximate solution at

strategy we find approximate solutions with a much smaller number of time steps
without any significant loss of accuracy. Observe that we need 100 time steps to
obtain a solution with the same accuracy when the minimum fixed time step is used
(Table 4.6). The step size selection strategy developed by Winget and Hughes took

66 time steps with no rejected steps.

case H kp, ki, kp H error H ntstep H nrejec H newt H Ceffort ‘

1 0.05 0.05 0.005 .37023368E-05 66 0 132 0.66
2 0.1 0.3 0.015 .38890581E-05 62 0 124 0.62
3 0.075 0.175 0.01 .38512072E-05 62 0 124 0.62
4 0.1 0.16 0.011 .38680409E-05 63 0 126 0.63
5 0.06 0.13 0.008 .38456781E-05 63 0 126 0.63
6 0.08 0.216 0.0116 || .38684855E-05 62 0 124 0.62
7 0.15 0.32 0.017 .38897674E-05 62 1 126 0.63
8 0.2 0.4 0.02 .38896720E-05 62 2 128 0.64
9 0.04 0.04 0.004 .36271440E-05 67 0 134 0.67
10 0.03 0.03 0.003 .35057604E-05 69 0 138 0.69
11 0.0 0.175 0.0 .38528566E-05 62 0 124 0.62
12 0.075 0.175 0.0 .38512100E-05 62 0 124 0.62
13 No control 13711077E-05 100 0 200 1

14 Winget & Hughes || .32976399E-05 66 0 132 0.66

Table 4.6: Results for Control 1 using bilinear elements on a 2x2 grid.

The PID controller is very robust as we can also see from Table 4.6. Although

feedback control theory provides techniques to choose the PID parameters, robust-
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ness is required when a general finite element method is used for a wide range of
different simulations. The variation in the number of time iterations is very small
if we keep kp in the range 0.03 to 0.20, k; from 0.03 to 0.40, and kp from 0.003 to
0.02. In the numerical problems presented in the next Chapter, we see that these
parameters are also suitable for the examples studied there. For these reasons, we
fix the values of the PID parameters equal to kp = 0.075, k; = 0.175 and kp = 0.01
in all the numerical experiments performed subsequently. To provide examples of
the evolution of timesteps we show in Figures 4.16 and 4.17 Cases 3 and 14, where
we may verify that the PID solution presents a smooth variation of timesteps when

confronted with the Winget and Hughes test problems.
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Figure 4.16: Time step variation for case 3 on a 2x2 grid using Control 1.

0.0016

0.0015

0.0014

0.0013

Time Step

0.0012

0.0011

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 11 111
Time

0.001

Figure 4.17: Time step variation on a 2x2 grid using Winget and Hughes approach.
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Chapter 5

Chemical Reaction Systems

In this chapter we apply our adaptive timestep control algorithm to solve numeri-
cal applications involving isothermal reaction inside a porous catalyst and chemical
reaction on a catalyst section with heat effects included. We compare the perfor-
mance of Control 1 and the time-stepping strategy proposed by Winget and Hughes
in [79]. One objective is to validate our code when Control 1 is applied to combined
diffusion-reaction processes with heat effects included. We also want to demonstrate
the efficiency of our PID controller to solve nonlinear flow and reactive transport

problems.

5.1 Isothermal Reaction

5.1.1 Dimensionless Equations

When a catalyst particle made from a porous material impregnated with a catalytic
substance is submerged in a gas stream, the reactant A diffuses into the particle,
reacts on the catalytic surface, and the product B diffuses out, A — B. We assume
that the process is isothermal, i.e., the heat generated by the reaction can be ne-
glected, and homogeneous, the chemical change takes place in the entire volume of
the fluid. We also assume that the reaction mechanism is known [33, 7].

Consider a catalyst section exposed to reactant A with concentration ¢ at the
surface. The rate of disappearance of reactant A is given by the following second-

order, irreversible reaction

R = —kc?

where ¢ is the concentration of reactant A in the neighborhood of the surface, and

k is a rate constant. The governing equation of the problem is

%—DVQC = —kc (5.1)
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with boundary conditions

—k— =0 on 0§y (5.2)
ox
c = ¢ on 0 (5.3)
and initial condition
c(x,y,0) = éo(x,y) in (5.4)

where D is the effective diffusivity measured experimentally, 2 = [0, L] x [0, L] is
the section, 0€); is the right side of the domain, and 92, = 0Q — 0€);.

The problem is scaled as follows: 2* = x/L, y* = y/L, t* = tD/L?, and ¢* = c/é.
Substituting these relations into (5.1), (5.2), (5.3) and (5.4), we obtain the scaled

form of the equations

de 2. 2 2
5 Vie = —o¢°c (5.5)
oc
9 0 on 0€), (5.6)
c = 1 on an (57)
C(:anao) = CO(:EJ.U) in O (58)

where we drop the superscript * for simplicity, 2 = [0, 1] x [0, 1] is the dimensionless
section, 0€); is the right side of the domain, 92y = 02 — 9€); and ¢ is the Thiele

modulus defined as

¢ = \/keL?D.
5.1.2 Isothermal Reaction in a Catalyst Slab

We are interested in steady-state solutions of the problem for different values of the
Thiele modulus ¢. We assume that the steady-state occurs when |¢"™! — "] <
7. ||[¢"*||, where n denotes the timestep index, || - || denotes Euclidean norm, and 7,
is equal to 10~7 in this example. Since we are simulating a 1-D problem, we choose
in all cases a mesh with 16 x 1 bilinear elements. We use Control 1, (3.25), (3.26),
(3.27) and (3.29), to calculate all approximate steady-state solutions.

The effectiveness factor ) gives the ratio of the amount reacted with diffusion to
the amount that would be reacted if the concentration were everywhere the same,
and equal to the value at the boundary. In this example, the effectiveness factor can

be defined by the equation
_ fol ¢*c’dx

T (5.9)

Ui
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Finlayson [33] calculates approximate solutions for the problem on the inter-
val [0,1] using the orthogonal collocation method. He shows that for one interior

collocation point the effectiveness factor can be expressed by

1 5 [-25+(6.25+ 10¢%)"/2)?

n= -+

st 5 (5.10)

The approximation is accurate for ¢ < 2, and for larger values of ¢ a higher ap-
proximation is required to improve the results. The effectiveness factor n is plotted
versus the Thiele modulus ¢ in Figure 5.1 for the collocation method and Galerkin
method. We can see that the two curves coincide for ¢ < 1.2.

For large values of ¢ Petersen [58] shows that an asymptotic solution is available.
In this case the general formula becomes
21
3¢
Figure 5.2 shows the effectiveness factor 1 plotted against the Thiele modulus ¢

n= (5.11)

for values of ¢ > 3. Observe that accurate solutions are also obtained for large
values of ¢. Consequently, the Galerkin formulation combined with Control 1 gives
adequate approximations for all values of ¢. The numerical finite element solutions

for different values of the Thiele modulus are shown in Figure 5.3.

