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Adaptive te
hniques for automati
 timestep sele
tion are probably the most impor-tant means to improve eÆ
ien
y of a given integration method in the numeri
alsolution of ordinary di�erential equations. These strategies are usually based onapproximate lo
al trun
ation error measures or on purely heuristi
 
onsiderations.We remark that this pro
ess 
an be viewed as an examples of feedba
k 
ontrol prob-lems. In the present work, we propose two PID timestep 
ontrol algorithms for�nite element simulations of steady-state and transient 2D vis
ous 
ow and 
oupledrea
tion-
onve
tion-di�usion pro
esses 
ombined with surfa
e tension e�e
ts. Wesolve 
hemi
al rea
tion systems, Rayleigh-Benard and Rayleigh-Benard-Marangoni
ows and heat and mass transfer by natural 
onve
tion.Numeri
al experiments 
on�rm that we 
an �nd approximate solutions with asmaller number of steps without any signi�
ant loss of a

ura
y. Moreover, the PID
ontroller produ
es a very smooth 
urve suggesting that a robust 
ontrol algorithmis possible. Numeri
al results also show that the non-dimensional kineti
 energy
ould be a suitable parameter to improve the timestep sele
tion when 
oordinatedwith the 
onvergen
e 
ontrol of nonlinear iterations. Further, 
omputational 
ost ofthe sele
tion pro
edures are negligible, sin
e they involve only storing a few extrave
tors, 
omputation of norms and evaluation of kineti
 energy.
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ESTRAT�EGIAS DE CONTROLE PARA A SELEC� ~AO DE PASSO DE TEMPOPARA AN�ALISE DE ESCOAMENTOS INCOMPRESS�IVEIS ACOPLADOSCOM TRANSPORTE DE CALOR E MASSAAndr�ea Maria Pedrosa ValliNovembro/2001
T�e
ni
as adaptativas para a sele�
~ao de passo de tempo s~ao as mais importantesferramentas para melhorar a e�
iên
ia de um m�etodo de integra�
~ao de sistemas deODE's. Estas estrat�egias s~ao geralmente baseadas em medidas do erro de trun-
amento lo
al ou por 
onsidera�
~oes heur��sti
as. No entanto, este pro
esso podeser visto 
omo um problema de 
ontrole retroalimentado. No presente trabalho,propomos dois algoritmos de 
ontrole PID de passo de tempo para as simula�
~oes emelementos �nitos de es
oamentos vis
osos e in
ompress��veis a
oplados �a pro
essosde rea�
~ao, difus~ao e 
onve
�
~ao 
ombinados 
om efeitos na tens~ao super�
ial. Re-solvemos sistemas de rea�
~oes qu��mi
as, problemas de Rayleigh-Benard-Marangoni etransferên
ia de 
alor e massa por 
onve�
~ao natural.Experimentos num�eri
os 
on�rmam que en
ontramos solu�
~oes aproximadas 
omum n�umero menor de passos sem nenhuma perda signi�
ativa de pre
is~ao. Os 
on-troladores produzem uma 
urva bastante suave para a varia�
~ao do passo, sugerindoque um algoritmo de 
ontrole robusto �e poss��vel. Resultados num�eri
os demostraramque a energia 
in�eti
a �e um parâmetro adequado para a sele�
~ao de passo de tempoquando 
oordenado 
om a 
onvergên
ia das itera�
~oes n~ao lineares. Al�em disso, os
ustos 
omputa
ionais para os pro
essos de sele�
~ao do passo s~ao desprez��veis, umavez que involvem apenas o armazenamento de alguns vetores, o 
�al
ulo de normase avalia�
~ao da energia 
in�eti
a.
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Chapter 1Introdu
tionWith the evolution of �nite element methodology and its extension to more 
omplex
lasses of 
oupled problems there has been an in
reasing need for improved algo-rithms and other enhan
ements su
h as adaptive grid re�nement and 
oarsening.Several adaptive timestepping sele
tion strategies have been studied as a means toprovide stable a

urate transient (and steady state) solutions more eÆ
iently. Thisadaptive timestepping sele
tion pro
ess is usually approa
hed by means of lo
altrun
ation error analysis. In the same way, the adaptive grid s
hemes use feedba
kfrom the 
omputed solution on a given intermediate grid to as
ertain where the gridshould be lo
ally re�ned. We remark that both of these pro
esses (adaptive timestepsele
tion and adaptive grid re�nement) 
an be viewed as examples of feedba
k 
on-trol problems. This brings us to the main theme of the present work - the utilizationof feedba
k 
ontrol algorithms for timestep sele
tion in 
onjun
tion of �nite elementanalysis in the simulations of steady-state and transient 2D vis
ous 
ow and 
oupledrea
tion-
onve
tion-di�usion pro
esses 
ombined with surfa
e tension e�e
ts.Besides the 
ontrol algorithms for timestep sele
tion, we are also interested in thenumeri
al simulation of 
hemi
al rea
tion systems, Rayleigh-Benard and Rayleigh-Benard-Marangoni 
ows, heat and mass transfer by natural 
onve
tion and doubledi�usive 
onve
tion. In parti
ular, we want to study the performan
e of the 
on-trollers to solve these 
lasses of appli
ation problems, perform numeri
al experimentsfor di�erent parameters that in
uen
e the problems, and 
ompare our results withthose found in the literature. Pra
ti
al appli
ations of the related problems in
lude,for example, nonisothermal rea
tion on a 
atalyst se
tion [33, 58℄, pattern formationduring solidi�
ation and welding in manufa
turing pro
esses [78, 7, 25℄, physi
al be-havior of 
uids under mi
rogravity 
onditions [13, 38, 31℄, semi
ondu
tor 
rystalgrowth and double di�usive and Marangoni instabilities [65, 63, 62, 66, 42℄.1



The �rst 
lass of problems studied in this work involves nonlinear 
ow and rea
-tive transport. We solve isothermal rea
tion inside a porous 
atalyst and 
hemi
alrea
tion on a 
atalyst se
tion with heat e�e
ts in
luded [58, 33℄. In the se
ondproblem, the pro
ess is highly nonlinear be
ause of an exponential 
hemi
al rea
-tion term arising from the temperature dependen
e of the 
hemi
al rea
tion rate.As a 
onsequen
e, we need to 
hoose a very small timestep to obtain 
onvergen
e ofthe nonlinear iterations in the transport equation. Therefore, eÆ
ient 
omputationof the transport pro
ess in this example demands the use of a timestep sele
tionalgorithm.The se
ond 
lass of appli
ation problems we investigate is Rayleigh-Benard 
owsand Rayleigh-Benard-Marangoni 
ows. When buoyan
y for
es due to temperaturegradients are the dominant 
omponent in driving the 
ow, we have a Rayleigh-Benard problem [31, 30, 25℄. For example, when a thin horizontal layer of 
uidbetween two horizontal plates is heated from below, a temperature gradient is gen-erated a
ross the plates. At a 
riti
al Rayleigh number, 
ir
ular 
onve
tion 
ells setin. If the plate is removed from the upper surfa
e, then the surfa
e tension e�e
tsasso
iated with temperature gradients on the free surfa
e be
ome important. Nowboth buoyan
y and thermo
apillary e�e
ts provide the dominant for
es driving the
ow, termed Rayleigh-Benard-Marangoni problems [61, 18, 80℄. Rayleigh-Benard-Marangoni problems be
ome very popular as prototypes of 
omplex behavior wherenonlinear theories of pattern formation may be tested.When heat and spe
ies transfer exist within a 
uid layer, the temperature and
on
entration gradients 
reate a 
oupled transport mode, 
alled double di�usion.This phenomenon is found in 
uid mixtures of two 
omponents having two di�erentmole
ular di�usivities, where the potential energy of one 
omponent may be releasedby di�erential di�usion, thus driving the 
onve
tive motion, even though the systemmay be gravitation stable [69, 70, 56, 42, 66℄. One example of double di�usive
onve
tion is when a hot salty 
uid layer (slower di�usion) is underlying a 
oldfresh 
uid layer (faster di�usion) [63, 62, 66℄. In the present work, the third 
lassof appli
ation problems we solve is simultaneous heat and mass transfer by natural
onve
tion above horizontal surfa
es [65℄. Our future works involves solving the
oupling between Marangoni (thermal and solutal) 
onve
tion and double di�usion
onve
tion in a multi-
avity system with a non-deforming free surfa
e.Vis
ous 
ow is modeled by the in
ompressible 2D Navier-Stokes equations, writ-ten in primitive variables, with a for
ing term that may depend on temperature2



and 
on
entration. In the transient transport equation, the time rate of 
hange(evolution) of the spe
ies 
omponent �elds may depend on adve
tion, di�usion and
hemi
al rea
tions. There are two primary approa
hes to the numeri
al formulationof the 
lass of 
oupled problems we are investigating. One approa
h is 
alled thede
oupled formulation, where the momentum and 
ontinuity equations are solved�rst, in ea
h timestep or iteration, lagging the temperature and 
on
entration ve
torin the for
ing term. Then, the transport equations are solved with the 
omputedvelo
ities as input. The se
ond approa
h, 
alled the fully-
oupled formulation, re-quires simultaneous 
oupled solution of the 
ow and transport systems. Here, we
onsider only the de
oupled formulation.Among the most notable �nite element formulations for in
ompressible 
ows arethe mixed (or multiplier) method [16, 55℄, the penalty method [81, 55, 14, 15, 16℄, thestabilized formulations, su
h as, the Streamline-Upwind/Petrov-Galerkin (SUPG)formulation [44, 11, 23, 68℄, Galerkin/Least-Squares (GLS) formulation [45, 17, 28℄,Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulation [67, 21℄ and fra
tionalstep formulations [8, 22℄. We 
an also �nd �nite element formulations based onthe stream fun
tion-vorti
ity equations [16, 3℄. The �nite element method makesuse of a spatial dis
retization and a weighted residual formulation to arrive at a sys-tem of matrix equations. The Galerkin method, whi
h is the most 
ommon weightedresidual formulation, uses weighting and interpolation fun
tions from the same 
lassof fun
tions. The su

ess of the Galerkin �nite element method in several appli
ationproblems is due to its best approximation minimization property [43℄, whi
h meansthat the di�eren
e between the �nite element solution and the exa
t solution is min-imized with respe
t to a 
ertain norm. When the problem is 
onve
tion-dominated,the Galerkin method loses this property. For general treatments of these issues see,for example, Carey and Oden [16℄, Zienkiewi
z [81℄, Hughes [43℄ and Bathe [4℄.The subje
t of �nite element approximations to in
ompressible 
ow problems en-
ompasses several mixed and penalty formulations. The essential 
hara
ter of mixedmethods is exhibited in the framework of a 
onstrained variational problem, in whi
hboth velo
ities and pressure must be approximated. The formal development of amixed �nite element analysis is quite straightforward and the method has been ex-tensively applied (see, e.g., [57, 35, 54℄). The penalty approa
h for the Navier-Stokesproblem is designed to determine an approximate formulation involving only velo
-ities and not pressures. Hen
e the size of the problem is redu
ed a

ordingly. Thedivergen
e-free 
ondition r � u = 0 is viewed as a 
onstraint 
ondition embedded3



in the variational problem by using a penalty term. In the present work, we areonly interested in the velo
ity solution and the asso
iated 
oupled transport pro-
esses. Hen
e, for simpli
ity and 
onvenien
e we use a penalty method to enfor
ethe in
ompressibility 
onstraint.In 
omputation of in
ompressible Navier-Stokes equations for 
onve
tion-domi-nated 
ows, the Galerkin method loses the best approximation property, and solu-tions are often 
orrupted by spurious os
illations. In order to over
ome or mini-mize those os
illations, Petrov-Galerkin formulations, whi
h modify the Galerkin'sweighting fun
tions by adding a perturbation term, have been derived and used withsu

ess in the analysis of 
onve
tion-dominated 
ows. The SUPG stabilization te
h-nique was �rst introdu
ed by Hughes and Brooks in [44℄, and investigated in detailby Brooks and Hughes in [11℄. The SUPG te
hniques are 
onsistent stabilizationmethods, in the sense that the exa
t solution still satis�es the stabilized formulation,just as it satis�es the Galerkin formulation of the problem. The perturbation termin this method a
ts only in the streamline dire
tion, 
hosen as upwind dire
tion,resulting in good stability and a

ura
y properties if the exa
t solution is regular,showing a 
onvergen
e improvement over the Galerkin method. Sin
e the appli
a-tion problems we are investigating in this work are not 
onve
tion-dominated, thepenalty method works well for the Navier-Stokes equations.For the transport equations, we use a SUPG formulation to �nd approximatesolutions for the temperature and spe
ies 
on
entration. Although we are using aSUPG formulation for the transport equation, the perturbation term 
an alwaysbe turned o� if the problem is not 
onve
tion-dominated. Spatial dis
retization ofthe Navier-Stokes equations gives rise to a non-linear semi-dis
rete ODE system,linearized by su

essive approximations and integrated impli
itly using a Crank-Ni
olson s
heme. The solutions of the linear systems are obtained using a frontalsolver. In the transport equations, we use a Crank-Ni
olson s
heme to integrate intime, the Newton's method to solve the nonlinear algebrai
 system, and a frontalsolver for the linear system. Errors and 
omputational eÆ
ien
y in the transientsolution of the 
oupled problems are 
ontrolled by automati
 timestep 
ontrol algo-rithms.Adaptive te
hniques for automati
 timestep sele
tion are probably the most im-portant means to improve eÆ
ien
y of a given integration method in the numeri
alsolution of ordinary di�erential equations. These strategies are usually based onapproximate lo
al trun
ation error measures or on purely heuristi
 
onsiderations.4



For example, standard automati
 timestep sele
tion algorithms use an estimate ofthe lo
al trun
ation error to adjust the stepsize in a

ordan
e with a user-spe
i�eda

ura
y requirement, as shown in [51, 59, 9, 60℄. Gresho, Sani and Engelman in [37℄use a predi
tor-
orre
tor s
heme with a time trun
ation estimate for error 
ontrol.Winget and Hughes [79℄, Johan, Hughes and Shakib [49℄ and Ja
ob and Ebe
ken [48℄develop stepsize sele
tion s
hemes based on heuristi
 rules for transient heat 
on-du
tion, 
ompressible Navier-Stokes equations and stru
tural dynami
s problems,respe
tively. However, Gustafsson, Lundh and S�oderlind [39℄ showed that adaptivetimestep sele
tion 
an be viewed as a standard automati
 
ontrol problem, whi
hmotivated Hairer and Wanner [41℄ to derive a timestep sele
tion algorithm usingthe 
on
ept of proportional-integral-derivative (PID) 
ontrol. Later, Coutinho andAlves [24℄ use this approa
h in their work of �nite element simulation of mis
ibledispla
ements in porous media. In this work, we propose two PID timestep 
ontrolalgorithms based on 
ontrolling a

ura
y or the 
onvergen
e rate of the su

essiveiterations [71, 74, 75, 76, 73, 72℄.The �rst 
ontrol utilizes normalized 
hanges in the variables of interest (ve-lo
ities, temperature, 
on
entration, et
) to 
ompute the lo
al trun
ation errors.In the se
ond 
ontrol, the timestep size is limited by the normalized 
hanges inthe nondimensional kineti
 energy or by the rate of 
onvergen
e of the su

essiveapproximations. The eÆ
ien
y of these 
ontrols are 
ompared with another time-stepping strategy developed by Winget and Hughes in [79℄. We demonstrate that,with the 
ontrollers, we �nd approximate solutions with a smaller number of stepswithout any signi�
ant loss of a

ura
y. In addition, the 
ontrollers also produ
e asmooth variation of timestep, suggesting that a robust 
ontrol algorithm is possible.The outline of this work is as follows. In Chapter 2 we present the 
lass oftransient 
oupled problems under investigation, the �nite element formulations andthe solution algorithm. In Chapter 3 we dis
uss the two 
ontrol algorithms fortimestep sele
tion, and we present the algorithm for timestep sele
tion suggested byWinget and Hughes. In Chapter 4 we provide results of the numeri
al experiments tovalidate the �nite element formulations of the Navier-Stokes equations, the transportequations and our timestep 
ontrol algorithms. In Chapter 5 we apply the �rsttimestep 
ontrol algorithm to solve nonlinear 
ow and rea
tive transport. In Chapter6 we study the performan
e of the 
ontrollers to solve Rayleigh-Benard and Rayleigh-Benard-Marangoni problems, and 
ompare their eÆ
ien
y with the s
heme proposedby Winget and Hughes. In Chapter 7 we solve simultaneous heat and mass transfer5



by natural 
onve
tion above horizontal surfa
es. Finally, in Chapter 8 we presentedsome 
on
lusions and opportunities for future study.
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Chapter 2Formulation and ApproximationIn this 
hapter we present the 
lass of 
oupled 
ow and transport equations un-der investigation, the �nite element formulations and the solution approa
h. In the�rst se
tion, we state the 
lass of transient 
oupled problems; then, we des
ribe thepenalty �nite element formulation for the transient Navier-Stokes equations. Follow-ing this, the SUPG stabilization te
hnique for the transient transport equations isdeveloped. Finally, the solution algorithm to obtain approximate transient solutionsfor the velo
ity �eld, temperature and 
on
entration is presented.2.1 Coupled Vis
ous Flow and TransportWe 
onsider the stationary and transient 
ow of a vis
ous in
ompressible 
uid asdes
ribed by the Navier-Stokes equations 
oupled to the transport of heat and massby 
onve
tion, 
ondu
tion and rea
tion in the 
uid in
luding surfa
e tension e�e
ts.For example, in Rayleigh-Benard-Marangoni 
ows buoyan
y is in
luded as a tem-perature dependent body for
e term in the momentum equation, and the e�e
t ofthermo
apillary surfa
e tension enters as an applied surfa
e shear stress that is de-pendent on the surfa
e temperature gradient [30, 13, 75℄. An exponential 
hemi
alrea
tion term arising from the temperature dependen
e of the 
hemi
al rea
tion rateis in
luded, 
oupling the heat and mass transfer equations [33, 71℄. Finally, in dou-ble di�usion problems heat and spe
ies transfer exist within a 
uid and the surfa
etension depends on the surfa
e temperature and 
on
entration gradients [63, 42℄.The transient Navier Stokes equations for vis
ous 
ow of an in
ompressible 
uidmay be written as�u�t + u � ru� �r2u+ 1�rp = q+ f(T; 
) in 
 (2.1)r � u = 0 in 
 (2.2)7