5.2 Nonisothermal Reaction

5.2.1 Dimensionless Equations

Consider a first-order, irreversible reaction in a catalyst section Q@ = [—L, L] x[—L, L]

with reaction rate given by
R = —acexp(—AFE/RT),

where T is the absolute temperature, AF is the activation energy, R is the gas

constant, and a is constant. The corresponding governing equations are:

oT AE
i +peu- VT — kV?T = acexp(— }A?T) (5.12)
0 AFE
a—; +u-Ve—DV’c = —acexp(— ]A%T)J (5.13)
with initial conditions
T(:EJUJO) = ill(.’E,U)
c(z,y,0) = hs(z,y), (5.14)
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Figure 5.1: Effectiveness factor as a function of Thiele modulus for collocation method
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Figure 5.3: Steady-state solution in catalyst for ¢ = 0.2, 1.0, 2.0, 4.0 and 7.0.

and boundary conditions

VI -n = Ve-n = 0 on 0
—kVT-n = h,(T —-T) on 05, (5.15)
—DVe-n = ky(c—¢) on 08,

where p is the density, ¢, is the specific heat, k is the thermal conductivity, D is the
diffusivity, h, is the heat transfer coefficient, k, is the mass transfer coefficient, n is

the unit outward normal, and 02 = 9Q2; U 9€)5 is the boundary of the domain.

* Y * ts *

The equations can be scaled as follows: z* = £, y* = &, " = u3, v* = 1)%",
¢t =2, T* = 7, and t* = . Substituting these relations into (5.12), (5.13), (5.14)

and (5.15), we obtain the dimensionless unsteady equations for the nonisothermal

problem
ar 1 d*cf 1
— VT — —V°T = > - = :
Y +u-V 7 veT 7z exp(y(1 T)) (5.16)
dc 1o, ¢ 1
§+U-V(j— EV c = A exp(v(1 — T)), (5.17)

with initial conditions

T(.’I?,y,()) = h](Tay)
c(z,y,0) = ha(z,y), (5.18)
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and boundary conditions

VI n = Ve-n = 0 on 0
Nu
—VT-n = T(T —a1(t)) on 0 (5.19)
Sh
—Ve-n = T(C—gg(t)) on 0€y,

where we drop the superscript * for simplicity, My = pc,L?/kt,, My = L?/Dt,,
Nu = h,2L/D is the Nusselt number, Sh = k,2L/D is the Sherwood number,
¢ = \/koL?/D is the Thiele modulus, and Q = [0,1] x [0, 1] is the dimensionless

section. Here ky = aexp(—=). The dimensionless variables v and  are defined as

_AE

Y RTOJ

5 . (—AHR)CUD
B KT,

where —AHp, is the heat of reaction.

5.2.2 Nonisothermal Reaction on a Catalyst Section

First we solve the steady-state nonisothermal case under conditions in which the

Nusselt and Sherwood numbers are very large [33]. The boundary conditions are

VI -n = Ve-n = 0 on 0
T = 1.1 on 0€2
c = 1.0 on 0€2

where 0€2, is the right side of the unit square €2, and 0€); = 02— 09€25. The functions

hy and hy in (5.18) defining the initial conditions are
hi(z,y) = ho(x,y) = 1 + sin(nz)sin(ny).

The velocity field is given by the numerical solution of the Stokes flow [50, 64, 14],
defined by the transient Navier-Stokes equations (2.7) and (2.8) subject to prescribed
boundary conditions (2.14). The analytic solution for this problem is defined by the
smooth velocity components

u(z,y) = 1002%(1 — z)?(2y — 6y* + 4y?)

v(z,y) = 100y*(1 — y)*(—2x + 622 — 42°)
and the pressure field is p(z,y) = 100(z* —y?). The steady-state solution is obtained

when the velocity field at two different timesteps reaches a difference less than an
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input tolerance. The viscosity is ¥ = 0.01, and we take a penalty parameter of
e = 1078 This velocity field is divergence free and satisfies the no-slip condition
u = 0 on the entire boundary of the square 0€2. To find the velocity field we use
biquadratic basis functions in a 4 x 4 grid with 2 x 2 point integration of the penalty

term. Figure 5.4 shows the velocity for the Stokes problem.

Figure 5.4: Velocity for the Stokes flow.

Here, the approximate solution for the Stokes problem is calculated and the
velocities are substituted into the transport equations, which are solved for concen-
tration and temperature. We calculate the steady-state approximate solution for
the Thiele modulus ¢ = 0.8, 8 = 0.6, v = 20, M; = 176, My, = 199, and a grid with
8 x 8 bilinear elements. We assume that the steady-state occurs when the following
condition is satisfied

[(T™ = T™) + (™' — ™)

[T 4 emt)| =7

where m denotes the timestep index and || - || denotes Euclidean norm. The initial
time step size is 1072, and the minimum and maximum time step sizes allowed are
10~% and 10, respectively. A tolerance 7 = 10~* was supplied for changes in nodal
temperature and concentration. We need to start with this small timestep to obtain
convergence of Newton’s method in the transport equation.

We perform parametric studies of the PID controller for values around those used
by Gustafsson et al. [39] and also by Coutinho and Alves [24]. We choose values
of kp ranging from 0.03 to 0.20, k; from 0.03 to 0.40, and kp from 0.003 to 0.02.

We also study the case where kp = kp = 0. Table 5.1 shows for different values of
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the PID parameters the number of time iterations, ntstep, the number of rejected
steps, nrejec, the number of Newton iterations, newt, and the computational effort,
Ceffort; defined as newt divided by the number Newton iterations obtained using
a fixed timestep size of 1073. We need about 800 Newton iterations to obtain the
solution applying the PID control, in contrast with 2998 Newton iterations (case 10)
when a fixed timestep is used. We have in this example a 3.75 times improvement

in the computational effort to compute the solution within the same accuracy.

case kp, ki, kp ntstep || nrejec || newt || Ceffort
1 0.075 0.175 0.01 240 7 800 0.27
2 0.1 0.3 0.015 232 11 792 0.26
3 0.05 0.05 0.005 282 1 897 0.30
4 0.1 0.16 0.011 242 7 807 0.27
5 0.06 0.13 0.008 247 6 819 0.27
6 0.08 0.216 0.0116 237 9 800 0.27
7 0.2 0.4 0.02 229 14 791 0.26
8 0.03 0.03 0.003 315 0 981 0.33
9 0.0 0.175 0.0 241 8 807 0.27
10 No Control 1101 0 2998 1
11 || Winget & Hughes 264 8 876 0.29

Table 5.1: Results for the PID timestep controller and Winget and Hughes approach

The PID control is robust since the number of Newton iterations does not change
much for different choices of PID parameters. We can also observe that the number
of rejected timesteps is relatively small. The results for the Winget and Hughes
approach [79] are presented in case 11. The PID controller finds the steady-state
solution a little faster than the Winget and Hughes approach. Figure 5.5 and 5.6
show respectively the timestep size against time for case 1 and the Winget and
Hughes approach. We observe that the PID control produces a very smooth curve,
while in contrast, the Winget and Hughes approach yields a curve with several steps.
The initial temperature profile and the steady state solution are shown in Figure
5.7. Note that all the steady-state solutions are indistinguishable.

Next we solve the unsteady problem (5.16), (5.17), (5.18) and (5.19) with M; =
176, My = 199, Nu = 55.3, Sh = 66.5, v = 20, § = 0.6, ¢ = 0.8, g;(x) = 1.1 and
g2(xz) = 1.0. The velocity field is the same calculated in the steady-state problem
(Figure 5.4). The approximate solutions are calculated using a grid with 8 x8 bilinear
elements. We first obtained the approximate solution for a constant timestep size

of At = 0.05. Figure 5.8 shows the transient temperature distribution in a catalyst
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Figure 5.5: Timestep variation using the PID controller for case 1 (steady-state problem).
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Figure 5.6: Timestep variation using Winget and Hughes approach (steady state prob-
lem).
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Figure 5.7: Initial temperature profile and steady-state solution using bilinear elements
on a 8 x 8 grid (¢ = 0.8).
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section at times t = 0, 1, 5, 10 and 20.

For a fixed time equal to 20, we compare approximate solutions using the PID
controller and Winget and Hughes approach. We start with a timestep size of 0.05,
and we allow minimum and maximum time steps of 0.05 and 5, respectively. The
solutions are obtained with a tolerance of 107% for the changes in nodal temperature
and concentration. The PID parameters are kp = 0.075, k; = 0.175 and kp = 0.01.

Table 5.2 shows the results for each case studied. We obtain the solution with
423 Newton iterations using the PID controller, and we need 1223 Newton iterations
with a fixed timestep of 0.05. Thus, we have obtained this solution 2.89 times faster
with no accuracy loss. Here we also obtain the solution using the PID controller a
little faster than using Winget and Hughes approach. Figure 5.9 and 5.10 show the
timestep size against time for the PID controller and Winget and Hughes approach,
respectively. Observe that the PID control produces a very smooth curve, while the

Winget and Hughes approach yields a curve with several steps.

case ntstep || nrejec || newt || Ceffort
No Control 400 0 1223 1
PID Control 104 1 423 0.34
Winget&Hughes 112 1 433 0.35

Table 5.2: Results for the transient catalyst problem with timestep control and Winget
and Hughes approach.
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Figure 5.8: Evolution

of temperature solution using bilinear elements on a 8x8 grid
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Figure 5.9: Timestep variation using the PID controller (transient problem).
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Figure 5.10: Timestep variation using Winget and Hughes approach (transient problem).
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Chapter 6

Rayleigh-Benard-Marangoni
Problems

The objective of this chapter is to compare the efficiency of Control 1 and Control 2
with the scheme given by Winget and Hughes in [79]. In particular, we want to study
the performance of the controllers to solve Rayleigh-Benard-Marangoni problems.
We perform numerical experiments for different parameters of Rayleigh-Benard and
Rayleigh-Benard-Marangoni flows and compare our results with those found in the

literature.

6.1 Dimensionless Equations

Natural convection of an incompressible fluid can be driven by buoyancy forces due
to temperature gradients and thermocapillary forces caused by gradients in the sur-
face tension [6, 18, 29, 80]. When buoyancy is the dominant component in driving
the flow, they are termed Rayleigh-Benard flows. When both buoyancy and thermo-
capillary effects provide the dominant forces driving the flow, the associated coupled
flow and transport problem is termed the Rayleigh-Benard-Marangoni problem. We
are particularly interested in the interaction of buoyancy and thermocapillary forces,
and their effects in a microgravity environment where buoyancy is small. However,
the work is equally important for thin fluid layers in a normal gravity environment.

The effect of buoyancy is included as a temperature dependent body force term
in the momentum equations by means of the Boussinesq approximation [38]. The
applied temperature field induces a surface tension equivalent to the application of
a shear stress at the horizontal free surface. The velocity field enters the convective
term in the heat transfer equation. The equations describing Rayleigh-Benard-

Marangoni flows are the coupled Navier Stokes equations for viscous flow of an
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incompressible fluid and the heat transfer equation,

1
%—1:+u-Vu—yV2u+;Vp = Bp(T—-Ty)g inQxI (6.1)
Vou = 0 nQxI  (62)
or .
Per g +peu-VT =V - (kVT) = 0 in Qx1Tl (6.3)

where u is the velocity, p is the pressure, €2 is the flow domain, 7" is the temperature,
T} is the reference temperature, v is the kinematic viscosity, p is the density, G is
the thermal coefficient, g is the gravity vector, ¢, is the specific heat, £ is the thermal
conductivity, and I = [0,¢] is the time interval.

We assume that there is no slip at the solid walls 9€2;, i.e., u = uy, where uy, is
the specified wall boundary velocity. Temperature, flux or mixed thermal boundary
conditions may be applied. The Marangoni problem involves a shear stress boundary
in the free surface 0€2y. The surface stress, 7y, tangent to the free boundary is equal

to the gradient in the surface tension o,

Tw=pVu-n=Vo-r= 0pVT-T (6.4)

where o7 = g—; is determined empirically for a given fluid and 7 is a unit tangent

vector. We assume here that o varies linearly with 7', so o7 is a constant for a given

fluid.

The equations (6.1), (6.2) and (6.3) are scaled as follows: z* = £, y* = %,
t* = %, * = ul g — %, T = Tgf“ and p* = (%)f—j where AT is a scaling factor.

Substituting these relations into (6.1), (6.2) and (6.3), we obtain the dimensionless

formulation of the equations

0 R
Vou = 0 in QI (6.6)
orT 1

where we dropped the superscript * for simplicity. The non-dimensional constants

are: the Rayleigh number Ra = %ﬁgﬁ and the Prandtl number Pr = 2, where

a = p% is the thermal diffusivity. The boundary condition on the free surface (6.4)
D
becomes

Vu-n=-—VT- 7 6.8

Pr (6.8)

where Ma = ZZ2TL is the Marangoni number. Equations (6.5), (6.6) and (6.7)

pra
constitute a coupled system of equations to be solved for velocity, pressure and
temperature. The finite element formulation and the coupled algorithm to solve the

problem are described in Chapter 2.
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6.2 Rayleigh-Benard Flows

The classic Rayleigh-Benard problem corresponds to flow between two horizontal
plates where the top plate is held at a constant (cool) temperature and the bot-
tom plate is held at a higher constant temperature. At critical Rayleigh number
the heated fluid near the bottom plate becomes less dense and begins rise while
the (cool) fluid near the top is more dense and descends. This leads to circular
convection cells in two dimensions. If the plate is removed from the upper sur-
face, then the thermocapillary surface traction due to temperature gradients on the
free surface also becomes important. This is a direct consequence of the depen-
dence of surface tension on temperature (Marangoni effect). Now, both buoyancy
and thermocapillary effects may be important in driving the flow for this classical
Rayleigh-Benard-Marangoni problem.