where 
 is the 
ow domain, u is the velo
ity ve
tor, p is the pressure, � = �� isthe kinemati
 vis
osity, � is the density, q is an applied body for
e and f(T; 
) is atemperature (T ) and 
on
entration (
) dependent body for
e. For example, f(T; 
)may be a buoyan
y for
e given by f(T; 
) = g(�T (T �T0)��
(
�
0)) where g is thegravity ve
tor, �T and �
 are the thermal and solutal volume expansion 
oeÆ
ients,and T0 and 
0 are referen
e temperature and 
on
entration. We assume that thereis no slip at the solid walls �
1, u = uw on �
1; (2.3)where uw is the spe
i�ed wall boundary velo
ity. The Marangoni problem involvesa shear stress boundary 
ondition on the free surfa
e �
2.The temperature of the 
uid is governed by the energy transport equation. As-suming negligible vis
ous dissipation, we have�
p�T�t + �
pu � rT �r � (krT ) = h1(T; 
) in 
 (2.4)where 
p is the spe
i�
 heat, k is the thermal 
ondu
tivity, h1(T; 
) is a nonlinearrea
tion sour
e/sink term, usually asso
iated with 
hemi
al rea
tions, and 
 is the
on
entration of the 
uid. The boundary 
onditions are as follows: T = Tw(x; y)(isothermal boundary) or �T�n = 0 (adiabati
 boundary) on the solid walls �
3 wheren is the unit outward normal, and mixed 
onditions �T �T�n = h
(T � Te) (Robin) on�
4, where �T = k�
p is the thermal di�usivity, h
 is the heat transfer 
oeÆ
ient forthe medium, Te is the exterior temperature.Finally, the mass transfer equation for a single spe
ies is given by�
�t + u � r
�r � (�
r
) = h2(T; 
) in 
 (2.5)where 
 is the 
on
entration, �
 is the mass di�usion 
oeÆ
ient, and h2(T; 
) is anonlinear rea
tion sour
e/sink term. Con
entration, 
ux or mixed boundary 
ondi-tions may be applied.For 
onvenien
e, we rewrite equations (2.5) for the ve
tor 
 of 
omponent spe
ies.We 
an handle up to eight di�erent spe
ies and temperature in our 
ode, that is,
 = f
sg, s = 1; 2; � � � ; ns, where ns is the number of spe
ies. Then, the ve
tor
ounterpart of the transient transport equation is,�
�t + ui �
�xi � ��xi (Kij �
�xj ) = h2(T; 
) (2.6)where repeated indi
es imply summation over the range of spatial dimensions, ui isvelo
ity 
omponent i, h2(T; 
) is a nonlinear rea
tion sour
e/sink term, and K =8



fks1s2g is the di�usion tensor with s1; s2 = 1; 2; � � � ; ns. From (2.6) it is 
lear thatthe time rate of 
hange (evolution) of the spe
ies 
omponent �elds depends onadve
tion, di�usion and 
hemi
al rea
tion, respe
tively. Boundary 
onditions forspe
ies 
on
entration or 
ux and initial 
onditions for velo
ities and 
on
entrationve
tors 
omplete the statement of the problem for (2.1), (2.2), (2.4) and (2.6).Thus, the 
lass of transient 
oupled problems we are interested in solving maybe summarized by the following equations:�u�t + u � ru� �r2u + 1�rp = q + f(T; 
) in 
 (2.7)r � u = 0 in 
 (2.8)�
p�T�t + �
pu � rT �r � (krT ) = h1(T; 
) in 
 (2.9)�
�t + u � r
�r � (Kr
) = h2(T; 
) in 
 (2.10)with initial 
onditions u(0) = u0 (2.11)T (0) = T0 (2.12)
(0) = 
0 (2.13)and boundary 
onditions as follows� velo
ities, 
ux or free surfa
e boundary 
onditionsu = uw or �ru � n = 0 on �
1 (2.14)�ru � n = �(T; 
) on �
2 (2.15)� temperature, 
ux or mixed boundary 
onditionsT = Tw or krT � n = 0 on �
3 (2.16)krT � n = hT (T � Te) on �
4 (2.17)� spe
ies 
on
entration, 
ux or mixed boundary 
onditions
 = 
w or Kr
 � n = 0 on �
5 (2.18)�Kr
 � n = 
 
�	 on �
6 (2.19)In the next se
tion we present the penalty �nite element formulation for the Navier-Stokes equations, (2.7), (2.8), (2.11), (2.14) and (2.15).9



2.2 Penalty Formulation for the Navier-StokesEquationsFor simpli
ity and 
onvenien
e we use a penalty method to enfor
e the in
ompress-ibility 
onstraint. The penalty approa
h for the Navier-Stokes problem is designedto determine an approximate formulation involving only velo
ities and not pres-sures, but without the added 
omplexity of requiring spe
ial divergen
e-free ele-ments. Hen
e the size of the problem is redu
ed a

ordingly. The divergen
e-free
ondition r � u = 0 is viewed as a 
onstraint 
ondition embedded in the variationalproblem by using a penalty term.Let V be the spa
e for the velo
ities, and 
onsider the following penalized vari-ational formulation for the Navier-Stokes equations [16℄: for � > 0, �nd u� 2 Vsatisfying the initial 
ondition with u� = uw on �
1 su
h thatZ
(�u��t � v + �ru�:rv + (u� � r)u� � v + 1� (r � u�)(r � v)) d
= Z
(q+ f(T; 
)) � v d
 + Z�
2 �(T; 
) � v dl (2.20)for all admissible v 2 V with v = 0 on �
1, where the last integral implies thesurfa
e shear boundary 
ondition (2.15) at the free surfa
e. For a dis
ussion of
oer
ivity, existen
e and uniqueness of the solutions see, e.g., [15, 16℄. The pressureapproximation for the penalty formulation is given byp� = �1�r � u� (2.21)Consider now approximation of the variational problem (2.20) using �nite ele-ments. Let V h � V be the �nite element approximation spa
e for velo
ities. Inthe usual way, the 
ow domain 
 is dis
retized into a union 
h of elements 
e, e= 1, 2,. . . , E. Lagrange pie
ewise polynomials are used as global basis fun
tions�j, j = 1, 2,. . . , N , for the approximate subspa
e V h. The dire
t approximationof the penalized variational problem (2.20) is to �nd u�h 2 V h satisfying the initial
ondition with u�h = uw on �
1 su
h thatZ
h(�u�h�t � vh + �ru�h:rvh + (u�h � r)u�h � vh) d
+ 1� I(r � u�h)(r � vh) d
= Z
h(q + f(Th; 
h)) � vh d
 + Z�
2h �(Th; 
h) � vh dl (2.22)10



for all vh 2 V h, where I denotes redu
ed numeri
al integration. If the penaltyterm in (2.22) is integrated exa
tly then the method will not yield solutions u�h that
onverge to uh as � ! 0. The velo
ity �eld u�h ! 0 as � ! 0 and the 
onstraintequation r � u = 0 dominates in this limit. The �nite element solution fails the\
onsisten
y 
ondition" or the \LBB 
ondition" and is said to \lo
k" [see, e.g., [81℄,[55℄, [50℄℄. The se
ond term is asso
iated with the investigations of Ladyzhenskaya[53℄, Babu�ska and Aziz [2℄ and Brezzi [10℄. The \LBB 
ondition" di
tates how to
hoose 
ompatible interpolations for velo
ities and pressure when using penalty ormixed formulations. To obtain an approximate solution other than the \lo
king"solution, we use redu
ed integration for evaluating the penalty integral.The penalty term is approximately integrated using a Gauss quadrature rule oflower order than that required for exa
t integration. The sele
tive redu
ed inte-gration guarantee 
onsisten
y of the implied pressure �eld approximation and thevelo
ity approximation. In the numeri
al studies we 
onsider two spe
ial 
ases, 
on-tinuous pie
ewise bilinear basis for the 4-node bilinear quadrilateral with one-pointGauss quadrature rule for the penalty term and 
ontinuous pie
ewise biquadrati
basis for the 9-node biquadrati
 quadrilateral with (2 � 2) Gauss quadrature rulefor the penalty term, whi
h 
an be proje
ted to suppress the spurious mode if thepressure approximation is desired. In the present work, we are only interested inthe velo
ity solution and the asso
iated 
oupled transport pro
esses.Introdu
ing the dis
retization of elements and the basis fun
tions, the velo
itiesare u�hl(x; y) = NXj=1 ulj �j(x; y); (2.23)where l is the velo
ity 
omponent index (l = 1, 2 for 2D 
ow) and ul is the nodalve
tor. Using vh = (�i; 0) and (0; �i) at an interior node i, we have the followingnon-linear semidis
rete system of ordinary di�erential equationsMdUdt + �AU +D(U) + 1�BU = F(T;C) (2.24)where U = (u1;u2)T andM = � M 00 M � A = � A 00 A � B = � Bx BxyBTxy By � F = � FxFy �
11



with M = [mij℄; mij = Z
h �i�j d
 (2.25)A = [aij℄; aij = Z
h((�i);x(�j);x + (�i);y(�j);y) d
 (2.26)Bx = [(bx)ij℄; (bx)ij = Z
h(�i);x(�j);x d
 (2.27)Bxy = [(bxy)ij℄; (bxy)ij = Z
h(�i);x(�j);y d
 (2.28)By = [(by)ij℄; (by)ij = Z
h(�i);y(�j);y d
 (2.29)Fx = [(fx)i℄; (fx)i = Z
h(q1 + f1(Th; 
h))�i d
 +Z�
2h �1(Th; 
h)�i dl (2.30)Fy = [(fy)i℄; (fy)i = Z
h(q2 + f2(Th; 
h))�i d
 +Z�
2h �2(Th; 
h)�i dl (2.31)D(U) = Z
h(u�h � r)u�h � vh d
: (2.32)Here, the nonlinearity in the 
onve
tive term D(U) is linearized by su

essiveapproximations [16℄ a

ording to the approximationD(U) � D(Uk�1)Uk = Z
h(u�h;k�1 � r)u�h;k � vh d
 (2.33)with initial iterates given by the solution at the previous step. To de
ouple the 
owand transport equations, we evaluate f = f(T;C) at Tn�1 and Cn�1, i.e., at theprevious temperature and spe
ies 
on
entration solutions. Substituting (2.33) into(2.24), we obtain a sequen
e of linear problems for Uk at iterate k. Given U0, fork = 1; 2; : : :, solveMdUkdt + (�A+D + 1�B)Uk = F(Tn�1;Cn�1) (2.34)with D = � D 00 D � ; dij = Z
h Uk�1 � r�j �i d
 (2.35)until jjUk �Uk�1jjjjUkjj < �sa or k > ksamax (2.36)where �sa is an input toleran
e and ksamax is the maximum number of su

essiveiterations allowed. To advan
e the solution from a spe
i�ed initial state, we integrate12



impli
itly using a standard � method, so that at timestep tn:M(Unk �Un�1k )�t + � ��A+D + 1�B�Unk+ (1� �) ��A+D + 1�B�Un�1k= �Fn + (1� �)Fn�1 (2.37)Here � = 1=2 whi
h 
orresponds to the familiar Crank-Ni
olson integrator, andFn = qn + f where f = f(Tn�1;Cn�1). Hen
e, in ea
h su

essive approximationwithin ea
h timestep we have to solve linear systems of the formPUnk = Q (2.38)where P = M+ 4t2 (�A +D + 1�B) (2.39)Q = (M� 4t2 (�A+D + 1�B))Un�1k + 4t2 (Fn + Fn�1) (2.40)and n denotes the time index. Solutions of the resulting linear systems are ob-tained using a dire
t frontal solver [46℄. In the next se
tion we present the SUPG(Streamline-Upwind/Petrov-Galerkin) �nite element formulation used to �nd ap-proximate solutions for the transport 
omponent 
s. Sin
e the SUPG �nite elementformulation for the heat equation is analogous to the SUPG formulation for thetransport equation, we are not going to repeat the formulation for the temperature.2.3 SUPG Formulation for the Transport Equa-tionsFor the transport equations, we use a SUPG (Streamline-Upwind/Petrov-Galerkin)stabilization te
hnique [11, 23℄ to prevent spurious os
illation generated by the dom-inan
e of the adve
tion terms in the di�erential equation. For simpli
ity, we showthe �nite element formulation for the mass transfer equation of a single spe
ies 
s.The same pro
edure may be used to obtain the SUPG formulation for the energytransport equation (2.9).Consider a �nite element dis
retization of the domain 
 into a union 
h ofsubdomains (elements) 
e, e = 1, 2,. . . , E. Based on this dis
retization, we de�nethe �nite element fun
tion spa
es Sh and W h for the 
on
entration 
orresponding13



to the trial solutions and weighting fun
tions, respe
tively. The SUPG weightedresidual formulation for the transport 
omponent 
hs isZ
h �wh (�
hs�t + uhi �
hs�xi ) + �wh�xi ksij �
hs�xj � wh h2s(Th; 
h)� d
+ EXe=1 Z
e � uhmjjuhjj �wh�xm ��
hs�t + uhi�
hs�xi � ��xi (ksij �
hs�xj )� h2s(Th; 
h)� d
= Z�
6h wh (
 
hs � 	s) dl (2.41)where the �rst integral represents the Galerkin formulation of the problem, these
ond integral is the SUPG stabilization term added to the variational formulation,the last integral is due to the mixed boundary 
ondition (2.19). We assume thatks1s2 6= 0 only for s1 = s2 = s, s = 1; 2; � � � ; ns, where ks = fksijg, i; j = 1; 2, is thedi�usion tensor for spe
ies 
omponent s. The parameter � is 
omputed as suggestedby Codina, O~nate and Cervera in [23℄,� = �~h2 ; (2.42)� = min(Pe3 ; 1); ~h = p2A; (2.43)Pe = jjuhjj~h2~k ; ~k = uThjjuhjjks uhjjuhjj ; (2.44)where A is de�ned as the element area, ~h is the element 
hara
teristi
 length, uhis the velo
ity ve
tor and Pe is the lo
al (element) Pe
let number. Introdu
ing the�nite element dis
retization, the transport 
omponent 
hs has the form
hs(x; y) = NXj=1 
sj  j(x; y); (2.45)where s is the spe
ies 
omponent index (s = 1; 2; : : : ; ns) and 
s = f
sjg, j =1; 2; � � � ; N , is the nodal ve
tor. We have in this study 
ontinuous pie
ewise ba-sis fun
tions de�ned by the 4-node bilinear quadrilateral, the 9-node biquadrati
quadrilateral and the 6-node quadrati
 triangle.Introdu
ing (2.45) into (2.41) and setting wh =  i, i = 1, 2,. . . , N , we have theresulting semi-dis
rete ODE systemN dCdt +R(U)C+ E C = H(T;C) (2.46)where C = (
1; 
2; : : : ; 
ns)T ,N = 26664 N 0 � � � 00 N � � � 0... ... . . . ...0 0 � � � N 37775ns�nsR = 26664 R 0 � � � 00 R � � � 0... ... . . . ...0 0 � � � R 37775ns�ns E =
26664 E 0 � � � 00 E � � � 0... ... . . . ...0 0 � � � E 37775ns�ns14



and H = 26664 H1H2...Hns
37775with N = [nij℄; nij = Z
h  i j d
 + Z
h � uhjjuhjj � r i j d
 (2.47)R = [rij℄; rij = Z
h uh � r j i d
 +Z
h �jjuhjjr Ti uh 
 uhr j d
 (2.48)E = [eij℄; eij = Z
h ksijr i � r j d
 + Z�
6h 
  i j dl (2.49)Hs = [(hs)i℄; (hs)i = Z
h h2s(Th;Ch) i d
 + Z�
6h 	s  i dl+ Z
h � uhjjuhjj � r i h2s(Th;Ch) d
 (2.50)where 
 denotes the tensor outer produ
t uuT . The streamline upwind fun
tiondoes not a�e
t the weighting of the di�usion term in (2.41) be
ause we have bilinearshape fun
tions. We haveZ
e � uhjjuhjj � r j ksijr2 i d
 = 0 (2.51)sin
e, on the interior of ea
h element,  ;ii is zero. In the numeri
al experimentswhere the SUPG stabilization term is needed, we use only bilinear elements and theelement domains are re
tangular. When the element domains are not re
tangular, ;ii will not in general vanish identi
ally, and thus the term (2.51) may be not zero.However, for reasonable element shapes, this streamline upwind 
ontribution will besmall and 
an be negle
ted. This is not the 
ase for higher-order elements.We integrate the ODE system of equations (2.46) impli
itly using a standard �method with � = 1=2, whi
h 
orresponds to the familiar Crank-Ni
olson method.At timestep tn, we have to solveN (Cn � Cn�1)�t + � [R(Un) + E ℄ Cn+ (1� �) �R(Un�1) + E� Cn�1= �Hn + (1� �)Hn�1 (2.52)Sin
e the rea
tion term H is a nonlinear fun
tion of the unknown spe
ies solution,15



we have to solve at ea
h timestep a nonlinear system of the formL (Cn) = 0 (2.53)where L (Cn) = (N + 4t2 (R(Un) + E))Cn � 4t2 Hn + I (2.54)with I = � (N � 4t2 (R(Un�1) + E))Cn�1 � 4t2 Hn�1 (2.55)and n denotes the timestep index. The nonlinear system (2.53) is solved by Newton'smethod in the present study. Given Cn0 , Un�1 and Un, at ea
h timestep and k =1; 2; : : :, solve linear systems of the formJ (Cnk � Cnk�1) = �V (2.56)with J = (N + 4t2 (R(Un) + E)) � 4t2 �Hnk�1�Cn (2.57)and V = (N + 4t2 (R(Un) + E))Cnk�1 � 4t2 Hnk�1 + I (2.58)where I is de�ned in (2.55) and Hnk�1 = H(Tnk�1;Cnk�1). Here the solution of thelinear systems (2.56) are also obtained using a dire
t frontal solver [46℄. In thenext se
tion the main algorithm to 
al
ulate approximate solutions for the velo
ity�eld, temperature and 
on
entration ve
tor is 
onstru
ted. We also present theNavier-Stokes and transport algorithms in detail.2.4 De
oupled AlgorithmIn the present work, we 
onsider a de
oupled formulation to solve the 
lass of 
ou-pled problems of interest. In this approa
h, the momentum and 
ontinuity equationsare solved �rst, in ea
h timestep or iteration, lagging the temperature and 
on
en-tration ve
tor in the for
ing term. Then, the transport equations are solved withthe 
omputed velo
ities as input.The solution algorithm is obtained by simply 'lagging' the temperature and 
on-
entration ve
tor 
h on the right hand side of (2.24). That is, for iterate n = 1,2, � � � we set Th = Tn�1h and 
h = 
n�1h in (2.24). This de
ouples the 
ow andtransport equations within ea
h global iteration. Our algorithm to 
al
ulate ap-proximate solutions for the velo
ity �eld and 
on
entration ve
tor as time progress16