The first case studied involves natural convection in a unit square Q = [0, 1]x [0, 1]
with temperatures T' = 1, T = 0 on the left and right walls respectively, adiabatic top
and bottom wall (no free surface), with Pr = 0.71 and different Rayleigh numbers,

Ra, of 10%, 10* and 10°. The computed Nusselt number at the left wall,

1
Nu():/ qdy, (6.9)
Jo

where ¢ is the heat flux, and the stream function at the midpoint, 1,,,4, are com-
pared to benchmark computations given by Davis in [31, 30]. The benchmark case
reports the quantities to four significant figures, and the reported accuracy is within
1 per cent for all Rayleigh numbers. Davis and Carey in [27] obtain parallel mul-
tilevel solution of this problem with superior accuracy due to high-p finite element
simulations. We compare approximate solutions using fixed timestep sizes, Control
1, Control 2, the Winget and Hughes approach (W&H) and the benchmark solution,
as shown in Table 6.1.

The approximate velocities and temperature are calculated using 9-node isopara-
metric quadrilaterals elements in a uniform mesh of 16 x 16 elements at Ra = 10, 10*
and 32 x 32 elements at Ra = 10°. The initial timestep size in all cases is chosen to
allow convergence of the successive iterations at the beginning of the process. That
is, if we start with a timestep size greater than the initial timesteps chosen here,
the successive approximation iterations failed to converge after a few time steps.
We start with a timestep size of 0.01 at Ra = 10%,10* and 0.001 at Ra = 10°. We
assume that the steady-state occurs when the kinetic energy at two different time

steps reaches a relative difference less than a given tolerance, toly;. We establish
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that the steady-state occurs when toly, = 107* at Ra = 10® and tol, = 1073 at
Ra = 10%,10°.

Table 6.1: Comparison of specific results to benchmark case

Fixed At Control 1 Control 2 W&H Benchmark
Ra | Nug | ¥mia | Nug | Ymia | Nug | Ymia | Nug | Ymia | Nug | Ymia
10% | 1.118 [ 1.175 | 1.119 | 1.175 | 1.117 | 1.174 | 1.119 | 1.175 | 1.117 | 1.174
10% | 2.255 | 5.067 | 2.236 | 5.077 | 2.246 | 5.064 | 2.249 | 5.066 | 2.238 | 5.071
10° | 4.550 | 9.134 | 4.518 | 9.036 | 4.553 | 9.120 | 4.503 | 8.925 | 4.509 | 9.111

Table 6.2 contains the percentage relative differences between the values calcu-
lated by each case studied and the corresponding values of the benchmark solution
for different Rayleigh numbers. The results are in good agreement for all cases, with
percentage errors no more than 1% in all quantities for Control 1 and Control 2, see
Table 6.2. However, observe that the differences increase as Ra increases due to the
growing difficulty of the problem. The Winget and Hughes approach also produces
good results with percentage errors no more than 2% in all quantities. The stream
function contours and temperature contours for Ra = 10%, Ra = 10* and Ra = 10°
are shown in Figure 6.1 and Figure 6.2, respectively. The contour values are the

same as in Davis [31] and show excellent agreement with his results.

Table 6.2: Percentage errors

Fixed At Control 1 Control 2 W&H

Ra | Nug | Ymia | Nug | Ymia | Nug | Ymia | Nug | Ymid
10% | 0.1 0.1 0.2 0.1 0.0 0.0 0.2 0.1
10| 0.8 0.1 0.1 0.1 0.4 0.1 0.5 0.1
105 09 | 03 [ 02|08 ] 10| 01 ] 01 ] 20

Now we compare the computational effort to calculate the solution for each case
studied. The computational effort is measured by the total number of successive
approximations needed to calculate the velocity field using one of the approaches
divided by the number of successive approximations obtained using a fixed timestep
size. For each case, we calculate the number of time iterations, ntstep, the number
of rejected steps, nrejec, the total number of successive approximations, nsa, and
the computational effort, c.fso. The PID parameters in all cases are k, = 0.075,

k; = 0.175 and k4 = 0.01 [75, 74, 71]. Since Control 2 uses the change in the kinetic
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Figure 6.1: Stream functions contours for Ra = 10? (equally spaced (0.1174) between
-1.0566 and 0), Ra = 10* (equally spaced (0.5071) between -4.5639 and 0) and Ra = 10°
(equally spaced (0.9607) between -9.507 and 0).
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Figure 6.2: Temperature contours for Ra = 103, Ra = 10* and Ra = 10° (equally spaced
(0.1) between 1 and 0).
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energy to obtain the timestep size, we show in Figure 6.3 the nondimensional kinetic

energy for Ra = 103, Ra = 10* and Ra = 10°.
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Figure 6.3: Nondimensional kinetic energy plotted as a function of time for Ra = 103,
Ra = 10" and Ra = 10°.

The results for Ra = 10® are shown in Table 6.3. We start with a minimum
timestep size of 0.01, and we allow a maximum timestep size of 0.1. We define
a tolerance of 0.1 for changes in nodal velocities and temperature. The tolerance
corresponding to the normalized changes in kinetic energy is equal to one. The
reference rate of convergence is equal to 0.2. We can observe in Table 6.3 that
the number of successive approximations necessary to calculate the approximate
solutions is reduced for all approaches. However, Control 2 presents the best results.
We obtain the solution with 24 successive iterations using Control 2, and we need 64
iterations with the fixed timestep size. Thus, we are able to calculate the solution
2.4 times faster using Control 2 without any significant loss of accuracy. For Control
2, the choice of the timestep is dominated by the changes in the kinetic energy in
all iterations.

Figure 6.4 shows the timestep size and the number of successive approximations
against time using Control 1, Control 2 and the Winget and Hughes approach for
Ra = 103. In this example, the kinetic energy is the most suitable parameter to
choose the timestep, since Control 2 gives the best result. It is worthwhile noting

also that Control 2 begins to act before any other approach and, after a few steps,
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Table 6.3: Computational effort for the natural convection problem, Ra = 103.

Ra = 103 ntstep || nrejec || nsa || Ceffort
Fixed At 24 0 o8 1

Control 1 11 0 32 0.55
Control 2 8 0 24 0.41
Winget&Hughes 15 0 41 0.71

provides a timestep equal to the maximum stepsize allowed, 0.1.

Table 6.4 shows the results for Ra = 10*. We start with a minimum timestep of
0.01, and we allow a maximum timestep size of 0.1. We define tolerances of 0.2, 0.1
and 0.5 for changes in nodal velocities, temperature and kinetic energy, respectively.
The reference rate of convergence is equal to 0.19. Here we also improve efficiency
for all approaches, reducing the number of successive approximations necessary to
calculate the approximate solutions. Control 1 and Control 2 are equivalent in
terms of efficiency. The choice of the timestep in Control 2 is dominated by the
convergence rate of the successive iterations, with only two time iterations limited by
the changes in the kinetic energy. Control 1, which is based on controlling accuracy,

gives timestep sizes larger than the ones calculated by Control 2, see Figure 6.5.

Table 6.4: Computational effort for the natural convection problem, Ra = 10%.

Ra = 10* ntstep || nrejec || nsa || Ceffort
Fixed At 14 0 56 1

Control 1 10 0 47 0.84
Control 2 10 0 45 0.80
Winget&Hughes 12 0 52 0.93

Table 6.5 shows the results for Ra = 10°. We start with a minimum timestep
size of 0.001, and we allow a maximum timestep size of 0.1. We define a tolerance
of 0.1 for changes in nodal velocities and temperature. The tolerance corresponding
to the normalized changes in kinetic energy is equal to one. The reference rate
of convergence is equal to 0.25. Now, Control 2 is dominated by the changes in
the kinetic energy, with only 4 iterations calculated according to the convergence
rate of the successive iterations. All approaches reduce the number of successive
approximations to obtain the solution, but Control 2 gives the best result. The
total number of successive approximations obtained by Control 1 can be reduced if

we define large tolerances for changes in nodal velocities and temperature. However,
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the results will loose accuracy, yielding errors greater than 1% as the case of the

Winget and Hughes approach (see Table 6.2).

Table 6.5: Computational effort for the natural convection problem, Ra = 10°.

Ra = 10° ntstep || nrejec || nsa || Ceffort
Fixed At 108 0 363 1

Control 1 48 5 260 || 0.72
Control 2 39 0 189 || 0.52
Winget&Hughes 48 3 244 | 0.67

Figure 6.6 shows the timestep size and the number of successive approximations
against time using Control 1, Control 2 and the Winget and Hughes approach for
Ra = 10°. Since the size of the timestep increases significantly when time progress
for Control 1 and the Winget and Hughes approach, the number of successive it-
erations to obtain convergence of the nonlinear process at each corresponding time
also increases. This fact is responsible for the larger number of successive iterations
calculated by these two approaches when compared with Control 2.

In the second experiment the two horizontal walls are fixed at different temper-
atures. In the previous example involving lateral walls at different temperatures,
even small temperature differences lead to a temperature-driven convection. In con-
trast with the configuration of the previous example, in this case the temperature
difference must exceed a critical Rayleigh number value before any flow sets in. Ac-
cording to Bejan in [5], natural convection will develop only for Rayleigh numbers
Ra >= 1108. Moreover, the influence of the lateral walls (carrying no slip condi-
tions) produces three-dimensional effects, and hence the flow may be approximated
as two-dimensional in only two cases: if the lateral walls are far enough apart that
their effect may be neglected and if the depth of the horizontal walls is very small
(Hele-Shaw flow).

We investigate the formation of Rayleigh-Benard cells in this example treating
the flow in a two-dimensional simulation. We consider the flow in an air-filled
rectangular container with aspect ratio 4:1 (length:width), insulated lateral walls,
Pr =0.72 and Ra = 30000. The temperatures on the bottom surface and top surface
are I' =1 and T = 0, respectively. The approximate velocity and temperature are
calculated using biquadratic shape functions with a grid of 32 x 8 elements, and
the control algorithms for timestep selection. We consider the steady-state problem

and the computed velocity field, streamlines and temperature contours are shown
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Figure 6.4: Timestep variation (top) and number of successive approximations (bottom)
using Control 1, Control 2 and the Winget and Hughes approach for Ra = 103.
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in Figure 6.7. There are six recirculation cells, and the results agree with those
obtained by Griebel, Dornseifer and Neunhoeffer in [38].

Now, we assume that the steady-state is reached when ||[U" — U"!|| < 3 x
1073 ||U?|| and [|T™ — T™ || < 107 || T"||. We set a tolerance of 0.01 for changes
in nodal velocities and temperature and 0.8 for changes in the kinetic energy. We
start with a timestep size of 0.001, and we allow minimum and maximum time steps
of 0.001 and 0.5, respectively. This starting timestep is the largest for which we
obtained convergence in the successive iterations. The reference rate of convergence
of nonlinear iterations is chosen equal to (.35 in this example. The PID parameters
are k, = 0.075,k; = 0.175 and k; = 0.01. Table 6.6 shows the computational effort

for this problem calculated for each case studied.

Table 6.6: Computational effort for the flow in a container with aspect ratio 4:1.

ntstep || nrejec || nsa || Ceffort
Fixed At 241 0 731 1
Control 1 192 0 643 0.88
Control 2 89 1 380 0.52
Winget&Hughes 193 0 644 || 0.88

As we can see in Table 6.6, we obtain the solutions with a reduced number of
successive approximation iterations using all the controllers. However, Control 2
gives the smallest computational effort. With a fixed timestep size of 0.001 we need
731 iterations, and only 380 iterations when Control 2 is applied. Thus, the solution
is obtained 1.9 times faster using Control 2. In this example, Control 1 and the
approach used by Winget and Hughes are equivalents in terms of the computational
effort. Figure 6.8 shows the timestep size against time and the number of successive
approximation iterations using Control 1, Control 2 and the Winget and Hughes

approach.

6.3 Rayleigh-Benard-Marangoni Flows

This numerical experiment involves buoyancy forces due to temperature gradients
and thermocapillary forces caused by gradients in the surface tension. The objective
is to compare pure buoyancy-driven flow with thermo-capillary-driven flow. The flow
domain and boundary conditions correspond to those in the first example of the

previous section (7'=1 and T = 0 on the left and right walls, respectively), except
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Figure 6.7: Vector field, streamlines, and temperature contours for the flow in a container
with aspect ratio 4:1

that the top is now a flat free surface. The Rayleigh number is 103, the Prandtl
number is Pr = 0.71, and the problem is solved at different Marangoni numbers
Ma. The approximate steady-state velocities and temperature are calculated using
biquadratic elements in a uniform mesh with size h = ]]—6. Here we assume that the
steady-state occurs when ||[U"* —U"|| < 7, ||[U"*!|| and | T"* —T"|| < 7 | T,
where n denotes the timestep index, || - || denotes Euclidean norm, and 7, and 7p
are input tolerances.