may be summarized by the steps in Figure 2.1. Here U0, T0 and C0 are the initialapproximations for the velo
ity �eld, temperature and 
on
entration ve
tor, respe
-tively. The timestep size 4t is initialized with (4t)min and is 
hosen adaptivelyusing the 
ontrol algorithms dis
ussed in the next 
hapter. If the steady-state solu-tion is needed, we stop the 
al
ulations when the nondimensional kineti
 energy Kat two di�erent timesteps rea
hes a di�eren
e less than an input toleran
e, that is,jKn �Kn�1j < �K jKnj; K = Z
 (u�2 + v�2)2 d
 (2.59)or when the approximate solutions at two di�erent timesteps rea
hes a di�eren
eless than input toleran
es,kUn �Un�1k < �u kUnk; kTn �Tn�1k < �T kTnk; kCn �Cn�1k < �
 kCnk(2.60)where n denotes the timestep index, k � k denotes Eu
lidean norm, u� and v� are thenondimensional velo
ity 
omponents, and �K , �u, �T and �
 are input toleran
es.1. Input data: U0, T0, C0, tmax, (4t)min2. Initialize variables: n 1, t0  0, 4t (4t)min3. Repeat(a) tn  tn�1 +4t(b) Cal
ulate the solutions Un, Tn, Cn(
) If (n > 1) 
al
ulate the new 4t using atimestep sele
tion algorithm(d) Update solutions: Un�1  Un, Tn�1  Tn, Cn�1  Cn(e) n n+ 1until (tn > tmax) Figure 2.1: Main AlgorithmIn step 3(b) of Figure 2.1, we have to 
al
ulate the approximated solution Unfor the velo
ity �eld at time tn. Figure 2.2 shows the algorithm to obtain Un givenUn�1, Tn�1, Cn�1, nsamax and �sa. The su

essive approximation pro
ess used tolinearize the non-linear semidis
rete system of ordinary di�erential equations (2.24)is des
ribed in step 4 of the algorithm given in Figure 2.2. This pro
ess is interruptedwhen the 
ondition in step 4(d) is a
hieved or the number of su

essive iterationsex
eeds a maximum given value nsamax. We 
onsider the maximum number of17



su

essive approximations allowed equal to nsamax = 10. At ea
h timestep, thetotal number of su

essive approximations 
al
ulated is given by nsa in step 5.To 
al
ulate an approximate solution for the 
on
entration ve
tor Cn in step3(b) of Figure 2.1, we have to use equations (2.56), (2.57), (2.58) and (2.55). Thetransport algorithmmay be summarized by the steps in Figure 2.3, and an analogousalgorithm 
an be used to 
al
ulate the temperature. If the nonlinear rea
tion sour
eor sink term in the transport equation (2.6) is a linear fun
tion of the 
on
entrationve
tor or is zero, the approximate solutionCn is obtained with only two iterations instep 4 of Figure 2.3. Here, knmax = 10 is the maximum number of Newton iterationsallowed.To 
omplete our main algorithm given in Figure 2.1, we have to spe
ify howthe stepsize is adaptively 
al
ulated in step 3(
). In the next 
hapter we dis
uss indetails the 
ontrol algorithms for the timestep sele
tion we are using in this workand also the approa
h used by Winget and Hughes in [79℄.
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1. Input data: Un�1, Tn�1, Cn�1, nsamax, �sa.2. Initialize variables: k  1 , Un0  Un�13. Cal
ulate M, A, D, B, Fn, Fn�1 using (2.25)-(2.31), (2.35).4. Repeat(a) Set Uk�1  Unk�1 in (2.35) and 
al
ulate D.(b) Set Un�1k  Un�1, 
al
ulate P, Q using (2.39), (2.40).(
) Solve the linear system (2.38) to obtain Unk.(d) Cal
ulate 
ond jjUnk�Unk�1jjjjUnk jj(e) Update solution: Unk�1  Unk(f) k  k + 1until (k > nsamax) or (
ond < �sa)5. Set Un  Unk and nsa k � 1Figure 2.2: Navier-Stokes Algorithm
1. Input data: Cn�1, Un�1, Un, knmax, �n.2. Initialize variables: k  1, Cn0  Cn�13. Cal
ulate I in (2.55).4. Repeat(a) Cal
ulate J and V using (2.57) and (2.58).(b) Solve the linear system (2.56) to obtain Cnk.(
) Cal
ulate 
ond jjCnk�Cnk�1jjjjCnk jj(d) Update solution: Cnk�1  Cnk(e) k  k + 1until (k > knmax) or (
ond < �n)5. Set Cn  Cnk Figure 2.3: Transport Algorithm
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Chapter 3Control AlgorithmsThe obje
tive here is to dis
uss timestep 
ontrol algorithms developed to improveeÆ
ien
y of 
odes to solve 
oupled problems. The outline of this 
hapter is thefollowing. In the �rst se
tion, we present our PID 
ontrol algorithm for timestepsele
tion based on 
ontrolling a

ura
y. Then, we dis
uss the 
ontrol algorithmused when the stepsize is limited by the 
onvergen
e rate of nonlinear iterations.Next, we des
ribe the two 
ontrol strategies for timestep sele
tion in simulation oftransient 
oupled 
ow and heat and mass transfer problems. Finally, we present thealgorithm for timestep sele
tion suggested by Winget and Hughes in [79℄, used herefor 
omparative purposes.3.1 PID Stepsize Control AlgorithmControl 
an be de�ned as the pro
ess of making a system of variables follow aparti
ular value, 
alled the referen
e value. Closed-loop pro
ess 
ontrol uses a mea-surement of the 
ontrolled variable and feedba
k of this signal to 
ompare it witha referen
e value. The feedba
k is supplied from an output sensor of some sort,and feeds an input of the 
ontroller to tell the 
ontroller how far the output isfrom its referen
e value. The 
ontroller uses this information to 
orre
t the outputerror. This kind of pro
ess is used in appli
ations ranging, for example, from air
onditioning thermostats to guidan
e and 
ontrol of air
raft.A simple feedba
k system 
onsists of an a
tuator, a 
ontrol devi
e often 
alledthe 
ontroller, the pro
ess (or plant), and an output sensor, as shown in Figure 3.1.The 
entral 
omponent of a feedba
k 
ontrol system is the pro
ess, whose outputis to be 
ontrolled. In our 
ase we are interested in pro
ess 
ontrol. The di�eren
ebetween the desired output and the a
tual output of the system measured by ansensor is equal to the error, whi
h is adjusted by the 
ontroller. The a
tuator is the20



devi
e that 
an in
uen
e the 
ontrolled variable of the pro
ess. The output of the
ontrol devi
e 
auses the a
tuator to modulate the pro
ess in order to redu
e theerror.Desiredoutput-���� -Error Controller -A
tuator - Pro
ess -A
tualoutputSensor r� Feedba
k6 MeasuredoutputFigure 3.1: A feedba
k system blo
k diagram of a basi
 
losed-loop 
ontrol systemOne example of a feedba
k 
ontrol system is the room-temperature 
ontrol sys-tem of a house [36℄. The pro
ess is the house, the thermostat is the output sensor, thegas valve is the 
ontroller, and the furna
e is the a
tuator. Suppose the thermostatis turned on when both the temperature in the house and the outside temperatureare below the referen
e temperature. The gas valve will be open 
ausing the furna
eto �re and heat to be supplied to the house. This is a 
losed loop system.One of the most widely used algorithms for 
losed-loop 
ontrol is the three-term
ontrol, known as the Proportional-Integral-Di�erential (PID) 
ontrol loop. Thepopularity of PID 
ontrollers 
an be attributed to their fun
tional simpli
ity andto their robust performan
e in a large range of operating 
onditions. The obje
tivein using PID 
ontrol algorithms is to 
ontrol the output along a smooth 
urve (vs.time) toward the set-point while minimizing overshoot, that is, the amount thesystem output response pro
eeds beyond the desire response.A PID 
ontrol algorithm in
ludes a term whi
h is proportional (P) to the outputerror, a term proportional to the integral (I) of the error, and a term proportionalto the derivative (D) of the error, and therefore has the form�S(�) = k��(�) + 1TI Z �0 �(~� )d~� + TD d�(�)d� � (3.1)or � _S(�) = kP _�(�) + kI�(�) + kD��(�) (3.2)where S(�) is the 
ontroller output deviation, _S(�) implies time rate of 
hange ofS, �(�) is the error, k is the proportional gain, TI is 
alled the integral or resettime, TD is the derivative time, and kP , kI and kD are the proportional, integral and21



derivative parameters, respe
tively. In order to adapt the 
ontinuous-time model toa dis
rete environment, we repla
e derivatives by di�eren
es in (3.2) to obtain:�(Sn+1 � Sn) = kP (�n � �n�1) + kI �n + kD (�n � 2�n�1 + �n�2) (3.3)The proportional term a
ts like a rubber band in an analogous me
hani
alsystem: it exerts a restoring for
e proportional to how mu
h the rubber band isstret
hed from its original shape. The proportional term 
an redu
e error responsesto disturban
es as we adjust kD up or down. The integral term is added to redu
eor eliminate 
onstant steady state errors. It 
an do this be
ause it sums up errorsover time. The derivative feedba
k is used in 
onjun
tion with proportional and/orintegral feedba
k to in
rease the damping of the dynami
 response. In general, italso improves the stability of the system. These three kinds of 
ontrol attempt toprovide a good degree of error redu
tion simultaneously with a

eptable stabilityand damping [32, 52, 36℄.Designing a parti
ular PID 
ontrol loop requires merely tuning the 
ontroller.The 
onstants kP , kI , and kD have to be adjust to yield satisfa
tory 
ontrol. In-
reasing kP and kI tends to redu
e system errors but may lead to instability, whilein
reasing kD tends to improve stability. The sele
tion of the parameters is basi
allya sear
h in a three-dimensional spa
e. There are several methods and rules proposedto solve this parameter sele
tion problem. Dorf and Bishop, [32℄, for instan
e, showmany design methods using root lo
i and performan
e indexes.In the numeri
al integration of ordinary di�erential equations, automati
 step-size 
ontrol is probably the most important means to improve eÆ
ien
y of a givenintegration method. Most timestep s
hemes are based on 
ontrolling a

ura
y asdetermined by trun
ation error estimates (e.g. Predi
tion-Modi�
ation-Corre
tion).The obje
tive of timestep sele
tion is minimize the 
omputational e�ort to 
onstru
tan approximate solution of a given problem in a

ordan
e with a desired a

ura
y.This strategy is motivated by the fa
t that the global error 
an be bounded in termsof the lo
al trun
ation error per unit step [51, 59, 9, 37, 60℄.In general, a typi
al stepsize 
ontrol algorithm for integration methods, su
h asexpli
it Runge-Kutta methods of order p� 1, 
an be expressed as4tn+1 = �tolen �1=p4tn (3.4)where tol is some input toleran
e and en is an estimate of the lo
al trun
ation errorin timestep 4tn. If the error is too big in one step, then the step is reje
ted and22



re-
al
ulated with a new step. One standard stepsize 
ontrol algorithm of this type
an be found in [39℄. This kind of algorithm normally performs quite well. However,there are di�erential equations and integration methods for whi
h its performan
eis una

eptable. The stepsize os
illates tremendously and the number of reje
tedsteps is too high. As a 
onsequen
e, mu
h 
omputation time is spent re-
al
ulatingreje
ted steps and 
hanging the stepsize.Gustafsson, Lind and S�oderlind [39℄ showed that the above problem (3.4) 
an beviewed as a standard automati
 
ontrol problem. Equation (3.4) 
an be rewrittenas � (log4tn+1 � log4tn) = 1p (log en � log tol) (3.5)or �(Sn+1 � Sn) = kI �n (3.6)where Sn = log4tn (3.7)�n = log en � log tol (3.8)Equation (3.6) is equivalent to equation (3.3) if we take kP = 0, kI = 1/p and kD =0. Thus, the stepsize 
ontrol s
hemes based on the 
ontrol of maximum 
hange inkey variables are nothing but versions of the standard integral feedba
k 
ontroller.We re
ognize log4tn as the 
ontrol signal or 
ontrol variable, the deviation (log en�log tol) as the 
ontrol error, log en as the plant output and log tol as the set point.Figure (3.2) shows a blo
k diagram of the feedba
k 
ontrol problem. The pro
esstakes the timestep size 4tn as a input, 
al
ulates the solution of the problem, andprodu
es an error estimate en that is fed ba
k to the 
ontroller. The 
ontroller triesto sele
t the new timestep in a su
h way that the quantity log en 
omes as 
lose aspossible to log tol along a smooth 
urve.
t∆

Controller Plant

Feedback

tol
Error

Figure 3.2: Stepsize sele
tion viewed as a 
ontrol problem.Motivated by these ideas, Hairer and Wanner [41℄ design a new stepsize 
on-trol algorithm using the standard dis
rete PID 
ontroller (3.3). Substituting the23



de�nitions (3.7) and (3.8) into (3.3), we obtain� (log4tn+1 � log4tn) = kI(log en � log tol) +kP [(log en � log tol)� (log en�1 � log tol)℄ +kD [(log en � log tol)� 2(log en�1 � log tol) +(log en�2 � log tol)℄whi
h 
an be rearranged as,4tn+1 = (en�1en )kP (tolen )kI ( en�12enen�2 )kD 4tn; (3.9)where tol is some input toleran
e, en is the measure of the 
hange of the quantitiesof interest in timestep 4tn, and kP , kI and kD are the PID parameters. Equation(3.9) 
an be rewritten using the normalized 
hanges in the variables of interest,e�n = en=tol, e�n�1 = en�1=tol and e�n�2 = en�2=tol,4tn+1 = (en�1en )kP ( 1en )kI ( en�12enen�2 )kD 4tn: (3.10)where we drop the supers
ript * for simpli
ity.Three 
onse
utive estimates of the solution are needed to 
al
ulate the lo
alnormalized trun
ation errors en�2, en�1 and en in (3.10). In the present work, we
onsider two di�erent ways to de�ne en. First, we may use the 
hanges in nodalvelo
ities, temperature and 
on
entration ve
tor to 
ompute en taking,en = max (eu; eT ; e
) (3.11)where eu = e�utolu e�u = kUn �Un�1kkUnk (3.12)eT = e�TtolT e�T = kTn �Tn�1kkTnk (3.13)e
 = e�
tol
 e�
 = kCn �Cn�1kkCnk (3.14)where tolu, tolT and tol
 are user supplied toleran
es 
orresponding to the normalized
hanges in velo
ities, temperature and 
on
entration ve
tor, respe
tively. Se
ond,we may de�ne en 
omputing 
hanges in the nondimensional kineti
 energy given byK = Z
 (u�2 + v�2)2 d
; (3.15)24



where u� and v� are the nondimensional velo
ity 
omponents. Now en is de�ned byen = e�KtolK ; e�K = jKn �Kn�1jjKnj (3.16)where tolK is a given toleran
e. The nondimensional kineti
 energy is also a suitableparameter for monitoring the behavior of the 
uid and for 
onstru
ting bifur
ationdiagrams. Here we also use the kineti
 energy to obtain the steady-state solution.The algorithm for 
ontrolling the timestep has two main parts. First, a stepsize is assumed, and using the newly 
omputed solution, an a posteriori estimate ismade of the error in the step. Se
ond, this error measure is used to a

ept or reje
tthe solution and modify the timestep a

ordingly. If the error is una

eptable, thenew solution is dis
arded and we restart the time integration in the previous stepwith a redu
ed step size. If the error is a

eptable, a new timestep is 
al
ulatedusing equation (3.9) and we pro
eed with the time integration. Here, the size of thetimestep is limited by the 
hanges in velo
ities, temperature and 
on
entrations.The initial data for the timestep 
ontrol algorithm should be: two 
onse
utiveestimates of the solution Un�1, Un, Tn�1, Tn, Cn�1, Cn, the 
urrent time t, thetimestep size 4t, the timestep index n and the number of su

essive approximationsnsa. We have to de�ne the 
ontrol data: the minimum timestep size 4tmin, themaximum timestep size 4tmax, the PID parameters kP , kI , kD, the toleran
es tolu,tolT , tol
, and the maximum number of su

essive approximations nsamax. Weinitialize the normalized errors, en�2  1:0 and en�1  1:0, the timestep size atthe previous step, 4tn = 4tprev  4tmin, and the number of reje
ted timesteps,nrej  0. Our PID timestep sele
tion algorithm to 
al
ulate the new timestep size4tn+1 = 4t at time tn = t may be summarize by the steps in Figure 3.3.If a timestep gives an una

eptable value of en, the step is reje
ted. Then the stepis repeated with a s
aled timestep size based on the magnitude of the error relativeto the toleran
e. However, we �nd in numeri
al experiments that the number ofreje
tions is very small, produ
ing a smooth sequen
e of timesteps. In our algorithm,if the sequen
e of iterates of the nonlinear system is 
onverging at a slow rate, thetimestep is also reje
ted. That is, if the number of su

essive approximations nsais greater than the maximum number of su

essive approximations allowed nsamax,the step size is reje
ted.In almost all systems, a
tuators saturate be
ause the dynami
 range of pra
ti
ala
tuators is usually limited. Whenever 
ontrol saturation happens, the integrationwith the PID 
ontrol law has to stop or this may result in substantial overshoot.25



This problem is 
alled the windup e�e
t [36℄. So, to prevent an ex
essive growth orredu
tion of the step size 4t, we supply timestep limiters 4tmin and 4tmax whi
hlimit the 
ontrol signal (anti-windup e�e
t). The e�e
t of the anti-windup is toredu
e both overshoot and the 
ontrol e�ort in the feedba
k system. Omission ofthis te
hnique may lead to deterioration of response and even instability.Although feedba
k 
ontrol theory provides sophisti
ated te
hniques to 
hoosePID parameters, robustness is required when a general �nite element method isused for a wide range of di�erent simulations. We perform parametri
 studies of thePID 
ontroller for values similar to those used by Gustafsson et al. [39℄ and also byCoutinho and Alves [24℄. We investigate values for kP ranging from 0.03 to 0.20,kI from 0.03 to 0.40 and kD from 0.003 to 0.02. Subsequent numeri
al experimentsdemonstrate that the PID 
ontroller is very robust for all the appli
ations studiedhere, and that we 
an adopt the following parameters: kP = 0.075, kI = 0.175 andkD = 0.01.3.2 Convergen
e Rate Control AlgorithmGustafsson and S�oderlind [40℄ establish a model for 
ontrolling the 
onvergen
e rateof the iterative method that relates the 
onvergen
e rate to the stepsize. Integratingan ODE, _y = f(y) (3.17)by impli
it time-stepping methods leads to the nonlinear equationy = 
 h f(y) +	 (3.18)where h is the stepsize, 
 is a 
onstant of moderate size, 
hara
teristi
 of the dis-
retization method, and 	 is a known ve
tor. Applying a �xed-point iteration to(3.18) yields yn+1 = 
 h f(yn) +	 (3.19)Let the error in the solution be denoted by en = yn�y. Using equations (3.18) and(3.19), and assuming that Jen = f(yn)� f(y) where J is a mean value Ja
obian, weobtain en+1 = 
 hJ en (3.20)from whi
h it follows that jjen+1jj � 
 h jjJjj jjenjj: (3.21)26