First, we find solutions at Ma = 1, 100 and 1000 (see Figure 6.9). At Ma =1,
the effect of the surface tension is small and the streamlines are roughly circular.
The solution is similar in structure to the classic buoyancy driven flow studied in
the first example, Figure 6.1. At Ma = 100, the effect of the thermocapillary
force at the free surface is more pronounced. The streamlines are concentrated near
the top boundary. At Ma = 1000, the flow is being strongly driven at the top
boundary as seen in similar experiments presented by Zebib, Homsy and Meiburg
[80]. Second, we consider the case of a fluid where the surface tension acts in the
direction contrary to the flow. This is the case for certain fluids when inpurities

are presented, see McLay and Carey in [61]. Figure 6.10 shows the stream function
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Figure 6.8: Timestep variation (top) and number of successive approximations (bottom)
using Control 1, Control 2 and the Winget and Hughes approach for the flow in a container
with aspect ratio 4:1.

79



contours for Ma = —10 and Ma = —100. The contours at Ma = —10 look similar
to the solution at Ma = 1 due to the small thermocapillary effect. At Ma = —100,
the surface tension effect is strong enough to reverse the flow on the top surface and
two cells are formed.

To study the behavior of the PID timestep selection in the second problem, we
select the case where Ma = 100. The steady-state solution is obtained at 7, =
1072 and 7+ = 107%. We start with a minimum timestep size of 0.001, and we
allow a maximum timestep of 0.1. Solutions are obtained with tolerances of (.2
and 0.1 for changes in nodal velocities and temperature, respectively. The tolerance
corresponding to the normalized changes in kinetic energy is equal to one. The
reference rate of convergence is equal to 0.2. Figure 6.11 shows the time evolution
of the nondimensional kinetic energy for Pr = 0.71, Ra = 1000 and Ma = 100.
Note that the kinetic energy presents smooth oscillations, damped as the solution
progresses towards the steady-state.

As we can see in Table 6.7, we obtain the solutions with 57 successive approxi-
mation iterations using Control 2. With a fixed timestep size of 0.001, we need 272
iterations. Thus, the solutions are obtained 4.8 times faster using Control 2. Here,
the choice of the timestep in Control 2 is dominated by the changes in the kinetic
energy, with only three time iterations limited by the changes in the convergence
rate of the successive iterations. Figure 6.12 shows the timestep variation and the
number of successive approximations against time using Control 1, Control 2 and the
Winget and Hughes approach, respectively. We can observe that Control 1 yields a
smoother sequence of time steps than the Winget and Hughes approach. However,
these two approaches are equivalent in terms of efficiency. Control 2 calculates the

solutions with the smallest computational effort.
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Figure 6.9: Stream function contours for Ma = 1 (equally spaced (0.150625) between
-1.32 and -0.115), Ma = 100 (equally spaced (0.206625) between -1.81 and -0.157) and
Ma = 1000 (equally spaced (0.4383) between -3.9234 and -0.417).

Figure 6.10: Stream function contours for Ma = —10 (equally spaced (0.143875) between
-1.26 and -0.109) and Ma = —100 (equally spaced (0.133) between -0.71 and 0.354).
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Figure 6.11: Nondimensional kinetic energy plotted as a function of time for Pr = 0.71,
Ra = 1000 and Ma = 100 in a unit square.

Table 6.7: Computational effort for the Rayleigh-Benard-Marangoni problem, Pr = 0.71,
Ra = 1000 and Ma = 100 in a unit square.

Case ntstep || nrejec || nsa || Ceffort
Fixed At 118 0 272 1
Control 1 23 0 75 0.28
Control 2 13 0 o7 0.21
Winget&Hughes 25 0 80 0.29

82



—+— Contrel 1
—&— Contrel 2
R 4 Winget & Hughes

timestep

[y
o

TR — R e Gt T
4 Winget & Hughes

o3
L e |

number of successive approximations

o B N @ s A o = @ W

Figure 6.12: Timestep variation (top) and number of successive approximations (bottom)
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1000 and Ma = 100 in a unit square.
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Chapter 7

Heat and Mass Transfer Problems

In this Chapter, we solve simultaneous heat and mass transfer by natural convection
above horizontal surfaces. Numerical results for different problems with several
parameters that influence the convection are obtained and compared with reported

experiments.

7.1 Dimensionless Equations

We study natural convection with combined buoyancies of heat and mass diffusion
over horizontal surfaces using a numerical experiment similar to the problem re-
ported in [65]. The geometry and coordinate system are shown in Figure 7.1, where
the length of the horizontal surface is L, the temperature of the lower heated sur-
face is T}, and the concentration of the diffusing species is ¢,,. We assume that the
flow is two-dimensional and laminar, the thermo-physical properties of the fluid are
constant, and viscous dissipation are negligible. Under these assumptions, the flow,
thermal, and concentration fields adjacent to the horizontal surface can be described

by the following equations,
ou v

hind P — 1
o + 3y 0 (7.1)
ou ou ou 10p 0%u 0w
T ohue e = 2 b 2
oy +U(’93: +vay P + V(8x2+8y2) (7.2)
ov N ov N ov 10p N (827) N 821))
— U—— V— = — —— V(=— + =—
ot ox oy p Oy ox?  0Oy?
o gﬂT(T - Too) + gﬂc(c o Coo) (73)
oT oT oT o*r  0*T
b u— 40— = ap(o—t —— 4
oy + u o + v 9 O/T(axQ + 6y2) (7.4)
dc dc dc 0%c 0%
E + U% + Ua—y = O’C(w + 8—y2> (75)
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Figure 7.1: Geometry and coordinate system.

in Q x I, where I = (0, ] is the time interval, u is the horizontal component of the
velocity, v is the vertical component of the velocity, ¢ is the concentration of the
diffusing species, T" is the temperature, p is the pressure, p is the density, v is the
kinematic viscosity, ¢ is the gravitational acceleration, 87 is the coefficient of thermal
expansion, [, is the volumetric coefficient due to concentration, T, and ¢, are the
reference remote temperature and concentration, a; is the thermal diffusivity and
.. is the species diffusion coefficient.