1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, t, �t, n, nsa.2. Control data: 4tmin, 4tmax, kP, kI, kD, tolu, tolT, tol
,nsamax.3. Initialize variables: en�2  1:0, en�1  1:0, 4tprev  4tmin,nrej  0.4. Cal
ulate en using (3.11)-(3.14).5. If ((en > 1:0) or (nsa > nsamax)) and (4t > 4tmin) thenreje
t the timestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1(
) t t�4t(d) n n� 1(e) fa
tor = 1en(f) if (fa
tor > 0:8) fa
tor = 0:8(g) 4t max(fa
tor4t;4tmin)(h) 4tprev  4t2=4tprevelse(i) 
al
ulate 4t ( en�1en )kP ( 1en )kI ( en�12en en�2 )kD 4tprev(j) 4t  max (4t, 4tmin)(k) 4t  min (4t, 4tmax)(l) 4tprev  4t(m) en�2  en�1, en�1  enendif Figure 3.3: PID Stepsize Control Algorithm
27



Hen
e the 
onvergen
e rate depends on the stepsize h and the (unknown) Ja
obianJ. The stepsize-
onvergen
e relation may be modeled by� = � h; (3.22)where � � 
 jjJjj and � is the 
onvergen
e rate depending on the spe
tral radiusof 
hJ. This model is 
on�rmed by a
tual 
omputations in [40℄ showing that the
onvergen
e rate is in pra
ti
e largely (but not perfe
tly) proportional to h. To avoidexpensive eigenvalues estimates, � is obtained by using three 
onse
utive iteratesyn�2, yn�1, and yn, as follows� = max�n = maxn kyn � yn�1kkyn�1 � yn�2k : (3.23)Assuming that the stepsize is limited by the 
onvergen
e rate of nonlinear iter-ations and that the 
hange in � from step to step is small, the new stepsize shouldbe 
hosen as �tn+1 = �ref� �tn (3.24)where �ref is a referen
e rate of 
onvergen
e and � is the estimated rate of 
on-vergen
e (3.23). Now the 
ontroller tries to keep the estimated 
onvergen
e rateas 
lose as possible of a referen
e value. The low quality of the estimate (3.23) ofthe 
onvergen
e rate � together with variations in � imply that it is usually notworthwhile trying a more sophisti
ated strategy than (3.24).We must �nd what 
onvergen
e rate �ref the 
ontroller should aim for to givethe most eÆ
ient integration. This question 
an be analyzed using the te
hniquepresented in [40℄. In general, any value 0:2 < �ref < 0:4 would be a

eptable, and�ref � 0:2 gives performan
e near to optimal [40℄. It is ne
essary to 
oordinate the
onvergen
e 
ontrol algorithm (3.24) with the stepsize 
ontrol strategy (3.9) so thateÆ
ien
y is maintained.3.3 The Timestep Control AlgorithmsWe propose two timestep 
ontrol algorithms based on 
ontrolling a

ura
y or the
onvergen
e rate of the su

essive iterations. These algorithms will be used to �ndtimestep sizes in steady-state and transient 
hemi
al rea
tion systems, Rayleigh-Benard-Marangoni 
ows and heat and mass transfer problems. The algorithms arevery simple and easy to implement. 28



The �rst 
ontrol uses only the PID 
ontrol for timestep sele
tion (3.9) with
hanges in velo
ities, temperature and 
on
entrations. The Control 1 is de�ned by4t = �en�1en �kP � 1en�kI � en�12enen�2�kD4tprev (3.25)with en = max (eu; eT ; e
); (3.26)where eu = e�utolu e�u = kUn �Un�1kkUnk (3.27)eT = e�TtolT e�T = kTn �Tn�1kkTnk (3.28)e
 = e�
tol
 e�
 = kCn �Cn�1kkCnk (3.29)and �t represents the new timestep size and 4tprev is the timestep size at theprevious step. In the se
ond 
ontrol, the size of the timestep is limited by the 
hangesin the kineti
 energy or by the rate of 
onvergen
e of the su

essive approximations.We take the minimum between the two values. The Control 2 is given by�t = min(�t�;�tr); (3.30)where �t� = �ref� �tprev (3.31)4tr = �en�1en �kP � 1en�kI � en�12enen�2�kD4tprev (3.32)with en = e�KtolK ; e�K = jKn �Kn�1jjKnj : (3.33)We should modify the algorithm given in Figure 3.3 to in
lude both 
ontrols. Weneed the 
al
ulation of �t� in (3.31) to obtain the new timestep �t in (3.30). Thevalue of the estimated rate of 
onvergen
e � has to be 
al
ulated at every stepand passed to the PID timestep algorithm as a parameter. The referen
e rate of
onvergen
e �ref should be a 
onstant de�ned in the algorithm. Control 1 andControl 2 are embodied in the algorithm given in Figure 3.4. The variable 
ontrolin the algorithm indi
ates if the new timestep size �t is 
al
ulated using Control 1or Control 2. In the next se
tion we brie
y dis
uss the automati
 timestep sele
tionstrategy proposed by Winget and Hughes in [79℄.29



1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, Kn�1, Kn, t, �t, n,�, nsa.2. Control data: 4tmin, 4tmax, kP, kI, kD, tolu, tolT, tol
, tolK,nsamax, �ref, 
ontrol.3. Initialize variables: en�2  1:0, en�1  1:0, 4tprev  4tmin,nrej  0.4. If 
ontrol = 1 then
al
ulate en using (3.26)-(3.29)else
al
ulate en using (3.33).5. If ((en > 1:0) or (nsa > nsamax)) and (4t > 4tmin) thenreje
t the timestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1, Kn  Kn�1(
) t t�4t(d) n n� 1(e) fa
tor = 1en(f) if (fa
tor > 0:8) fa
tor = 0:8(g) 4t max(fa
tor4t;4tmin)(h) 4tprev  4t2=4tprevelse(i) 
al
ulate 4t ( en�1en )kP ( 1en )kI ( en�12en en�2 )kD 4tprev(j) If 
ontrol = 2 then(j1) 
al
ulate �t� using (3.31)(j2) 4t  min (4t�, 4t)(k) 4t  max (4t, 4tmin)(l) 4t  min (4t, 4tmax)(m) 4tprev  4t(n) en�2  en�1, en�1  enendif Figure 3.4: Algorithm for Control 1 and Control 2
30



3.4 The Winget and Hughes Approa
hWinget and Hughes [79℄ in their work on �nite element simulation of transient heat
ondu
tion develop timestep sele
tion strategies based on heuristi
 rules. Errors and
omputational eÆ
ien
y in the transient solution are 
ontrolled by this automati
timestep sele
tion strategy. The algorithm for 
ontrolling the timestep error hastwo parts: an posteriori error estimate for the newly 
omputed solution, and analgorithm that uses this error measure to a

ept or reje
t the solution and modifythe timestep a

ordingly. The main ideas of the their approa
h are des
ribed below.The sele
tion of the timestep �t is based on 
ontrolling the maximum normalizederror en of quantities of interest with respe
t to user spe
i�ed error toleran
es. Theobje
tive is minimize this error, but at the same time keep �t as large as possible toavoid ex
essive \work" in obtaining the solution for a given time interval. As longas en � 1 the solution satis�es the user spe
i�ed error toleran
es and solution erroris a

eptable. Observe that a very small solution error indi
ates that the stepsizeshould be in
reased to redu
e the amount of \work" required to integrate the timeinterval under 
onsideration. If the error is una

eptable, en > 1, the new solutionis reje
ted and the time integration at the previous step is restarted with a redu
edstepsize.Thus, the sele
tion of �t as a fun
tion of en is based on the two rules: atno time should a timestep be a

eptable if en > 1, and the step size �t shouldbe in
reased until en = O(1). The initial data for the algorithm should be: two
onse
utive estimates of the solution Un�1, Un, Tn�1, Tn, Cn�1, Cn, the 
urrenttime t, the timestep size 4t and the timestep index n. We need to de�ne thefollowing parameters: the minimum timestep size4tmin, the maximum timestep size4tmax, N , M , egood, � and �. We initialize the variables nupdat 0, mupdat 0and �  1:25. The algorithm may be summarized by the steps in Figure 3.5.Observe in Figure 3.5 that if en > 1:0 then the solution is una

eptable: �t isrepla
ed by ��t, � < 1, the step growth rate � is reset to the initial value 1.25, andthe time integration is restarted at the previous step. If egood < en � 1 then thesolution is a

eptable, the algorithm pro
eeds with the time integration using the
urrent �t. If en � egood for N su

essive steps then the solution is 'overly' a

urate.So, �t is repla
ed by ��t, � > 1. The purpose of step (h) is to provide a variablestep size growth rate whi
h allows �t to be in
reased at a fast enough rate to raiseen = O(1) for even the fastest de
aying exponential. The 
ost e�e
tiveness of the31



algorithm depends on the subtle interplay between in
reasing and de
reasing stepsizes.The 
omputed step size should always be within user spe
i�ed bounds, �tmin� �t � �tmax. If �t is redu
ed below �tmin, the user should be informed, andthe integration should pro
eed with �t = �tmin. The algorithm will generate ana

urate solution for any value of � less than one if the lower bound �tmin is noten
ountered. In pra
ti
e they have found the values � = 0:5, egood = 0:25, N = 2,� = 1:25,M = 3, and � = 1:1 to perform well. In the next 
hapters, the eÆ
ien
y ofour two 
ontrol strategies for timestep sele
tion will be 
ompared with this approa
hsuggested by Winget and Hughes for some validation problems, 
hemi
al rea
tionsystems, Rayleigh-Benard-Marangoni 
ows and double di�usive problems.
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1. Input data: Un�1, Un, Tn�1, Tn, Cn�1, Cn, t, �t, n.2. Define Parameters: 4tmin, 4tmax, N = 2, M = 3, egood = 0:25,� = 1:1, � = 0:5.3. Initialize variables: nupdat 0, mupdat 0, �  1:25,nrej  0.4. Cal
ulate en using (3.26)-(3.29).5. If (en > 1:0) and (4t > 4tmin) then reje
t thetimestep:(a) nrej  nrej + 1(b) Un  Un�1, Tn  Tn�1, Cn  Cn�1(
) t t�4t(d) n n� 1(e) �  1:25(f) 4t max(�4t;4tmin)else(g) If (en � egood) then(g1) nupdat nupdat+ 1(g2) If (nupdat = N) then(g21) nupdat 0(g22) 4t �4t(g23) mupdat mupdat+ 1(h) If (mupdat =M) then(h1) mupdat 0(h2) �  � �(h3) 4t �4t(i) 4t max(4t;4tmax)endif Figure 3.5: Winget and Hughes Approa
h
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Chapter 4Validation ProblemsThe main obje
tive of this 
hapter is the presentation of numeri
al experiments tovalidate the �nite element formulations for the Navier-Stokes and transport equa-tions, and our timestep 
ontrol algorithms. The validation is done separately forea
h formulation using ben
hmark problems found in the literature or parti
ularnumeri
al examples 
onstru
ted to have known solutions. First, we present threetest problems to validate the Navier-Stokes equations. Then, four numeri
al ex-periments support our SUPG formulation for the transport equations. In the lastse
tion, a numeri
al study is presented to assess the a

ura
y of the solutions whenour timestep 
ontrol strategies is applied. We also investigate the robustness of our
ontroller.4.1 Navier-Stokes EquationsThis example is motivated by a parti
ular test problem introdu
ed by Johnsonand Pitkaranta [50℄ for the Stokes 
ow and also studied by Song et al. [64℄ andCarey and Krishnan [14℄. The problem in
ludes a 
onstru
ted example with knownanalyti
 solution. Of parti
ular interest here is to examine the rates of 
onvergen
ewith respe
t to the mesh size for this test problem and 
ompare them with thetheoreti
al estimates obtained in [14℄.The equations des
ribing the problem are the transient Navier-Stokes equations(2.7) and (2.8) subje
t to pres
ribed boundary 
onditions (2.14). The analyti
solution for this problem is de�ned by the smooth velo
ity 
omponentsu(t; x; y) = (t+ 1)2x2(1� x)2(2y � 6y2 + 4y3)v(t; x; y) = (t+ 1)2y2(1� y)2(�2x+ 6x2 � 4x3) (4.1)and the pressure �eld p(x; y) = x2 � y2 (4.2)34



on the unit square 
 = (0; 1) � (0; 1). This velo
ity �eld is divergent free andsatis�es the no-slip 
ondition u = 0 on the boundary of the square �
1. We assumethat f(
) = 0 in (2.7). Substituting (4.1) and (4.2) in the transient Navier-Stokesequation (2.7), we �nd that the body for
e q = (q1; q2) is equal toq1(t; x; y) = 2(t+ 1)x2(1� x)2(2y � 6y2 + 4y3) +u(t; x; y)(t+ 1)2(2x� 6x2 + 4x3)(2y � 6y2 + 4y3) +v(t; x; y)(t+ 1)2(2� 12y + 12y2)(1� x)2 +(t+ 1)22(x� 0:02((1� 6(x� x2))(y � 3y2 + 2y3) +(1� x)2x2(�3 + 6y))) (4.3)q2(t; x; y) = 2(t+ 1)y2(1� y)2(�2x + 6x2 � 4x3)�u(t; x; y)(t+ 1)2y2(�2 + 12x� 12x2)(1� y)2 +v(t; x; y)(t+ 1)2(2y � 6y2 + 4y3)(�2x + 6x2 � 4x3) +(t + 1)22(y + 0:02((1� 6(y � y2))(�x + 3x2 � 2x3) +(1� y)2y2(3� 6x))): (4.4)The vis
osity is 
hosen as 0.01, and we take a 
onstant penalty parameter of � =10�8. The maximum nodal velo
ity is approximately 1:2� 10�2, whi
h 
orrespondsto a Reynolds number of 1.2.The approximate solutions are 
omputed for a sequen
e of uniform meshes withmesh size h = 12 , 14 , 18 , 116 and 132 , and all the approximations are shown for the �rsttimestep, that is, t0 = 10�5. The initial 
ondition is taken as the exa
t solution at theinitial time t = 0. We 
onsider bilinear elements with 1-point Gauss quadrature forthe penalty term (Case 1) and biquadrati
 elements with 2�2 Gauss quadrature forthe penalty term (Case 2). Our obje
tive now is to examine the rates of 
onvergen
ewith respe
t to the mesh size h and to 
ompare with the theoreti
al estimates.Table 4.1 shows the error in the approximate velo
ity in the L2-norm (k � k0)and H1-norm (k � k1) for the re�ned meshes in Case 1 (bilinear). The error in theapproximate velo
ity is plotted against mesh size h on a log-log s
ale in Figure 4.1.The respe
tive approximate slopes of 1.9026 and 0.9797 indi
ate global rates of
onvergen
e. The theoreti
al rates of 
onvergen
e in Case 1 in the k � k0 and k � k1norms are equal to 2 and 1, respe
tively.In Case 2 (biquadrati
), the errors in the velo
ity in the norms k�k0 and k�k1 areshown in Table 4.2. Figure 4.2 shows the error in the approximate velo
ity plotted35



Mesh Size L2-norm H1-normh = 1/2 :7746371E � 02 :5754133E � 01h = 1/4 :2463945E � 02 :3099890E � 01h = 1/8 :6504252E � 03 :1551478E � 01h = 1/16 :1641288E � 03 :7734176E � 02h = 1/32 :4107556E � 04 :3861947E � 02Table 4.1: The L2-norm andH1-norm of error in the velo
ity solution in Case 1 (bilinear).
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Figure 4.1: Optimal global rates of 
onvergen
e for the velo
ity in Case 1 (bilinear).against mesh size h on a log-log s
ale. Now, the theoreti
al rates of 
onvergen
e inthe k �k0 and k �k1 norms are equal to 3 and 2, respe
tively. The slopes of the 
urvesyield rates of 
onvergen
e for the velo
ity 2.9628 and 2.0154 in the k � k0 and k � k1norms, respe
tively. Hen
e we �nd that the velo
ity approximations in both 
ases
onverge towards the exa
t solution at optimal rates.Mesh Size L2-norm H1-normh = 1/2 :1021730E � 02 :1866761E � 01h = 1/4 :1404786E � 03 :4521962E � 02h = 1/8 :1786013E � 04 :1117877E � 02h = 1/16 :2242721E � 05 :2786661E � 03h = 1/32 :2806901E � 06 :6961698E � 04Table 4.2: The L2-norm and H1-norm of error in the velo
ity solutions in Case 2 (bi-quadrati
).The se
ond numeri
al experiment is the ba
kward-fa
ing step problem, whi
h hasbe
ome popular as a ben
hmark problem addressed by numerous authors developing
ow simulation 
odes. It 
onsists of a 
uid 
owing in a straight 
hannel whi
h36
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Figure 4.2: Optimal global rates of 
onvergen
e for the velo
ity in Case 2 (biquadrati
).abruptly widens on one side. Results of physi
al experiments are given in Armalyet al. [1℄, and numeri
al results obtained using di�erent �nite element methods 
anbe found, for example, in Gartling [34℄ and Cru
haga [26℄. Griebel, Dornseifer andNeunhoe�er [38℄ solve the problem for di�erent Reynolds numbers using a �nitedi�eren
e approa
h. Numeri
al results using our penalty �nite element formulationare 
ompared with those published by Griebel, Dornseifer and Neunhoe�er in [38℄.The problem involves a vis
ous in
ompressible 
ow over an isothermal two-dimensional ba
kward-fa
ing step. Introdu
ing the dimensionless variablesx� = xL; y� = yL; t� = tu1L ; u� = uu1 ; v� = vv1 ; p� = p� p1�1u21 (4.5)with given s
alar 
onstants L, u1, p1, �1, and substituting these relations into (2.7)and (2.14), we obtain the dimensionless Navier-Stokes equations of the problem�u�t + u � ru� 1Re�u+rp = 0 in 
 (4.6)r � u = 0 in 
 (4.7)where we dropped the supers
ript * for simpli
ity, and Re = �1u1L� is the Reynoldsnumber. Figure 4.3 shows the geometry of the problem and the boundary 
onditions.We assume walls : u = v = 0;inlet : u = 1:0; v = 0;exit at x = 30 : �u�x = 0; �v�x = 0:37



The initial velo
ity is u = 1:0, v = 0 in the upper half of the domain and u =v = 0 in the lower half. The obsta
le domain representing the step is the re
tangle[0; 7:5℄ � [0; 0:75℄ and the in
ow velo
ity at the left wall has the 
onstant valueu = 1:0. The length L measured from the step to the end of the 
al
ulation domainwas sele
ted to make the reatta
hment length independent of the 
al
ulation domain,and the boundary 
ondition at the out
ow se
tion was taken as that of a fullydeveloped 
ow. We solve the problem towards to steady-state for two Reynoldsnumbers, Re = 100 and Re = 500.
U = 1.0, V = 0

U = V = 0

U = V = 0

Ux =Vx =0

0.0 7.5 30.0

1.5

0.75

0.0

Figure 4.3: Ba
kward-fa
ing step geometry with 
hannel dimensions and boundary 
on-ditions.The re
tangular 
hannel downstream of the step was divided into two regionsfor purposes of mesh generation. In the upstream region 0 � x � 15 the mesh isuniformly distributed a
ross the 
hannel and in the streamwise dire
tion. Elementsizes in the uniform grid region are (�x;�y) = (0:1875; 0:3), whi
h represents 40�5and 80�5 elements in the bottom (0 � y � 0:75) and top (0:75 � y � 1:5) upstreamregions, respe
tively. For the downstream region 15 � x � 30 and 0 � y � 1:5 themesh is uniform a
ross the 
hannel but smoothly graded in the 
ow dire
tion. Fori = 2; : : : ; nx, the nodes in the grid are 
al
ulated using the expression,x(i) = 15 + 15 � ( i� 1nx� 1)1:2 (4.8)where nx = 30 is the number of elements in the downstream region. We have 30�10elements in the downstream region. Elements near x = 30 are approximately twi
ethe length of elements near x = 15. For this mesh about two-thirds of the totalnumber of elements are lo
ated in the upstream region. We have 600 elements inthe upstream region and 300 elements in the downstream region. The steady statesolution is obtained when kun�un�1k < 10�7 kunk. We used a �xed time step sizeof �t = 0:01 at the beginning of the pro
ess and then we keep the time step sizeat �t = 0:1. Results were obtained using the four-node 
ontinuous bilinear velo
ityelements with 1-point Gauss quadrature for the penalty term.38



The basi
 
hara
ter of the ba
kward-fa
ing step 
ow at Re = 100 and Re = 500is well known and is illustrated in the 
ontour plots of Figure 4.4. Note that the�gures show only the part of the 
omputational domain 6 � x � 20, sin
e this
ontains all the essential features. The streamlines shown in Figure 4.4 reveal that,for Re = 100, the 
ow widens immediately behind the step and an eddy is formed.When vis
osity is further redu
ed (Re = 500), the main 
ow is drawn downward,
ausing it to separate from the upper boundary and leading to the formation of ase
ond eddy. Note that the �rst eddy in
reases in size with in
reasing Reynoldsnumber (Re = 500).

Figure 4.4: Flow over a ba
kward-fa
ing step, streamlines at Re = 100 (top) and Re =500 (bottom).The lengths x1 and x2 of the upper and lower eddies as well the horizontal dis-tan
e x3 from the step to the upper eddy's point of separation are values often usedto 
hara
terize the resulting 
ow, see Figure 4.5. Table 4.3 shows the 
hara
teristi
lengths - ea
h normalized by the step height s - obtained by Griebel, Dornseifer andNeunhoe�er in [38℄ for Re = 100 and Re = 500.Griebel et al.Re x1=s x2=s x3=s100 3.8 - -500 8.3 9.1 6.2Table 4.3: Flow over a ba
kward-fa
ing step - 
hara
teristi
 lengthsFor Re = 100, we 
an observe in Figure 4.4 that the 
ow separates at the step39



Figure 4.5: Chara
teristi
 lengths.
orner and forms a re
ir
ulation eddy with a reatta
hment point on the lower wallapproximately at x = 10:35 whi
h 
orresponds to x1 = 2:85 (x1=s = 3:8). This eddyin
reases in size to x = 13:725 (x1=s = 8:3) with the in
reasing Reynolds number(Re = 500). A se
ond eddy forms on the upper wall, for Re = 500, beginningapproximately at x = 12:15 (x3=s = 6:2) and terminating at x = 18:975 (x2=s =9:1). So, our results are in very good agreement with the results obtained by Griebel,Dornseifer and Neunhoe�er in [38℄.The third example is also a problem involving a steady vis
ous in
ompressible
ow over an isothermal two-dimensional ba
kward-fa
ing step. Now, the standardstep geometry was simpli�ed by ex
luding the 
hannel upstream of the step (seeFigure 4.6). This problem has been addressed by numerous authors but we are goingto 
ompare our results with the results presented by Gartling in [34℄. The boundary
onditions for the step geometry in
luded the usual no-slip velo
ity spe
i�
ation forall solid surfa
e walls as shown in Figure 4.6. The inlet velo
ity �eld is spe
i�ed asa parallel 
ow given by u(y) = 24y(0:5 � y) and v(y) = 0 for 0 � y � 0:5. Thisprodu
es a maximum in
ow velo
ity of umax = 1:5 and an average in
ow velo
ity ofuavg = 1:0. We 
onsider homogeneous natural out
ow boundary 
ondition as shownin Figure 4.6. The problem is solved for a Reynolds number of Re = 800.
U = V = 0

0.0 30.0

0.0

0.5

-0.5

U = V = 0

Ux = Vx = 0V = 0

U = 24y(0.5-y)

Figure 4.6: Ba
kward-fa
ing step geometry with 
hannel dimensions and boundary 
on-ditions.We use a mesh similar to the one used in the last example. In the upstream40



region 0 � x � 15 the mesh is uniformly distributed a
ross the 
hannel and in thestreamwise dire
tion. The lengths of the element size for the uniform grid region are(�x;�y) = (0:1; 0:0833), whi
h represents 150� 12 elements. For the downstreamregion 15 � x � 30 the mesh is uniform a
ross the 
hannel but smoothly gradedin the 
ow dire
tion. The nodes in the grid are 
al
ulated using (4.8). We have50�12 = 600 elements in the downstream region and 1800 elements in the upstreamregion. The steady state solution is obtained when kun � un�1k < 10�4 kunk.Results were 
omputed using the four-node 
ontinuous bilinear velo
ity elementswith 1-point Gauss quadrature for the penalty term, and we used a �xed time stepsize of �t = 0:01.The basi
 
hara
ter of the ba
kward-fa
ing step 
ow at Re = 800 is illustratedin the streamfun
tion 
ontour plots of Figure 4.7. The plot shows only part of the
hannel sin
e few phenomena of interest o

ur downstream of this point. Gartling in[34℄ found that the 
ow separates at the step 
orner and forms a large re
ir
ulationeddy with a reatta
hment point on the lower wall approximately at x = 6:10. Ase
ond stronger eddy is formed on the upper wall beginning approximately at x =4:85 and terminating at x = 10:48. Our results are in good agreement with theresults obtained by Gartling in [34℄.
Figure 4.7: Flow over a ba
kward-fa
ing step, streamfun
tion 
ontours at Re = 800.4.2 Transport EquationsOur �rst experiment is a test problem 
onstru
ted to have in the unit square domain[0; 1℄� [0; 1℄ and for t > 0 the analyti
 solution
 = 102(t+ 1)2x(x� 1)y(y � 1); (4.9)where 
 is the solution of the transport equation (2.19) 
onsidering one spe
ies
omponent. The velo
ity �eld is the same used in the �rst example of the previous41



se
tion 4.1, whose velo
ity 
omponents areu(t; x; y) = (t+ 1)2x2(1� x)2(2y � 6y2 + 4y3)v(t; x; y) = (t+ 1)2y2(1� y)2(�2x + 6x2 � 4x3):We assume the di�usion tensor k11 = k22 = 1, k12 = k21 = 0 in (2.19), and thenonlinear rea
tion term is taken to beh(x; y) = �
2 + f; (4.10)where the fun
tion f is given byf = �
�t + u �
�x + v �
�y � k11 �2
�x2 � k22 �2
�y2 + 
2:The initial solution is de�ned as the exa
t solution at the initial time t = 0. Wespe
ify essential boundary 
onditions, 
(t; x; y) = 0 from (2.18) evaluated on theboundary of the unit square domain 
. For this test problem, of parti
ular interestis to examine the rates of 
onvergen
e of the 
on
entration with respe
t to the meshsize h and the time step �t, and 
ompare them with the theoreti
al estimates.The transport equation is solved using the bilinear, biquadrati
 and six-nodetriangular elements des
ribed earlier for a sequen
e of uniform meshes with meshsize h = 12 ; 14 ; 18 ; 116 , and 132 . In the 
ase of bilinear elements, we also 
ompute thesolution at h = 164 . For the 
onvergen
e study with respe
t to h we keep a 
onstantsmall timestep of �t = 10�5. All the approximations are shown for the �rst timestep t = 10�5.The L2-norm of the error in the 
on
entration solution for bilinear and six-nodetriangular elements is shown in Table 4.4. The L2-norm andH1-norm of the error forthe 
on
entration using bilinear elements are plotted against mesh size in Figure 4.8on a log-log s
ale. The respe
tive slopes 1.9708 and 1.0202 indi
ate the global ratesof 
onvergen
e, and are in good agreement with the theoreti
al predi
tions 2 and 1,respe
tively.For biquadrati
 elements we obtain relative errors in the L2-norm of order lessthan 10�8 for any number of elements. This means that we obtain the exa
t solutionwithin roundo� error, as expe
ted. Optimal global rates of 
onvergen
e are alsoobtained for six-node triangular elements in both norms as shown in Figure 4.9.The rates of 
onvergen
e for the 
on
entration approximation in the L2-norm andH1-norm for this example are 2.9480 and 1.9699, respe
tively.We also examined the order of 
onvergen
e of the solution with respe
t to thetime step �t. In view of the above 
onvergen
e results we sele
t for this study42



Mesh Size 4-node bilinear 6-node triangularh = 1/2 :12873418E + 01 :30613016E + 00h = 1/4 :35371359E + 00 :43871262E � 01h = 1/8 :90379168E � 01 :56366812E � 02h = 1/16 :22716094E � 01 :70867673E � 03h = 1/32 :56865900E � 02 :88027891E � 04Table 4.4: The L2-norm of the error in 
on
entration for 4-node bilinear and 6-nodetriangular elements.
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Figure 4.8: Rates of 
onvergen
e for the 
on
entration approximation in the L2-normand H1-norm with bilinear fun
tions
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Figure 4.9: Rates of 
onvergen
e for the 
on
entration approximation in the L2-normand H1-norm with six-node triangular elements43



biquadrati
 basis fun
tions and a mesh with 2 � 2 elements. The approximatesolutions are 
ompared at the time t = 0:1 for values of �t equal to 10�2; 10�3; 10�4in Table 4.5. The error in the L2-norm is plotted against �t on a log-log s
ale inFigure 4.10. We know that the theoreti
al trun
ation error for the Crank-Ni
olsons
heme is O(�t2), and we see an approximate slope of 2.0397.Time Step Size L2-norm of the error�t = 10�2 :16462243E � 01�t = 10�3 :13438152E � 03�t = 10�4 :13711075E � 05Table 4.5: The L2-norm of error in the 
on
entration solution for a mesh with 2�2biquadrati
 elements.
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Figure 4.10: Rates of 
onvergen
e for the 
on
entration approximation in the L2-normusing Crank-Ni
olson method with 2� 2 biquadrati
 elementsThe se
ond experiment is a test problem found in [11℄ to demonstrate the e�e
-tiveness of the streamline upwind method in preventing both \wiggles" and spurious
rossing di�usion. The 
ow is unidire
tional, 
onstant (k
k = 1), and skew to themesh (� = �=8) with dis
ontinuous in
ow boundary 
ondition and homogeneousnatural out
ow boundary 
ondition as shown in Figure 4.11. The di�usivity 
oeÆ-
ient is equal to k = 10�6 resulting in a Pe
let number of Pe = 106. The steady-statesolution is obtained when k
n � 
n�1k < 10�6 k
nk. The initial 
onditions are
 = 1 x = 0; 0 � y � 0:25
 = 0 x = 0; 0:25 < y � 144



The problem is adve
tion dominated, and the solution is essentially one of pureadve
tion. The \exa
t" solution is an adve
tion of the in
ow boundary in the
ow dire
tion. We use a 10-by-10 mesh of equal sized square elements, 2-by-2Gaussian quadrature to integrate all element 
ontributions, and a �xed timestepsize of �t = 0:01. Figure 4.12 shows the results using the Galerkin s
heme and theSUPG formulation. We observe that as expe
ted the SUPG s
heme is signi�
antlybetter than the Galerkin method in redu
ing the spurious os
illations on the 
oarsegrid.

Figure 4.11: Adve
tion skew to the mesh: problem statement.
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Figure 4.12: Adve
tion skew to the mesh with homogeneous natural out
ow boundary
ondition: elevation of 
 - SUPG (left) and Galerkin (right).45



The third experiment is also a problem presented in [11℄. The 
ow is a rigidrotation about the 
enter of a unit square domain, 
 = [�0:5; 0:5℄� [�0:5; 0:5℄, withvelo
ity 
omponents given by u = �y and v = x;and the di�usivity 
oeÆ
ient is k = 10�6. On the external boundary of the square
 is set to zero, and on the internal 'boundary' OA, 
 is pres
ribed to be a 
osinehill, as shown in Figure 4.13.
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Figure 4.13: Adve
tion in a rotating 
ow �eld: problem statement.We used a 30-by-30 mesh of equal sized square elements, and a �xed timestep sizeof �t = 0:01. The steady-state solution is obtained when k
n � 
n�1k < 10�3 k
nk.The initial 
onditions are
 = 
os(2�(y + 0:25)) on OA
 = 0 on the rest of the domainThe problem is also adve
tion dominated. The exa
t solution is essentially a pureadve
tion of the OA boundary 
ondition along the 
ir
ular streamlines. The eleva-tion of 
 using the SUPG s
heme is shown in Figure 4.14, and is in good agreementwith the exa
t solution.The last experiment with the SUPG method is a test problem presented in [20℄.The domain of the problem is the unit square, 
 = [0; 1℄ � [0; 1℄, dis
retized usinga uniform mesh of 20 � 20 bilinear elements. The di�usion 
oeÆ
ient is set to46



-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.14: Adve
tion in a rotating 
ow �eld: elevation of 
 (SUPG s
heme).k = 10�4. The nonlinear rea
tion sour
e term in (2.19) is de�ned as h = 1 � s 
where s � 0 is the absorption 
oeÆ
ient. The velo
ity �eld isu = kuk (
os(�=3); sin(�=3));so that it is not aligned with the �nite element mesh. Three di�erent 
ases are
onsidered, 
orresponding to dominant adve
tion (Case 1), dominant rea
tion (Case2) and 
ombination of adve
tion and rea
tion e�e
ts (Case 3). These 
ases are:Case 1 : kuk = 1; s = 0:0001Case 2 : kuk = 0:0001; s = 1Case 3 : kuk = 0:5; s = 1Results for the the three 
ases are shown in Figure 4.15 using the SUPG formulation.For the �rst 
ase, the solution shows some os
illations near the boundary layer
reated due to the small di�usion 
oeÆ
ient. In Case 3 the e�e
t of 
onve
tionand rea
tion are both present, and there are os
illations due to the presen
e of
onve
tion. The os
illations are dominated by those due to the 
onve
tion sin
eAb = sh22k is mu
h smaller than Pe. The dimensionless number Ab is a measure ofthe relative importan
e of the absorption and di�usion terms, where h is the element47



size. Our results are in good agreement with those presented in [20℄ for all three
ases.
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Figure 4.15: Case 1 (left top), Case 2 (right top) and Case 3 (bottom).4.3 Timestep Control AlgorithmsOur main obje
tive now is to assess the a

ura
y of the solutions when the timestep
ontrol strategies studied previously are applied to a spe
i�ed problem. For thisinvestigation, we are going to apply Control 1 to the �rst validation problem for thetransport equations. We also want to verify whether the PID 
ontroller is robust ornot. Thus, we perform parametri
 studies for di�erent values of PID parameters kP ,kI and kD, and 
ompare our timestep 
ontrol algorithm to the strategy developed by48



Winget and Hughes [79℄. We use in these experiments a grid with 2� 2 biquadrati
elements. The initial timestep size is 10�4, and we allow a minimum and a maximumtime step sizes of 10�4 and 10�3, respe
tively. Changes in nodal 
on
entration are
al
ulated with an input toleran
e of 10�5, and the 
al
ulations stop when the timeis greater than 0.1. We perform parametri
 studies of the timestep 
ontroller forvalues similar to those used by Gustafsson et al. [39℄ and also by Coutinho andAlves [24℄. We 
hoose values of kP ranging from 0.03 to 0.20, kI from 0.03 to 0.40,and kD from 0.003 to 0.02. We also study the 
ase where kP = kD = 0.Table 4.6 shows the L2-norm of the error in the 
on
entration solution, the num-ber of time iterations, ntstep, the number of reje
ted steps, nreje
, the total numberof Newton iterations, newt, and the 
omputational e�ort, 
effort, de�ned here asnewt divided by the number Newton iterations obtained using a �xed timestep sizeof 10�4. We 
an see from Table 4.6 that the error in the approximate solution atthe �nal time is of order 10�6 for all 
ases studies. Moreover, with the PID 
ontrolstrategy we �nd approximate solutions with a mu
h smaller number of time stepswithout any signi�
ant loss of a

ura
y. Observe that we need 100 time steps toobtain a solution with the same a

ura
y when the minimum �xed time step is used(Table 4.6). The step size sele
tion strategy developed by Winget and Hughes took66 time steps with no reje
ted steps.
ase kP , kI, kD error ntstep nreje
 newt 
effort1 0.05 0.05 0.005 .37023368E-05 66 0 132 0.662 0.1 0.3 0.015 .38890581E-05 62 0 124 0.623 0.075 0.175 0.01 .38512072E-05 62 0 124 0.624 0.1 0.16 0.011 .38680409E-05 63 0 126 0.635 0.06 0.13 0.008 .38456781E-05 63 0 126 0.636 0.08 0.216 0.0116 .38684855E-05 62 0 124 0.627 0.15 0.32 0.017 .38897674E-05 62 1 126 0.638 0.2 0.4 0.02 .38896720E-05 62 2 128 0.649 0.04 0.04 0.004 .36271440E-05 67 0 134 0.6710 0.03 0.03 0.003 .35057604E-05 69 0 138 0.6911 0.0 0.175 0.0 .38528566E-05 62 0 124 0.6212 0.075 0.175 0.0 .38512100E-05 62 0 124 0.6213 No 
ontrol .13711077E-05 100 0 200 114 Winget & Hughes .32976399E-05 66 0 132 0.66Table 4.6: Results for Control 1 using bilinear elements on a 2�2 grid.The PID 
ontroller is very robust as we 
an also see from Table 4.6. Althoughfeedba
k 
ontrol theory provides te
hniques to 
hoose the PID parameters, robust-49