In order to make the results more general in their applicability, the above equa-

tions are scaled using the following dimensionless variables:

* T * Y * tU(] * u * v
=70 Y T t:_L’ UZU—U; U:v_g’
. T'=Ty . C—Cx . P
ug =/ gprATL, T :Ta c = Ne p :p—u% (7.6)

where AT =T, —T,, and Ac = ¢,,—cy are the initial temperature and concentration
differences, respectively. Substituting these relations into (7.1)-(7.5), we get the
nondimensional form of mass conservation, two momentum, energy conservation

and species conservation equations

ou ov

Iz + ay =0 (7.7)
ou ou ou op 1 0%u 0*u
5 + Uz + 7)a—y = 5 + \/ar(a772 + 8y2) (7.8)
Ov L ov N 7)81} dp N 1 (622) N 622))
- Pt & X (-7
ot ox oy dy VGr 01?2 0y?
— T + Nc (7.9)
oT oT oT 1 o’T  0*T
il - - = 1
ot " "ar T Uy Voo o) (7-10)
Jc oc oc 1 0%c 0%

-4 — 711
ot T T Toisdor o) (7.11)
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where we have dropped the superscript * for simplicity. The non-dimensional
constants are: the thermal Grashof number Gr = 2TATL% the Prandtl number

v? )
Pr = %, the Schmidt number S¢ = % and the Buoyancy number N = £2:2¢.
ar Qe Br AT

In the momentum equation (7.9), the buoyancy ratio N is the defining parameter
for the relative strengths between species and thermal buoyancies. The thermal
buoyancy acts vertically upward. The direction of species-generated buoyancy force
depends on the molecular weight of the species relative to the medium in which it
diffuses. Boundary and initial conditions complete the mathematical statement of

the problem and will be discussed in the next section.

7.2 Numerical Experiments

We solve the problem (7.7)-(7.11) assuming that the Prandtl and Schmidt numbers
are equal and as a consequence, the thermal and concentration fields are identical.
First, we consider a numerical experiment for thermal convection, i.e., N = 0, over
a horizontal surface with a central plume, and our results are compared to exper-
imental data given by Ishiguro et al. in [47] and numerical calculations presented
by Sripada and Angirasa in [65]. Then, we calculate the approximate solutions for
a test problem shown by Sripada and Angirasa in [65] with N = —1.

The artificial boundary conditions, for the rectangular domain 0 < z < 1,0 <
y < 0.5, are shown in Figure 7.2. At the lower wall (y = 0,0 < z < 1), we assume
no slip condition, v = v = 0, and temperature and species concentration equal to
1, T = ¢ = 1, for the simulation. On the vertical sides, we assume zero vertical
velocity, v = 0, and zero flux for the horizontal velocity, % = 0. In the inflow, we
impose temperature and species concentration equals to zero, T;, = ¢;, = 0, and in

the outflow, we assume temperature and species concentration flux equals to zero,

or|  _ ec
g lout T Bg

lout = 0. This can be accomplished in the code by testing for the sign of
the appropriate velocity component on the boundary. On the open horizontal top
(y = 0.5, 0 < & < 1), conditions similar to the vertical sides are applied: u = 0,
g—z =0, T, = ¢y =0 and g—Z\out = g—Z\out = 0. For the initial conditions, we assume

that w = v =0 and T = ¢ = 0 for all values of x and y. This physically means that
the lower surface is impulsively heated at ¢ = 0, and the species concentration is
simultaneously increased to a constant value on the surface.

In the first experiment, we solve the problem for thermal convection, i.e., N = 0,

over a horizontal surface with a central plume. Numerical calculations are carried
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Figure 7.2: Artificial Boundary Conditions of the Problem.

out for Pr = Sc =7, and Gr = 0.2 x 10°. The approximate velocities, temperature
and species concentration are calculated using 9-node isoparametric quadrilateral
elements in a uniform mesh of 32 x 16 elements, and we use a fixed timestep size of
1073, The steady-state is achieved when the nondimensional kinetic energy at two
different timesteps reaches a difference less than 10~*. The Nusselt number, defined
as Nu = fol(*g—z)y:o dx, is obtained and compared with the numerical experiments
of [65] and the experimental data of [47], see Table 7.1. The agreement is found to

be good.
Nu
Sripada et al. [65] 12.22
Ishiguro et al. [47] 12.8 £0.1
Present 12.936

Table 7.1: Comparison with experimental data [47] and numerical calculations [65] for
N =0 (Pr=_Sc=7,and Gr = 0.2 x 10°).

In the second experiment, we assume Pr = Sc = 0.7, Gry = 10° and N =
—1. The finite element mesh and the timestep size are the same used in the first
example. When N = —1 for Pr = S¢, the thermal and species buoyancies are equal
in magnitude and opposite in direction with thermal buoyancy acting vertically
upward, and the species buoyancy opposing it. Hence, they cancel out each other,
resulting in no flow at all. When N > 0, the flow resembles that of pure thermal
convection. Here the fluid is entrained from the side, and partly from the top, as

shown by the velocity field in Figure 7.3. The flow and transport are steady in this
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example. The isotherm contours are shown in Figure 7.4, and we observe the central
plume which rises vertically upward, as expected. The patterns match well with the
flow visualizations of Ishiguro et al. in [47] and contour plots presented by Sripada

and Angirasa in [65].
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Figure 7.3: Velocity field for Gr = 10>, N = —1 and Pr = Sc = 0.7.

Figure 7.4: Isotherm contours for Gr = 10°, N = —1 and Pr = Sc = 0.7.

We next solve the problem with adaptive timestepping using Control 1 and the
approach suggested by Winget and Hughes. We start with a minimum timestep
size of 0.001, and we allow a maximum timestep size of 0.1. We define tolerances
of 0.001 and 0.01 for changes in nodal velocities and temperature for any timestep,

respectively. The PID parameters here are again k, = 0.075, k; = 0.175 and k4 =
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0.01. First, we show in Figure 7.5 the nondimensional kinetic energy plotted as
a function of time for Gr = 10°, N = —1 and Pr = Sc = 0.7. Then, we plot
the timestep variation in Figure 7.6. We observed that the controller allows the
timestep grows in a small time interval around ¢ = 4, which corresponds to the
interval where the kinetic energy decrease from its maximum value. Further, we
may note in Figure 7.6 that the maximum timestep is just 1.4 times the minimum
specified value. However, just after the instant which the kinetic energy starts to
grow again, the timestep size assumes its minimum value, At = 0.001, and it remains
constant until the end of the calculations. We see that the controller chooses the
timesteps in conformity with the physical behavior of the solution.

Table 7.2 shows the total number of time steps, ntstep, the number of rejected
steps, nrejec, the total number of successive approximations, nsa, and the to-
tal number of Newton iterations, nnewt, when we solve the problem with a fixed
timestep size of 10~3 and adaptive timestepping using Control 1. We can observe in
Table 7.2 that the number of successive approximations and Newton iterations nec-
essary to calculate the approximate solutions are reduced using Control 1, although
this improvement is not very significant. Numerical experiments indicate that the
complexity of the problem requires small timesteps and tolerances to have conver-
gence of the successive approximation process in the Navier-Stokes equations. That
is, the minimum timestep chosen is already the biggest value allowed to maintain
the user-specified accuracy requirement and to obtain convergence of the successive
approximations. Parametric studies demonstrated that the problem was not related
to the choice of the PID parameters. We also solved the problem using the approach
suggested by Winget and Hughes. In this case the timestep selection algorithm did
not produce timestep sizes bigger than the minimum value, which confirms the over-
all behavior of Control 1. Due to computational and time limitations, we do not
discuss in the present work more numerical experiments related to this application

problem.