ness is required when a general �nite element method is used for a wide range ofdi�erent simulations. The variation in the number of time iterations is very smallif we keep kP in the range 0.03 to 0.20, kI from 0.03 to 0.40, and kD from 0.003 to0.02. In the numeri
al problems presented in the next Chapter, we see that theseparameters are also suitable for the examples studied there. For these reasons, we�x the values of the PID parameters equal to kP = 0:075, kI = 0:175 and kD = 0:01in all the numeri
al experiments performed subsequently. To provide examples ofthe evolution of timesteps we show in Figures 4.16 and 4.17 Cases 3 and 14, wherewe may verify that the PID solution presents a smooth variation of timesteps when
onfronted with the Winget and Hughes test problems.
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Chapter 5Chemi
al Rea
tion SystemsIn this 
hapter we apply our adaptive timestep 
ontrol algorithm to solve numeri-
al appli
ations involving isothermal rea
tion inside a porous 
atalyst and 
hemi
alrea
tion on a 
atalyst se
tion with heat e�e
ts in
luded. We 
ompare the perfor-man
e of Control 1 and the time-stepping strategy proposed by Winget and Hughesin [79℄. One obje
tive is to validate our 
ode when Control 1 is applied to 
ombineddi�usion-rea
tion pro
esses with heat e�e
ts in
luded. We also want to demonstratethe eÆ
ien
y of our PID 
ontroller to solve nonlinear 
ow and rea
tive transportproblems.5.1 Isothermal Rea
tion5.1.1 Dimensionless EquationsWhen a 
atalyst parti
le made from a porous material impregnated with a 
atalyti
substan
e is submerged in a gas stream, the rea
tant A di�uses into the parti
le,rea
ts on the 
atalyti
 surfa
e, and the produ
t B di�uses out, A! B. We assumethat the pro
ess is isothermal, i.e., the heat generated by the rea
tion 
an be ne-gle
ted, and homogeneous, the 
hemi
al 
hange takes pla
e in the entire volume ofthe 
uid. We also assume that the rea
tion me
hanism is known [33, 7℄.Consider a 
atalyst se
tion exposed to rea
tant A with 
on
entration 
̂ at thesurfa
e. The rate of disappearan
e of rea
tant A is given by the following se
ond-order, irreversible rea
tion R = �k
2where 
 is the 
on
entration of rea
tant A in the neighborhood of the surfa
e, andk is a rate 
onstant. The governing equation of the problem is�
�t �Dr2
 = �k
2 (5.1)52



with boundary 
onditions �k �
�x = 0 on �
2 (5.2)
 = 
̂ on �
1 (5.3)and initial 
ondition 
(x; y; 0) = 
̂0(x; y) in 
 (5.4)where D is the e�e
tive di�usivity measured experimentally, 
 = [0; L℄ � [0; L℄ isthe se
tion, �
1 is the right side of the domain, and �
2 = �
� �
1.The problem is s
aled as follows: x� = x=L, y� = y=L, t� = tD=L2, and 
� = 
=
̂.Substituting these relations into (5.1), (5.2), (5.3) and (5.4), we obtain the s
aledform of the equations �
�t �r2
 = ��2
2 (5.5)�
�x = 0 on �
2 (5.6)
 = 1 on �
1 (5.7)
(x; y; 0) = 
0(x; y) in 
 (5.8)where we drop the supers
ript * for simpli
ity, 
 = [0; 1℄� [0; 1℄ is the dimensionlessse
tion, �
1 is the right side of the domain, �
2 = �
 � �
1 and � is the Thielemodulus de�ned as � =pk
̂L2=D:5.1.2 Isothermal Rea
tion in a Catalyst SlabWe are interested in steady-state solutions of the problem for di�erent values of theThiele modulus �. We assume that the steady-state o

urs when k
n+1 � 
nk <�
 k
n+1k, where n denotes the timestep index, k � k denotes Eu
lidean norm, and �
is equal to 10�7 in this example. Sin
e we are simulating a 1-D problem, we 
hoosein all 
ases a mesh with 16� 1 bilinear elements. We use Control 1, (3.25), (3.26),(3.27) and (3.29), to 
al
ulate all approximate steady-state solutions.The e�e
tiveness fa
tor � gives the ratio of the amount rea
ted with di�usion tothe amount that would be rea
ted if the 
on
entration were everywhere the same,and equal to the value at the boundary. In this example, the e�e
tiveness fa
tor 
anbe de�ned by the equation � = R 10 �2
2dxR 10 �21dx : (5.9)53



Finlayson [33℄ 
al
ulates approximate solutions for the problem on the inter-val [0,1℄ using the orthogonal 
ollo
ation method. He shows that for one interior
ollo
ation point the e�e
tiveness fa
tor 
an be expressed by� = 16 + 524 [�2:5 + (6:25 + 10�2)1=2℄2�4 : (5.10)The approximation is a

urate for � � 2, and for larger values of � a higher ap-proximation is required to improve the results. The e�e
tiveness fa
tor � is plottedversus the Thiele modulus � in Figure 5.1 for the 
ollo
ation method and Galerkinmethod. We 
an see that the two 
urves 
oin
ide for � � 1:2.For large values of � Petersen [58℄ shows that an asymptoti
 solution is available.In this 
ase the general formula be
omes� =r23 1�: (5.11)Figure 5.2 shows the e�e
tiveness fa
tor � plotted against the Thiele modulus �for values of � � 3. Observe that a

urate solutions are also obtained for largevalues of �. Consequently, the Galerkin formulation 
ombined with Control 1 givesadequate approximations for all values of �. The numeri
al �nite element solutionsfor di�erent values of the Thiele modulus are shown in Figure 5.3.5.2 Nonisothermal Rea
tion5.2.1 Dimensionless EquationsConsider a �rst-order, irreversible rea
tion in a 
atalyst se
tion 
 = [�L; L℄�[�L; L℄with rea
tion rate given by R = �a 
 exp(��E=R̂T );where T is the absolute temperature, �E is the a
tivation energy, R̂ is the gas
onstant, and a is 
onstant. The 
orresponding governing equations are:�
p�T�t + �
pu � rT � kr2T = a 
 exp(��ER̂T ) (5.12)�
�t + u � r
�Dr2
 = �a 
 exp(��ER̂T ); (5.13)with initial 
onditions T (x; y; 0) = ~h1(x; y)
(x; y; 0) = ~h2(x; y); (5.14)54
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tiveness fa
tor as a fun
tion of Thiele modulus for 
ollo
ation methodand Galerkin method.
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Figure 5.3: Steady-state solution in 
atalyst for � = 0.2, 1.0, 2.0, 4.0 and 7.0.and boundary 
onditionsrT � n = r
 � n = 0 on �
1�krT � n = hg(T � ~T ) on �
2 (5.15)�Dr
 � n = kg(
� ~
) on �
2;where � is the density, 
p is the spe
i�
 heat, k is the thermal 
ondu
tivity, D is thedi�usivity, hg is the heat transfer 
oeÆ
ient, kg is the mass transfer 
oeÆ
ient, n isthe unit outward normal, and �
 = �
1 [ �
2 is the boundary of the domain.The equations 
an be s
aled as follows: x� = xL , y� = yL , u� = u tsL , v� = v tsL ,
� = 

0 , T � = TT0 , and t� = tts . Substituting these relations into (5.12), (5.13), (5.14)and (5.15), we obtain the dimensionless unsteady equations for the nonisothermalproblem �T�t + u � rT � 1M1r2T = �2
�M1 exp(
(1� 1T )) (5.16)�
�t + u � r
� 1M2r2
 = ��2
M2 exp(
(1� 1T )); (5.17)with initial 
onditions T (x; y; 0) = h1(x; y)
(x; y; 0) = h2(x; y); (5.18)
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and boundary 
onditionsrT � n = r
 � n = 0 on �
1�rT � n = Nu2 (T � g1(t)) on �
2 (5.19)�r
 � n = Sh2 (
� g2(t)) on �
2;where we drop the supers
ript * for simpli
ity, M1 = �
pL2=kts, M2 = L2=Dts,Nu = hg2L=D is the Nusselt number, Sh = kg2L=D is the Sherwood number,� = pk0L2=D is the Thiele modulus, and 
 = [0; 1℄ � [0; 1℄ is the dimensionlessse
tion. Here k0 = a exp(�
). The dimensionless variables 
 and � are de�ned as
 = �ER̂T0 ;� = (��HR)
0DkT0 ;where ��HR is the heat of rea
tion.5.2.2 Nonisothermal Rea
tion on a Catalyst Se
tionFirst we solve the steady-state nonisothermal 
ase under 
onditions in whi
h theNusselt and Sherwood numbers are very large [33℄. The boundary 
onditions arerT � n = r
 � n = 0 on �
1T = 1:1 on �
2
 = 1:0 on �
2where �
2 is the right side of the unit square 
, and �
1 = �
��
2. The fun
tionsh1 and h2 in (5.18) de�ning the initial 
onditions areh1(x; y) = h2(x; y) = 1 + sin(�x)sin(�y):The velo
ity �eld is given by the numeri
al solution of the Stokes 
ow [50, 64, 14℄,de�ned by the transient Navier-Stokes equations (2.7) and (2.8) subje
t to pres
ribedboundary 
onditions (2.14). The analyti
 solution for this problem is de�ned by thesmooth velo
ity 
omponentsu(x; y) = 100x2(1� x)2(2y � 6y2 + 4y3)v(x; y) = 100y2(1� y)2(�2x+ 6x2 � 4x3)and the pressure �eld is p(x; y) = 100(x2�y2). The steady-state solution is obtainedwhen the velo
ity �eld at two di�erent timesteps rea
hes a di�eren
e less than an57



input toleran
e. The vis
osity is � = 0:01, and we take a penalty parameter of� = 10�8. This velo
ity �eld is divergen
e free and satis�es the no-slip 
onditionu = 0 on the entire boundary of the square �
. To �nd the velo
ity �eld we usebiquadrati
 basis fun
tions in a 4�4 grid with 2�2 point integration of the penaltyterm. Figure 5.4 shows the velo
ity for the Stokes problem.
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Figure 5.4: Velo
ity for the Stokes 
ow.Here, the approximate solution for the Stokes problem is 
al
ulated and thevelo
ities are substituted into the transport equations, whi
h are solved for 
on
en-tration and temperature. We 
al
ulate the steady-state approximate solution forthe Thiele modulus � = 0:8, � = 0:6, 
 = 20, M1 = 176, M2 = 199, and a grid with8� 8 bilinear elements. We assume that the steady-state o

urs when the following
ondition is satis�ed k(Tm+1 �Tm) + (
m+1 � 
m)kkTm+1 + 
m+1k < �where m denotes the timestep index and k � k denotes Eu
lidean norm. The initialtime step size is 10�3, and the minimum and maximum time step sizes allowed are10�3 and 10, respe
tively. A toleran
e � = 10�4 was supplied for 
hanges in nodaltemperature and 
on
entration. We need to start with this small timestep to obtain
onvergen
e of Newton's method in the transport equation.We perform parametri
 studies of the PID 
ontroller for values around those usedby Gustafsson et al. [39℄ and also by Coutinho and Alves [24℄. We 
hoose valuesof kP ranging from 0.03 to 0.20, kI from 0.03 to 0.40, and kD from 0.003 to 0.02.We also study the 
ase where kP = kD = 0. Table 5.1 shows for di�erent values of58



the PID parameters the number of time iterations, ntstep, the number of reje
tedsteps, nreje
, the number of Newton iterations, newt, and the 
omputational e�ort,
effort, de�ned as newt divided by the number Newton iterations obtained usinga �xed timestep size of 10�3. We need about 800 Newton iterations to obtain thesolution applying the PID 
ontrol, in 
ontrast with 2998 Newton iterations (
ase 10)when a �xed timestep is used. We have in this example a 3.75 times improvementin the 
omputational e�ort to 
ompute the solution within the same a

ura
y.
ase kP , kI , kD ntstep nreje
 newt 
effort1 0.075 0.175 0.01 240 7 800 0.272 0.1 0.3 0.015 232 11 792 0.263 0.05 0.05 0.005 282 1 897 0.304 0.1 0.16 0.011 242 7 807 0.275 0.06 0.13 0.008 247 6 819 0.276 0.08 0.216 0.0116 237 9 800 0.277 0.2 0.4 0.02 229 14 791 0.268 0.03 0.03 0.003 315 0 981 0.339 0.0 0.175 0.0 241 8 807 0.2710 No Control 1101 0 2998 111 Winget & Hughes 264 8 876 0.29Table 5.1: Results for the PID timestep 
ontroller and Winget and Hughes approa
hThe PID 
ontrol is robust sin
e the number of Newton iterations does not 
hangemu
h for di�erent 
hoi
es of PID parameters. We 
an also observe that the numberof reje
ted timesteps is relatively small. The results for the Winget and Hughesapproa
h [79℄ are presented in 
ase 11. The PID 
ontroller �nds the steady-statesolution a little faster than the Winget and Hughes approa
h. Figure 5.5 and 5.6show respe
tively the timestep size against time for 
ase 1 and the Winget andHughes approa
h. We observe that the PID 
ontrol produ
es a very smooth 
urve,while in 
ontrast, the Winget and Hughes approa
h yields a 
urve with several steps.The initial temperature pro�le and the steady state solution are shown in Figure5.7. Note that all the steady-state solutions are indistinguishable.Next we solve the unsteady problem (5.16), (5.17), (5.18) and (5.19) with M1 =176, M2 = 199, Nu = 55:3, Sh = 66:5, 
 = 20, � = 0:6, � = 0:8, g1(x) = 1:1 andg2(x) = 1:0. The velo
ity �eld is the same 
al
ulated in the steady-state problem(Figure 5.4). The approximate solutions are 
al
ulated using a grid with 8�8 bilinearelements. We �rst obtained the approximate solution for a 
onstant timestep sizeof �t = 0.05. Figure 5.8 shows the transient temperature distribution in a 
atalyst59
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se
tion at times t = 0, 1, 5, 10 and 20.For a �xed time equal to 20, we 
ompare approximate solutions using the PID
ontroller and Winget and Hughes approa
h. We start with a timestep size of 0.05,and we allow minimum and maximum time steps of 0.05 and 5, respe
tively. Thesolutions are obtained with a toleran
e of 10�6 for the 
hanges in nodal temperatureand 
on
entration. The PID parameters are kP = 0:075, kI = 0:175 and kD = 0:01.Table 5.2 shows the results for ea
h 
ase studied. We obtain the solution with423 Newton iterations using the PID 
ontroller, and we need 1223 Newton iterationswith a �xed timestep of 0.05. Thus, we have obtained this solution 2.89 times fasterwith no a

ura
y loss. Here we also obtain the solution using the PID 
ontroller alittle faster than using Winget and Hughes approa
h. Figure 5.9 and 5.10 show thetimestep size against time for the PID 
ontroller and Winget and Hughes approa
h,respe
tively. Observe that the PID 
ontrol produ
es a very smooth 
urve, while theWinget and Hughes approa
h yields a 
urve with several steps.
ase ntstep nreje
 newt 
effortNo Control 400 0 1223 1PID Control 104 1 423 0.34Winget&Hughes 112 1 433 0.35Table 5.2: Results for the transient 
atalyst problem with timestep 
ontrol and Wingetand Hughes approa
h.
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Figure 5.8: Evolution of temperature solution using bilinear elements on a 8�8 grid
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Chapter 6Rayleigh-Benard-MarangoniProblemsThe obje
tive of this 
hapter is to 
ompare the eÆ
ien
y of Control 1 and Control 2with the s
heme given by Winget and Hughes in [79℄. In parti
ular, we want to studythe performan
e of the 
ontrollers to solve Rayleigh-Benard-Marangoni problems.We perform numeri
al experiments for di�erent parameters of Rayleigh-Benard andRayleigh-Benard-Marangoni 
ows and 
ompare our results with those found in theliterature.6.1 Dimensionless EquationsNatural 
onve
tion of an in
ompressible 
uid 
an be driven by buoyan
y for
es dueto temperature gradients and thermo
apillary for
es 
aused by gradients in the sur-fa
e tension [6, 18, 29, 80℄. When buoyan
y is the dominant 
omponent in drivingthe 
ow, they are termed Rayleigh-Benard 
ows. When both buoyan
y and thermo-
apillary e�e
ts provide the dominant for
es driving the 
ow, the asso
iated 
oupled
ow and transport problem is termed the Rayleigh-Benard-Marangoni problem. Weare parti
ularly interested in the intera
tion of buoyan
y and thermo
apillary for
es,and their e�e
ts in a mi
rogravity environment where buoyan
y is small. However,the work is equally important for thin 
uid layers in a normal gravity environment.The e�e
t of buoyan
y is in
luded as a temperature dependent body for
e termin the momentum equations by means of the Boussinesq approximation [38℄. Theapplied temperature �eld indu
es a surfa
e tension equivalent to the appli
ation ofa shear stress at the horizontal free surfa
e. The velo
ity �eld enters the 
onve
tiveterm in the heat transfer equation. The equations des
ribing Rayleigh-Benard-Marangoni 
ows are the 
oupled Navier Stokes equations for vis
ous 
ow of an65



in
ompressible 
uid and the heat transfer equation,�u�t + u � ru� �r2u+ 1�rp = �T (T � T0)g in 
� I (6.1)r � u = 0 in 
� I (6.2)�
p�T�t + �
pu � rT �r � (krT ) = 0 in 
� I (6.3)where u is the velo
ity, p is the pressure, 
 is the 
ow domain, T is the temperature,T0 is the referen
e temperature, � is the kinemati
 vis
osity, � is the density, �T isthe thermal 
oeÆ
ient, g is the gravity ve
tor, 
p is the spe
i�
 heat, k is the thermal
ondu
tivity, and I = [0; �t℄ is the time interval.We assume that there is no slip at the solid walls �
1, i.e., u = uw where uw isthe spe
i�ed wall boundary velo
ity. Temperature, 
ux or mixed thermal boundary
onditions may be applied. The Marangoni problem involves a shear stress boundaryin the free surfa
e �
2. The surfa
e stress, �fb, tangent to the free boundary is equalto the gradient in the surfa
e tension �,�fb = �ru � n = r� � � = ��T rT � � (6.4)where �T = ���T is determined empiri
ally for a given 
uid and � is a unit tangentve
tor. We assume here that � varies linearly with T , so �T is a 
onstant for a given
uid.The equations (6.1), (6.2) and (6.3) are s
aled as follows: x� = xL , y� = yL ,t� = t�L2 , u� = uL� , v� = vL� , T � = T�T0�T and p� = (p�)L2�2 where �T is a s
aling fa
tor.Substituting these relations into (6.1), (6.2) and (6.3), we obtain the dimensionlessformulation of the equations�u�t + u � ru�r2u+rp = RaPrTg in 
� I (6.5)r � u = 0 in 
� I (6.6)�T�t + u � rT � 1Prr2T = 0 in 
� I (6.7)where we dropped the supers
ript * for simpli
ity. The non-dimensional 
onstantsare: the Rayleigh number Ra = �T�TgL3�� and the Prandtl number Pr = �� , where� = k�
p is the thermal di�usivity. The boundary 
ondition on the free surfa
e (6.4)be
omes ru � n = �MaPr rT � � (6.8)where Ma = �T�TL��� is the Marangoni number. Equations (6.5), (6.6) and (6.7)
onstitute a 
oupled system of equations to be solved for velo
ity, pressure andtemperature. The �nite element formulation and the 
oupled algorithm to solve theproblem are des
ribed in Chapter 2. 66