Table 7.2: Comparison results using fixed timestep size and Control 1.

nitstep || nrejec nsa nnewt
Fixed At || 12001 0 36003 || 36003
Control 1 || 11785 45 35835 || 35490
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Figure 7.5: Nondimensional kinetic energy for Gr = 10>, N = —1 and Pr = Sc = 0.7.
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Figure 7.6: Timestep variation using Control 1 for Gr = 10°, N = —1 and Pr = Sc = 0.7.
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Chapter 8

Conclusions

In this dissertation we introduced two adaptive timestep selection schemes based on
feedback control theory to increase the robustness of our finite element formulation
of coupled incompressible viscous flow and transient heat and mass transfer with
surface effects included. We solved chemical reaction systems, Rayleigh-Benard and
Rayleigh-Benard-Marangoni flows, heat and mass transfer by natural convection
for several case problems with different parameters that influence the numerical
experiments. The finite element flow formulation is based on a penalty Galerkin
method and the transport equations utilize a SUPG formulation. The algorithm
employs an iteratively decoupled scheme. In the application problems, we were
interested in obtaining steady-state and transient solutions using fixed timestep
sizes and adaptive timestep sizes to test the efficiency of our controllers to solve the
related class of coupled problems. We also compared our controllers with a timestep
selection algorithm found in the literature.

A standard timestep selection algorithm uses a estimate of the local truncation
error to adjust the stepsize in accordance with a user-specified accuracy requirement.
This kind of algorithm normally performs quite well. However, there are differential
equations and integration methods for which its performance is unacceptable. The
stepsize oscillates tremendously and the number of rejected steps is too high. As
a consequence, much computation time is spent recalculating rejected steps and
changing the stepsize. To overcome this potential problems, we investigated two
PID control algorithms for timestep selection based on controlling accuracy or the
convergence rate of the successive iterations. We performed parametric studies for
different values of PID parameters (kp, k7, kp) for two test problems, to verify
whether the PID controller is robust or not. Although feedback control theory

provides techniques to choose PID parameters, robustness is required when a general
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finite element method is used for a wide range of different situations. The controller
was found to be very robust, allowing us to fix the values of the PID parameters for
all the numerical experiments performed subsequently.

Another important issue is to assess solution accuracy when the timestep control
strategies are applied to a specified problem. For this investigation, we used a
validation problem for the transport equations and a Rayleigh-Benard problem, and
results were compared with fixed timestep, the adaptive timestep scheme suggested
by Winget and Hughes, and our PID control approaches. Based on the numerical
studies, it was concluded that we may find approximate solutions with a smaller
number of steps without any significant loss of accuracy. For example, in the second
problem both approaches produced good results with percentage errors no more
than 1% for all cases. The controllers produced a smooth variation of timesteps,
while the Winget and Hughes approach yielded a curve with several steps. The
results suggest that a robust control algorithm is possible. Further, computational
cost of the selection procedures are negligible, since they involve only storing a few
extra vectors, computation of norms and evaluation of kinetic energy.

In Chapter 5 we demonstrated the efficiency of our first control to solve non-
linear flow and reactive transport. We were interested in state-state and transient
solutions, and the performance of Control 1 to reduce computational costs. We
measured the computational effort by the number of Newton iterations, and we
were able to obtain solutions with a much smaller number of steps without any
significant loss of accuracy. For instance, we have a 3.75 times improvement in the
computational effort to compute the solution in the nonisothermal reaction problem.
This very good improvement in the computational effort is due to the very small
timestep needed to obtain convergence of the nonlinear iterations in the beginning
of the transport calculations. In this example, efficient computation of the trans-
port process demands the use of a timestep selection algorithm, since the process is
highly nonlinear because of an exponential chemical reaction term.

The efficiency of Control 2 was verified in the numerical simulations of the
Rayleigh-Benard-Marangoni problems. In this case, the computational effort was
measured by the total number of successive approximations needed to calculate the
velocity field using one of the controllers divided by the number of successive ap-
proximations obtained using a fixed timestep size. We observed that the number
of successive approximations necessary to calculate the approximate solutions is re-

duced for all approaches, and Control 2 presented the best results. In some of the
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test problems, the choice of the timestep in Control 2 was dominated by the con-
vergence rate of the successive iterations, and in other cases by the changes in the
kinetic energy. However, in all cases the kinetic energy appeared to be a suitable
parameter to improve the timestep selection when coordinated with the convergence
rate control of the nonlinear iterations.

Numerical studies on simultaneous heat and mass transfer by natural convec-
tion above horizontal surfaces were performed with fixed timestep sizes in Chapter
7. Preliminary results obtained using Control 1 have shown that the problem re-
quires very small timesteps to maintain the user-specified accuracy requirement.
The controller allows the timestep size to grow from the minimum value allowed,
but reduces the timestep to this value after some steps. After that, the controller
keeps the timestep size to the minimum value until the steady-state is reached. Para-
metric studies demonstrated that the problem was not related to the choice of the
PID parameters. The timestep selection algorithm suggested by Winget and Hughes
did not produce timestep sizes bigger than the minimum value, which confirms the
overall behavior of Control 1. Experiments indicate that the complexity of the prob-
lem requires small timesteps to have convergence of the successive approximation
process in the Navier-Stokes equations. However, more numerical experiments are
necessary to better understand the physics and the performance of the controllers.

Future studies include solving the coupling between Marangoni convection and
double diffusion convection in a multi-cavity system with a moving free surface. Im-
portant practical applications are related to this type of problems, and we also need
to investigate the performance of the controllers to solve them. For this study, we
need iterative solutions of the linear systems instead of the direct frontal solver used
until now. Preliminary numerical studies with the GMRES method and the penalty
formulation indicated that another finite element formulation for the Navier-Stokes
equations may be more suitable to this class of application problems. Another nat-
ural extension of this work is the utilization of the controllers for timestep selection
in the finite element simulations of 3D viscous flows involving heat transfer and
surface tension effects. We also need to investigate partitioned analysis procedures
for coupled systems to improve the efficiency of the numerical calculations [12]. In
the partitioned solution approach, the solution is separately advanced in time over
each partition chosen in accordance with physical or computational characteristics.
Finally, a related PID controller was developed by Valli, Catabriga and Coutinho in

[77, 19] to select the CFL condition to accelerate convergence toward steady state
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for a local-time-stepping strategy in compressible gas dynamic simulation.
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