6.2 Rayleigh-Benard FlowsThe 
lassi
 Rayleigh-Benard problem 
orresponds to 
ow between two horizontalplates where the top plate is held at a 
onstant (
ool) temperature and the bot-tom plate is held at a higher 
onstant temperature. At 
riti
al Rayleigh numberthe heated 
uid near the bottom plate be
omes less dense and begins rise whilethe (
ool) 
uid near the top is more dense and des
ends. This leads to 
ir
ular
onve
tion 
ells in two dimensions. If the plate is removed from the upper sur-fa
e, then the thermo
apillary surfa
e tra
tion due to temperature gradients on thefree surfa
e also be
omes important. This is a dire
t 
onsequen
e of the depen-den
e of surfa
e tension on temperature (Marangoni e�e
t). Now, both buoyan
yand thermo
apillary e�e
ts may be important in driving the 
ow for this 
lassi
alRayleigh-Benard-Marangoni problem.The �rst 
ase studied involves natural 
onve
tion in a unit square 
 = [0; 1℄�[0; 1℄with temperatures T = 1, T = 0 on the left and right walls respe
tively, adiabati
 topand bottom wall (no free surfa
e), with Pr = 0:71 and di�erent Rayleigh numbers,Ra, of 103, 104 and 105. The 
omputed Nusselt number at the left wall,Nu0 = Z 10 qdy; (6.9)where q is the heat 
ux, and the stream fun
tion at the midpoint,  mid, are 
om-pared to ben
hmark 
omputations given by Davis in [31, 30℄. The ben
hmark 
asereports the quantities to four signi�
ant �gures, and the reported a

ura
y is within1 per 
ent for all Rayleigh numbers. Davis and Carey in [27℄ obtain parallel mul-tilevel solution of this problem with superior a

ura
y due to high-p �nite elementsimulations. We 
ompare approximate solutions using �xed timestep sizes, Control1, Control 2, the Winget and Hughes approa
h (W&H) and the ben
hmark solution,as shown in Table 6.1.The approximate velo
ities and temperature are 
al
ulated using 9-node isopara-metri
 quadrilaterals elements in a uniformmesh of 16�16 elements at Ra = 103; 104and 32� 32 elements at Ra = 105. The initial timestep size in all 
ases is 
hosen toallow 
onvergen
e of the su

essive iterations at the beginning of the pro
ess. Thatis, if we start with a timestep size greater than the initial timesteps 
hosen here,the su

essive approximation iterations failed to 
onverge after a few time steps.We start with a timestep size of 0.01 at Ra = 103; 104 and 0.001 at Ra = 105. Weassume that the steady-state o

urs when the kineti
 energy at two di�erent timesteps rea
hes a relative di�eren
e less than a given toleran
e, tolst. We establish67



that the steady-state o

urs when tolst = 10�4 at Ra = 103 and tolst = 10�3 atRa = 104; 105.Table 6.1: Comparison of spe
i�
 results to ben
hmark 
aseFixed �t Control 1 Control 2 W&H Ben
hmarkRa Nu0  mid Nu0  mid Nu0  mid Nu0  mid Nu0  mid103 1.118 1.175 1.119 1.175 1.117 1.174 1.119 1.175 1.117 1.174104 2.255 5.067 2.236 5.077 2.246 5.064 2.249 5.066 2.238 5.071105 4.550 9.134 4.518 9.036 4.553 9.120 4.503 8.925 4.509 9.111Table 6.2 
ontains the per
entage relative di�eren
es between the values 
al
u-lated by ea
h 
ase studied and the 
orresponding values of the ben
hmark solutionfor di�erent Rayleigh numbers. The results are in good agreement for all 
ases, withper
entage errors no more than 1% in all quantities for Control 1 and Control 2, seeTable 6.2. However, observe that the di�eren
es in
rease as Ra in
reases due to thegrowing diÆ
ulty of the problem. The Winget and Hughes approa
h also produ
esgood results with per
entage errors no more than 2% in all quantities. The streamfun
tion 
ontours and temperature 
ontours for Ra = 103, Ra = 104 and Ra = 105are shown in Figure 6.1 and Figure 6.2, respe
tively. The 
ontour values are thesame as in Davis [31℄ and show ex
ellent agreement with his results.Table 6.2: Per
entage errorsFixed �t Control 1 Control 2 W&HRa Nu0  mid Nu0  mid Nu0  mid Nu0  mid103 0.1 0.1 0.2 0.1 0.0 0.0 0.2 0.1104 0.8 0.1 0.1 0.1 0.4 0.1 0.5 0.1105 0.9 0.3 0.2 0.8 1.0 0.1 0.1 2.0Now we 
ompare the 
omputational e�ort to 
al
ulate the solution for ea
h 
asestudied. The 
omputational e�ort is measured by the total number of su

essiveapproximations needed to 
al
ulate the velo
ity �eld using one of the approa
hesdivided by the number of su

essive approximations obtained using a �xed timestepsize. For ea
h 
ase, we 
al
ulate the number of time iterations, ntstep, the numberof reje
ted steps, nreje
, the total number of su

essive approximations, nsa, andthe 
omputational e�ort, 
effort. The PID parameters in all 
ases are kp = 0:075,ki = 0:175 and kd = 0:01 [75, 74, 71℄. Sin
e Control 2 uses the 
hange in the kineti
68



Figure 6.1: Stream fun
tions 
ontours for Ra = 103 (equally spa
ed (0.1174) between-1.0566 and 0), Ra = 104 (equally spa
ed (0.5071) between -4.5639 and 0) and Ra = 105(equally spa
ed (0.9607) between -9.507 and 0).
69



Figure 6.2: Temperature 
ontours for Ra = 103, Ra = 104 and Ra = 105 (equally spa
ed(0.1) between 1 and 0).
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energy to obtain the timestep size, we show in Figure 6.3 the nondimensional kineti
energy for Ra = 103, Ra = 104 and Ra = 105.

Figure 6.3: Nondimensional kineti
 energy plotted as a fun
tion of time for Ra = 103,Ra = 104 and Ra = 105.The results for Ra = 103 are shown in Table 6.3. We start with a minimumtimestep size of 0.01, and we allow a maximum timestep size of 0.1. We de�nea toleran
e of 0.1 for 
hanges in nodal velo
ities and temperature. The toleran
e
orresponding to the normalized 
hanges in kineti
 energy is equal to one. Thereferen
e rate of 
onvergen
e is equal to 0.2. We 
an observe in Table 6.3 thatthe number of su

essive approximations ne
essary to 
al
ulate the approximatesolutions is redu
ed for all approa
hes. However, Control 2 presents the best results.We obtain the solution with 24 su

essive iterations using Control 2, and we need 64iterations with the �xed timestep size. Thus, we are able to 
al
ulate the solution2.4 times faster using Control 2 without any signi�
ant loss of a

ura
y. For Control2, the 
hoi
e of the timestep is dominated by the 
hanges in the kineti
 energy inall iterations.Figure 6.4 shows the timestep size and the number of su

essive approximationsagainst time using Control 1, Control 2 and the Winget and Hughes approa
h forRa = 103. In this example, the kineti
 energy is the most suitable parameter to
hoose the timestep, sin
e Control 2 gives the best result. It is worthwhile notingalso that Control 2 begins to a
t before any other approa
h and, after a few steps,71



Table 6.3: Computational e�ort for the natural 
onve
tion problem, Ra = 103.Ra = 103 ntstep nreje
 nsa 
effortFixed �t 24 0 58 1Control 1 11 0 32 0.55Control 2 8 0 24 0.41Winget&Hughes 15 0 41 0.71provides a timestep equal to the maximum stepsize allowed, 0.1.Table 6.4 shows the results for Ra = 104. We start with a minimum timestep of0.01, and we allow a maximum timestep size of 0.1. We de�ne toleran
es of 0.2, 0.1and 0.5 for 
hanges in nodal velo
ities, temperature and kineti
 energy, respe
tively.The referen
e rate of 
onvergen
e is equal to 0.19. Here we also improve eÆ
ien
yfor all approa
hes, redu
ing the number of su

essive approximations ne
essary to
al
ulate the approximate solutions. Control 1 and Control 2 are equivalent interms of eÆ
ien
y. The 
hoi
e of the timestep in Control 2 is dominated by the
onvergen
e rate of the su

essive iterations, with only two time iterations limited bythe 
hanges in the kineti
 energy. Control 1, whi
h is based on 
ontrolling a

ura
y,gives timestep sizes larger than the ones 
al
ulated by Control 2, see Figure 6.5.Table 6.4: Computational e�ort for the natural 
onve
tion problem, Ra = 104.Ra = 104 ntstep nreje
 nsa 
effortFixed �t 14 0 56 1Control 1 10 0 47 0.84Control 2 10 0 45 0.80Winget&Hughes 12 0 52 0.93Table 6.5 shows the results for Ra = 105. We start with a minimum timestepsize of 0.001, and we allow a maximum timestep size of 0.1. We de�ne a toleran
eof 0.1 for 
hanges in nodal velo
ities and temperature. The toleran
e 
orrespondingto the normalized 
hanges in kineti
 energy is equal to one. The referen
e rateof 
onvergen
e is equal to 0.25. Now, Control 2 is dominated by the 
hanges inthe kineti
 energy, with only 4 iterations 
al
ulated a

ording to the 
onvergen
erate of the su

essive iterations. All approa
hes redu
e the number of su

essiveapproximations to obtain the solution, but Control 2 gives the best result. Thetotal number of su

essive approximations obtained by Control 1 
an be redu
ed ifwe de�ne large toleran
es for 
hanges in nodal velo
ities and temperature. However,72



the results will loose a

ura
y, yielding errors greater than 1% as the 
ase of theWinget and Hughes approa
h (see Table 6.2).Table 6.5: Computational e�ort for the natural 
onve
tion problem, Ra = 105.Ra = 105 ntstep nreje
 nsa 
effortFixed �t 108 0 363 1Control 1 48 5 260 0.72Control 2 39 0 189 0.52Winget&Hughes 48 3 244 0.67Figure 6.6 shows the timestep size and the number of su

essive approximationsagainst time using Control 1, Control 2 and the Winget and Hughes approa
h forRa = 105. Sin
e the size of the timestep in
reases signi�
antly when time progressfor Control 1 and the Winget and Hughes approa
h, the number of su

essive it-erations to obtain 
onvergen
e of the nonlinear pro
ess at ea
h 
orresponding timealso in
reases. This fa
t is responsible for the larger number of su

essive iterations
al
ulated by these two approa
hes when 
ompared with Control 2.In the se
ond experiment the two horizontal walls are �xed at di�erent temper-atures. In the previous example involving lateral walls at di�erent temperatures,even small temperature di�eren
es lead to a temperature-driven 
onve
tion. In 
on-trast with the 
on�guration of the previous example, in this 
ase the temperaturedi�eren
e must ex
eed a 
riti
al Rayleigh number value before any 
ow sets in. A
-
ording to Bejan in [5℄, natural 
onve
tion will develop only for Rayleigh numbersRa >� 1108. Moreover, the in
uen
e of the lateral walls (
arrying no slip 
ondi-tions) produ
es three-dimensional e�e
ts, and hen
e the 
ow may be approximatedas two-dimensional in only two 
ases: if the lateral walls are far enough apart thattheir e�e
t may be negle
ted and if the depth of the horizontal walls is very small(Hele-Shaw 
ow).We investigate the formation of Rayleigh-Benard 
ells in this example treatingthe 
ow in a two-dimensional simulation. We 
onsider the 
ow in an air-�lledre
tangular 
ontainer with aspe
t ratio 4:1 (length:width), insulated lateral walls,Pr = 0:72 and Ra = 30000. The temperatures on the bottom surfa
e and top surfa
eare T = 1 and T = 0, respe
tively. The approximate velo
ity and temperature are
al
ulated using biquadrati
 shape fun
tions with a grid of 32 � 8 elements, andthe 
ontrol algorithms for timestep sele
tion. We 
onsider the steady-state problemand the 
omputed velo
ity �eld, streamlines and temperature 
ontours are shown73



Figure 6.4: Timestep variation (top) and number of su

essive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approa
h for Ra = 103.
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Figure 6.5: Timestep variation (top) and number of su

essive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approa
h for Ra = 104.
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Figure 6.6: Timestep variation (top) and number of su

essive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approa
h for Ra = 105.
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in Figure 6.7. There are six re
ir
ulation 
ells, and the results agree with thoseobtained by Griebel, Dornseifer and Neunhoe�er in [38℄.Now, we assume that the steady-state is rea
hed when kUn � Un�1k < 3 �10�3 kUnk and kTn � Tn�1k < 10�3 kTnk. We set a toleran
e of 0.01 for 
hangesin nodal velo
ities and temperature and 0.8 for 
hanges in the kineti
 energy. Westart with a timestep size of 0.001, and we allow minimum and maximum time stepsof 0.001 and 0.5, respe
tively. This starting timestep is the largest for whi
h weobtained 
onvergen
e in the su

essive iterations. The referen
e rate of 
onvergen
eof nonlinear iterations is 
hosen equal to 0.35 in this example. The PID parametersare kp = 0:075,ki = 0:175 and kd = 0:01. Table 6.6 shows the 
omputational e�ortfor this problem 
al
ulated for ea
h 
ase studied.Table 6.6: Computational e�ort for the 
ow in a 
ontainer with aspe
t ratio 4:1.ntstep nreje
 nsa 
effortFixed �t 241 0 731 1Control 1 192 0 643 0.88Control 2 89 1 380 0.52Winget&Hughes 193 0 644 0.88As we 
an see in Table 6.6, we obtain the solutions with a redu
ed number ofsu

essive approximation iterations using all the 
ontrollers. However, Control 2gives the smallest 
omputational e�ort. With a �xed timestep size of 0.001 we need731 iterations, and only 380 iterations when Control 2 is applied. Thus, the solutionis obtained 1.9 times faster using Control 2. In this example, Control 1 and theapproa
h used by Winget and Hughes are equivalents in terms of the 
omputationale�ort. Figure 6.8 shows the timestep size against time and the number of su

essiveapproximation iterations using Control 1, Control 2 and the Winget and Hughesapproa
h.6.3 Rayleigh-Benard-Marangoni FlowsThis numeri
al experiment involves buoyan
y for
es due to temperature gradientsand thermo
apillary for
es 
aused by gradients in the surfa
e tension. The obje
tiveis to 
ompare pure buoyan
y-driven 
ow with thermo-
apillary-driven 
ow. The 
owdomain and boundary 
onditions 
orrespond to those in the �rst example of theprevious se
tion (T = 1 and T = 0 on the left and right walls, respe
tively), ex
ept77



Figure 6.7: Ve
tor �eld, streamlines, and temperature 
ontours for the 
ow in a 
ontainerwith aspe
t ratio 4:1that the top is now a 
at free surfa
e. The Rayleigh number is 103, the Prandtlnumber is Pr = 0:71, and the problem is solved at di�erent Marangoni numbersMa. The approximate steady-state velo
ities and temperature are 
al
ulated usingbiquadrati
 elements in a uniform mesh with size h = 116 . Here we assume that thesteady-state o

urs when kUn+1�Unk < �u kUn+1k and kTn+1�Tnk < �T kTn+1k,where n denotes the timestep index, k � k denotes Eu
lidean norm, and �u and �Tare input toleran
es.First, we �nd solutions at Ma = 1, 100 and 1000 (see Figure 6.9). At Ma = 1,the e�e
t of the surfa
e tension is small and the streamlines are roughly 
ir
ular.The solution is similar in stru
ture to the 
lassi
 buoyan
y driven 
ow studied inthe �rst example, Figure 6.1. At Ma = 100, the e�e
t of the thermo
apillaryfor
e at the free surfa
e is more pronoun
ed. The streamlines are 
on
entrated nearthe top boundary. At Ma = 1000, the 
ow is being strongly driven at the topboundary as seen in similar experiments presented by Zebib, Homsy and Meiburg[80℄. Se
ond, we 
onsider the 
ase of a 
uid where the surfa
e tension a
ts in thedire
tion 
ontrary to the 
ow. This is the 
ase for 
ertain 
uids when inpuritiesare presented, see M
Lay and Carey in [61℄. Figure 6.10 shows the stream fun
tion78



Figure 6.8: Timestep variation (top) and number of su

essive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approa
h for the 
ow in a 
ontainerwith aspe
t ratio 4:1.
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ontours for Ma = �10 and Ma = �100. The 
ontours at Ma = �10 look similarto the solution at Ma = 1 due to the small thermo
apillary e�e
t. At Ma = �100,the surfa
e tension e�e
t is strong enough to reverse the 
ow on the top surfa
e andtwo 
ells are formed.To study the behavior of the PID timestep sele
tion in the se
ond problem, wesele
t the 
ase where Ma = 100. The steady-state solution is obtained at �u =10�3 and �T = 10�4. We start with a minimum timestep size of 0.001, and weallow a maximum timestep of 0.1. Solutions are obtained with toleran
es of 0.2and 0.1 for 
hanges in nodal velo
ities and temperature, respe
tively. The toleran
e
orresponding to the normalized 
hanges in kineti
 energy is equal to one. Thereferen
e rate of 
onvergen
e is equal to 0.2. Figure 6.11 shows the time evolutionof the nondimensional kineti
 energy for Pr = 0:71, Ra = 1000 and Ma = 100.Note that the kineti
 energy presents smooth os
illations, damped as the solutionprogresses towards the steady-state.As we 
an see in Table 6.7, we obtain the solutions with 57 su

essive approxi-mation iterations using Control 2. With a �xed timestep size of 0.001, we need 272iterations. Thus, the solutions are obtained 4.8 times faster using Control 2. Here,the 
hoi
e of the timestep in Control 2 is dominated by the 
hanges in the kineti
energy, with only three time iterations limited by the 
hanges in the 
onvergen
erate of the su

essive iterations. Figure 6.12 shows the timestep variation and thenumber of su

essive approximations against time using Control 1, Control 2 and theWinget and Hughes approa
h, respe
tively. We 
an observe that Control 1 yields asmoother sequen
e of time steps than the Winget and Hughes approa
h. However,these two approa
hes are equivalent in terms of eÆ
ien
y. Control 2 
al
ulates thesolutions with the smallest 
omputational e�ort.
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Figure 6.9: Stream fun
tion 
ontours for Ma = 1 (equally spa
ed (0.150625) between-1.32 and -0.115), Ma = 100 (equally spa
ed (0.206625) between -1.81 and -0.157) andMa = 1000 (equally spa
ed (0.4383) between -3.9234 and -0.417).

Figure 6.10: Stream fun
tion 
ontours forMa = �10 (equally spa
ed (0.143875) between-1.26 and -0.109) and Ma = �100 (equally spa
ed (0.133) between -0.71 and 0.354).81



Figure 6.11: Nondimensional kineti
 energy plotted as a fun
tion of time for Pr = 0:71,Ra = 1000 and Ma = 100 in a unit square.

Table 6.7: Computational e�ort for the Rayleigh-Benard-Marangoni problem, Pr = 0:71,Ra = 1000 and Ma = 100 in a unit square.Case ntstep nreje
 nsa 
effortFixed �t 118 0 272 1Control 1 23 0 75 0.28Control 2 13 0 57 0.21Winget&Hughes 25 0 80 0.29
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Figure 6.12: Timestep variation (top) and number of su

essive approximations (bottom)using Control 1, Control 2 and the Winget and Hughes approa
h for Pr = 0:71, Ra =1000 and Ma = 100 in a unit square.
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Chapter 7Heat and Mass Transfer ProblemsIn this Chapter, we solve simultaneous heat and mass transfer by natural 
onve
tionabove horizontal surfa
es. Numeri
al results for di�erent problems with severalparameters that in
uen
e the 
onve
tion are obtained and 
ompared with reportedexperiments.7.1 Dimensionless EquationsWe study natural 
onve
tion with 
ombined buoyan
ies of heat and mass di�usionover horizontal surfa
es using a numeri
al experiment similar to the problem re-ported in [65℄. The geometry and 
oordinate system are shown in Figure 7.1, wherethe length of the horizontal surfa
e is L, the temperature of the lower heated sur-fa
e is Tw and the 
on
entration of the di�using spe
ies is 
w. We assume that the
ow is two-dimensional and laminar, the thermo-physi
al properties of the 
uid are
onstant, and vis
ous dissipation are negligible. Under these assumptions, the 
ow,thermal, and 
on
entration �elds adja
ent to the horizontal surfa
e 
an be des
ribedby the following equations,�u�x + �v�y = 0 (7.1)�u�t + u�u�x + v�u�y = � 1� �p�x + �(�2u�x2 + �2u�y2 ) (7.2)�v�t + u�v�x + v�v�y = � 1� �p�y + �(�2v�x2 + �2v�y2 )� g�T (T � T1) + g�
(
� 
1) (7.3)�T�t + u�T�x + v�T�y = �T (�2T�x2 + �2T�y2 ) (7.4)�
�t + u�
�x + v �
�y = �
( �2
�x2 + �2
�y2 ) (7.5)
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Figure 7.1: Geometry and 
oordinate system.in 
� I, where I = (0; �t℄ is the time interval, u is the horizontal 
omponent of thevelo
ity, v is the verti
al 
omponent of the velo
ity, 
 is the 
on
entration of thedi�using spe
ies, T is the temperature, p is the pressure, � is the density, � is thekinemati
 vis
osity, g is the gravitational a

eleration, �T is the 
oeÆ
ient of thermalexpansion, �
 is the volumetri
 
oeÆ
ient due to 
on
entration, T1 and 
1 are thereferen
e remote temperature and 
on
entration, �T is the thermal di�usivity and�
 is the spe
ies di�usion 
oeÆ
ient.In order to make the results more general in their appli
ability, the above equa-tions are s
aled using the following dimensionless variables:x� = xL; y� = yL; t� = tu0L ; u� = uu0 ; v� = vv0 ;u0 =pg�T�TL; T � = T � T1�T ; 
� = 
� 
1�
 ; p� = p�u20 (7.6)where �T = Tw�T1 and �
 = 
w�
1 are the initial temperature and 
on
entrationdi�eren
es, respe
tively. Substituting these relations into (7.1)-(7.5), we get thenondimensional form of mass 
onservation, two momentum, energy 
onservationand spe
ies 
onservation equations�u�x + �v�y = 0 (7.7)�u�t + u�u�x + v�u�y = � �p�x + 1pGr (�2u�x2 + �2u�y2 ) (7.8)�v�t + u�v�x + v�v�y = � �p�y + 1pGr (�2v�x2 + �2v�y2 )� T + N
 (7.9)�T�t + u�T�x + v�T�y = 1pGrPr (�2T�x2 + �2T�y2 ) (7.10)�
�t + u�
�x + v �
�y = 1pGrS
( �2
�x2 + �2
�y2 ) (7.11)85



where we have dropped the supers
ript * for simpli
ity. The non-dimensional
onstants are: the thermal Grashof number Gr = g�T�TL3�2 , the Prandtl numberPr = ��T , the S
hmidt number S
 = ��
 and the Buoyan
y number N = �
�
�T�T .In the momentum equation (7.9), the buoyan
y ratio N is the de�ning parameterfor the relative strengths between spe
ies and thermal buoyan
ies. The thermalbuoyan
y a
ts verti
ally upward. The dire
tion of spe
ies-generated buoyan
y for
edepends on the mole
ular weight of the spe
ies relative to the medium in whi
h itdi�uses. Boundary and initial 
onditions 
omplete the mathemati
al statement ofthe problem and will be dis
ussed in the next se
tion.7.2 Numeri
al ExperimentsWe solve the problem (7.7)-(7.11) assuming that the Prandtl and S
hmidt numbersare equal and as a 
onsequen
e, the thermal and 
on
entration �elds are identi
al.First, we 
onsider a numeri
al experiment for thermal 
onve
tion, i.e., N = 0, overa horizontal surfa
e with a 
entral plume, and our results are 
ompared to exper-imental data given by Ishiguro et al. in [47℄ and numeri
al 
al
ulations presentedby Sripada and Angirasa in [65℄. Then, we 
al
ulate the approximate solutions fora test problem shown by Sripada and Angirasa in [65℄ with N = �1.The arti�
ial boundary 
onditions, for the re
tangular domain 0 � x � 1; 0 �y � 0:5, are shown in Figure 7.2. At the lower wall (y = 0; 0 < x < 1), we assumeno slip 
ondition, u = v = 0, and temperature and spe
ies 
on
entration equal to1, T = 
 = 1, for the simulation. On the verti
al sides, we assume zero verti
alvelo
ity, v = 0, and zero 
ux for the horizontal velo
ity, �u�x = 0. In the in
ow, weimpose temperature and spe
ies 
on
entration equals to zero, Tin = 
in = 0, and inthe out
ow, we assume temperature and spe
ies 
on
entration 
ux equals to zero,�T�x jout = �
�x jout = 0. This 
an be a

omplished in the 
ode by testing for the sign ofthe appropriate velo
ity 
omponent on the boundary. On the open horizontal top(y = 0:5, 0 � x � 1), 
onditions similar to the verti
al sides are applied: u = 0,�v�y = 0, Tin = 
in = 0 and �T�y jout = �
�y jout = 0. For the initial 
onditions, we assumethat u = v = 0 and T = 
 = 0 for all values of x and y. This physi
ally means thatthe lower surfa
e is impulsively heated at t = 0, and the spe
ies 
on
entration issimultaneously in
reased to a 
onstant value on the surfa
e.In the �rst experiment, we solve the problem for thermal 
onve
tion, i.e., N = 0,over a horizontal surfa
e with a 
entral plume. Numeri
al 
al
ulations are 
arried86



Figure 7.2: Arti�
ial Boundary Conditions of the Problem.out for Pr = S
 = 7, and Gr = 0:2� 105. The approximate velo
ities, temperatureand spe
ies 
on
entration are 
al
ulated using 9-node isoparametri
 quadrilateralelements in a uniform mesh of 32� 16 elements, and we use a �xed timestep size of10�3. The steady-state is a
hieved when the nondimensional kineti
 energy at twodi�erent timesteps rea
hes a di�eren
e less than 10�4. The Nusselt number, de�nedas Nu = R 10 (��T�y )y=0 dx, is obtained and 
ompared with the numeri
al experimentsof [65℄ and the experimental data of [47℄, see Table 7.1. The agreement is found tobe good. NuSripada et al. [65℄ 12.22Ishiguro et al. [47℄ 12:8� 0:1Present 12.936Table 7.1: Comparison with experimental data [47℄ and numeri
al 
al
ulations [65℄ forN = 0 (Pr = S
 = 7, and Gr = 0:2 � 105).In the se
ond experiment, we assume Pr = S
 = 0:7, GrT = 105 and N =�1. The �nite element mesh and the timestep size are the same used in the �rstexample. When N = �1 for Pr = S
, the thermal and spe
ies buoyan
ies are equalin magnitude and opposite in dire
tion with thermal buoyan
y a
ting verti
allyupward, and the spe
ies buoyan
y opposing it. Hen
e, they 
an
el out ea
h other,resulting in no 
ow at all. When N � 0, the 
ow resembles that of pure thermal
onve
tion. Here the 
uid is entrained from the side, and partly from the top, asshown by the velo
ity �eld in Figure 7.3. The 
ow and transport are steady in this87



example. The isotherm 
ontours are shown in Figure 7.4, and we observe the 
entralplume whi
h rises verti
ally upward, as expe
ted. The patterns mat
h well with the
ow visualizations of Ishiguro et al. in [47℄ and 
ontour plots presented by Sripadaand Angirasa in [65℄.

Figure 7.3: Velo
ity �eld for Gr = 105, N = �1 and Pr = S
 = 0:7.

Figure 7.4: Isotherm 
ontours for Gr = 105, N = �1 and Pr = S
 = 0:7.We next solve the problem with adaptive timestepping using Control 1 and theapproa
h suggested by Winget and Hughes. We start with a minimum timestepsize of 0.001, and we allow a maximum timestep size of 0.1. We de�ne toleran
esof 0.001 and 0.01 for 
hanges in nodal velo
ities and temperature for any timestep,respe
tively. The PID parameters here are again kp = 0:075, ki = 0:175 and kd =88



0:01. First, we show in Figure 7.5 the nondimensional kineti
 energy plotted asa fun
tion of time for Gr = 105, N = �1 and Pr = S
 = 0:7. Then, we plotthe timestep variation in Figure 7.6. We observed that the 
ontroller allows thetimestep grows in a small time interval around t = 4, whi
h 
orresponds to theinterval where the kineti
 energy de
rease from its maximum value. Further, wemay note in Figure 7.6 that the maximum timestep is just 1.4 times the minimumspe
i�ed value. However, just after the instant whi
h the kineti
 energy starts togrow again, the timestep size assumes its minimum value, �t = 0:001, and it remains
onstant until the end of the 
al
ulations. We see that the 
ontroller 
hooses thetimesteps in 
onformity with the physi
al behavior of the solution.Table 7.2 shows the total number of time steps, ntstep, the number of reje
tedsteps, nreje
, the total number of su

essive approximations, nsa, and the to-tal number of Newton iterations, nnewt, when we solve the problem with a �xedtimestep size of 10�3 and adaptive timestepping using Control 1. We 
an observe inTable 7.2 that the number of su

essive approximations and Newton iterations ne
-essary to 
al
ulate the approximate solutions are redu
ed using Control 1, althoughthis improvement is not very signi�
ant. Numeri
al experiments indi
ate that the
omplexity of the problem requires small timesteps and toleran
es to have 
onver-gen
e of the su

essive approximation pro
ess in the Navier-Stokes equations. Thatis, the minimum timestep 
hosen is already the biggest value allowed to maintainthe user-spe
i�ed a

ura
y requirement and to obtain 
onvergen
e of the su

essiveapproximations. Parametri
 studies demonstrated that the problem was not relatedto the 
hoi
e of the PID parameters. We also solved the problem using the approa
hsuggested by Winget and Hughes. In this 
ase the timestep sele
tion algorithm didnot produ
e timestep sizes bigger than the minimum value, whi
h 
on�rms the over-all behavior of Control 1. Due to 
omputational and time limitations, we do notdis
uss in the present work more numeri
al experiments related to this appli
ationproblem.Table 7.2: Comparison results using �xed timestep size and Control 1.ntstep nreje
 nsa nnewtFixed �t 12001 0 36003 36003Control 1 11785 45 35835 35490
89



Figure 7.5: Nondimensional kineti
 energy for Gr = 105, N = �1 and Pr = S
 = 0:7.

Figure 7.6: Timestep variation using Control 1 forGr = 105, N = �1 and Pr = S
 = 0:7.
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Chapter 8Con
lusionsIn this dissertation we introdu
ed two adaptive timestep sele
tion s
hemes based onfeedba
k 
ontrol theory to in
rease the robustness of our �nite element formulationof 
oupled in
ompressible vis
ous 
ow and transient heat and mass transfer withsurfa
e e�e
ts in
luded. We solved 
hemi
al rea
tion systems, Rayleigh-Benard andRayleigh-Benard-Marangoni 
ows, heat and mass transfer by natural 
onve
tionfor several 
ase problems with di�erent parameters that in
uen
e the numeri
alexperiments. The �nite element 
ow formulation is based on a penalty Galerkinmethod and the transport equations utilize a SUPG formulation. The algorithmemploys an iteratively de
oupled s
heme. In the appli
ation problems, we wereinterested in obtaining steady-state and transient solutions using �xed timestepsizes and adaptive timestep sizes to test the eÆ
ien
y of our 
ontrollers to solve therelated 
lass of 
oupled problems. We also 
ompared our 
ontrollers with a timestepsele
tion algorithm found in the literature.A standard timestep sele
tion algorithm uses a estimate of the lo
al trun
ationerror to adjust the stepsize in a

ordan
e with a user-spe
i�ed a

ura
y requirement.This kind of algorithm normally performs quite well. However, there are di�erentialequations and integration methods for whi
h its performan
e is una

eptable. Thestepsize os
illates tremendously and the number of reje
ted steps is too high. Asa 
onsequen
e, mu
h 
omputation time is spent re
al
ulating reje
ted steps and
hanging the stepsize. To over
ome this potential problems, we investigated twoPID 
ontrol algorithms for timestep sele
tion based on 
ontrolling a

ura
y or the
onvergen
e rate of the su

essive iterations. We performed parametri
 studies fordi�erent values of PID parameters (kP , kI, kD) for two test problems, to verifywhether the PID 
ontroller is robust or not. Although feedba
k 
ontrol theoryprovides te
hniques to 
hoose PID parameters, robustness is required when a general91



�nite element method is used for a wide range of di�erent situations. The 
ontrollerwas found to be very robust, allowing us to �x the values of the PID parameters forall the numeri
al experiments performed subsequently.Another important issue is to assess solution a

ura
y when the timestep 
ontrolstrategies are applied to a spe
i�ed problem. For this investigation, we used avalidation problem for the transport equations and a Rayleigh-Benard problem, andresults were 
ompared with �xed timestep, the adaptive timestep s
heme suggestedby Winget and Hughes, and our PID 
ontrol approa
hes. Based on the numeri
alstudies, it was 
on
luded that we may �nd approximate solutions with a smallernumber of steps without any signi�
ant loss of a

ura
y. For example, in the se
ondproblem both approa
hes produ
ed good results with per
entage errors no morethan 1% for all 
ases. The 
ontrollers produ
ed a smooth variation of timesteps,while the Winget and Hughes approa
h yielded a 
urve with several steps. Theresults suggest that a robust 
ontrol algorithm is possible. Further, 
omputational
ost of the sele
tion pro
edures are negligible, sin
e they involve only storing a fewextra ve
tors, 
omputation of norms and evaluation of kineti
 energy.In Chapter 5 we demonstrated the eÆ
ien
y of our �rst 
ontrol to solve non-linear 
ow and rea
tive transport. We were interested in state-state and transientsolutions, and the performan
e of Control 1 to redu
e 
omputational 
osts. Wemeasured the 
omputational e�ort by the number of Newton iterations, and wewere able to obtain solutions with a mu
h smaller number of steps without anysigni�
ant loss of a

ura
y. For instan
e, we have a 3.75 times improvement in the
omputational e�ort to 
ompute the solution in the nonisothermal rea
tion problem.This very good improvement in the 
omputational e�ort is due to the very smalltimestep needed to obtain 
onvergen
e of the nonlinear iterations in the beginningof the transport 
al
ulations. In this example, eÆ
ient 
omputation of the trans-port pro
ess demands the use of a timestep sele
tion algorithm, sin
e the pro
ess ishighly nonlinear be
ause of an exponential 
hemi
al rea
tion term.The eÆ
ien
y of Control 2 was veri�ed in the numeri
al simulations of theRayleigh-Benard-Marangoni problems. In this 
ase, the 
omputational e�ort wasmeasured by the total number of su

essive approximations needed to 
al
ulate thevelo
ity �eld using one of the 
ontrollers divided by the number of su

essive ap-proximations obtained using a �xed timestep size. We observed that the numberof su

essive approximations ne
essary to 
al
ulate the approximate solutions is re-du
ed for all approa
hes, and Control 2 presented the best results. In some of the92



test problems, the 
hoi
e of the timestep in Control 2 was dominated by the 
on-vergen
e rate of the su

essive iterations, and in other 
ases by the 
hanges in thekineti
 energy. However, in all 
ases the kineti
 energy appeared to be a suitableparameter to improve the timestep sele
tion when 
oordinated with the 
onvergen
erate 
ontrol of the nonlinear iterations.Numeri
al studies on simultaneous heat and mass transfer by natural 
onve
-tion above horizontal surfa
es were performed with �xed timestep sizes in Chapter7. Preliminary results obtained using Control 1 have shown that the problem re-quires very small timesteps to maintain the user-spe
i�ed a

ura
y requirement.The 
ontroller allows the timestep size to grow from the minimum value allowed,but redu
es the timestep to this value after some steps. After that, the 
ontrollerkeeps the timestep size to the minimum value until the steady-state is rea
hed. Para-metri
 studies demonstrated that the problem was not related to the 
hoi
e of thePID parameters. The timestep sele
tion algorithm suggested by Winget and Hughesdid not produ
e timestep sizes bigger than the minimum value, whi
h 
on�rms theoverall behavior of Control 1. Experiments indi
ate that the 
omplexity of the prob-lem requires small timesteps to have 
onvergen
e of the su

essive approximationpro
ess in the Navier-Stokes equations. However, more numeri
al experiments arene
essary to better understand the physi
s and the performan
e of the 
ontrollers.Future studies in
lude solving the 
oupling between Marangoni 
onve
tion anddouble di�usion 
onve
tion in a multi-
avity system with a moving free surfa
e. Im-portant pra
ti
al appli
ations are related to this type of problems, and we also needto investigate the performan
e of the 
ontrollers to solve them. For this study, weneed iterative solutions of the linear systems instead of the dire
t frontal solver useduntil now. Preliminary numeri
al studies with the GMRES method and the penaltyformulation indi
ated that another �nite element formulation for the Navier-Stokesequations may be more suitable to this 
lass of appli
ation problems. Another nat-ural extension of this work is the utilization of the 
ontrollers for timestep sele
tionin the �nite element simulations of 3D vis
ous 
ows involving heat transfer andsurfa
e tension e�e
ts. We also need to investigate partitioned analysis pro
eduresfor 
oupled systems to improve the eÆ
ien
y of the numeri
al 
al
ulations [12℄. Inthe partitioned solution approa
h, the solution is separately advan
ed in time overea
h partition 
hosen in a

ordan
e with physi
al or 
omputational 
hara
teristi
s.Finally, a related PID 
ontroller was developed by Valli, Catabriga and Coutinho in[77, 19℄ to sele
t the CFL 
ondition to a

elerate 
onvergen
e toward steady state93



for a lo
al-time-stepping strategy in 
ompressible gas dynami
 simulation.
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