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Abstract. This work investigates the use of control strategies for timestep selection and
convergence rate improvement of nonlinear iterative processes in the finite element solu-
tion of 2D wviscous flows problems involving heat transfer combined with surface tension
effects. The present solution method employs a decoupled scheme, where the finite flow
formulation is based on a penalty Galerkin method and the heat transfer computations use
a Galerkin formulation. We compare the efficiency of the control strategies for timestep
selection with another heuristic adaptive stepsize selection scheme. Numerical results
for representative Rayleigh-Benard-Marangoni problem confirm that the non-dimensional
kinetic energy could be a suitable parameter to improve the timestep selection when coor-
dinate with the convergence rate control of the nonlinear iterations.
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1 INTRODUCTION

When a thin horizontal layer fluid between two horizontal plates is heated from below,
a temperature gradient is generated across the plates. At a critical Rayleigh number,
circular convection cells set in - the heated fluid near the bottom begins to rise while the
cooler fluid near the top descends. Buoyancy is a dominant component in driving this
type of flow termed Rayleigh-Benard problem. If the plate is removed from the upper
surface, then the surface tension effects associated with temperature gradients on the free
surface become important. Now both buoyancy and thermocapillary effects provide the
dominant forces driving the flow for this classical Rayleigh-Benard-Marangoni problem.

To develop effective algorithms capable of high resolution transient flow and heat trans-
fer computations, we need improved techniques. For example, domain decomposition
strategies and parallel gradient-type iterative solution schemes have been developed and
implemented with success for 3-D Rayleigh-Benard-Marangoni flow calculations.! These
techniques permit making fundamental phenomenological flow studies at the grid reso-
lution necessary to represent the fine scale surface-driven phenomena. Also, with the
evolution of the methodology and its extension to more complex classes of coupled prob-
lems, there has been an increasing need for other enhancements such as adaptive grid
refinement and coarsening. Several adaptive timestepping selection strategies have been
studied as a means to provide stable accurate transient (and steady state) solutions more
efficiently.?5

In the numerical integration of ordinary differential equations by implicit timestepping
methods, a system of nonlinear equations has to be solved at every step. In general, it
is common to use fixed-point iterations or modified Newton iterations. In the present
work, we use fixed-point iterations given by successive approximations. The convergence
rate of the iterative methods depends on the stepsize,” and the computational efficiency
of the method can be measured by the total number of successive iterations to obtain the
final solution. To improve efficiency, diminishing computational costs, it is necessary to
control the convergence rate of the fixed point iterations.

The focus in our work is the use of control strategies for timestep selection and conver-
gence rate improvement of nonlinear iterative processes in the finite element solution of
2D viscous flows problems involving heat transfer combined with surface tension effects.
We compare the efficiency of the control strategies for timestep selection with another
heuristic adaptive stepsize selection scheme.? We also investigate the use of the non-
dimensional kinetic energy to improve the timestep selection when coordinated with the
convergence rate control of the nonlinear iterations.

We consider the transient flow of a viscous incompressible fluid as described by the
Navier-Stokes equations coupled to the heat transfer equation. The present algorithm
employs a decoupled scheme, where the momentum and continuity equations are solved
first, in each timestep, lagging the temperature in the forcing term. Then, the heat
transfer equation is solved with the computed velocities as input. The finite element
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flow formulation is based on a penalty Galerkin method to enforce the incompressibility
constraint, and the heat equation utilizes a Galerkin approach.

In the next section we briefly state the class of coupled viscous flow and heat trans-
fer problems under investigation, the finite element formulation and the solution ap-
proach. Then, we describe two timestep control algorithms based on controlling either
accuracy or the convergence rate of the successive iterations. Next, results of the clas-
sic Rayleigh-Benard problem and Rayleigh-Benard-Marangoni problem are compared for
fixed timestep, an adaptive timestep scheme found in the literature and our control ap-
proaches.

2 FORMULATION AND APPROXIMATION
2.1 Governing Equations

We consider the transient flow of a viscous incompressible fluid as described by the Navier-
Stokes equations coupled to the energy equation. Of particular interest in the present work
are 2-D Rayleigh-Benard flows and Rayleigh-Benard-Marangoni flows. The present algo-
rithm employs a decoupled scheme, where the Navier-Stokes equations are solved first, in
each timestep, lagging the temperature in the forcing term. Then, the energy equation is
solved with the computed velocities as input. A single timestep for all equations is adap-
tively chosen using the control strategies described in the next section. The finite element
flow formulation is based on a penalty Galerkin method to enforce the incompressibility
constraint. The heat transfer equation employs a Galerkin approach.
The Navier Stokes equations for viscous flow of incompressible fluids may be written
as
ou 1 .
a+u-Vu—uAu+;Vp = pr(T'—Ty)g inQ (1)
V-u = 0 in Q (2)

where (2 is the flow domain, u is the velocity, p is the pressure, 7" is the temperature,
v is the kinematic viscosity, p is the density, 5; is the thermal volume expansion, g is
the gravity vector, and 7Tj is the reference temperature. We assume that there is no slip
boundary conditions at the solid walls 0€2;, i.e., u = u, where u,, is the specified wall
boundary velocity. The Marangoni problem involves a shear stress boundary in the free
surface 0€)y. The surface stress, 745, tangent to the free boundary is equal to the gradient
in the surface tension o,

ou oT

Tip = Pbs— = O —— 3
fo =M ay T or ( )
where y is the viscosity, and oy = g—; is determined empirically for a given fluid. The

surface tension varies linearly with temperature, and we assume here that or is constant
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for a given fluid. The temperature of the fluid is governed by the energy transport equation
for negligible viscous dissipation

T
pcp%—t +pcu-VT =V - (EVT)=0 1in (4)

where u is the velocity, ¢, is the specific heat, and £ is the thermal conductivity. The
boundary conditions are as follows: T = T (z,y) (isothermal boundary) or & = 0 (adia-
batic boundary) on the solid walls 9Q;, and mixed conditions o 2L = h(T —T,) (Robin)
on the free surface 02y, where ay = é is the thermal diffusivity, A, is the heat transfer

coefficient for the medium, and 7 is the exterior temperature.

2.2 Finite Element Formulations

Introducing a finite element discretization and basis on €2, the direct approximation of
the penalized variational formulation of the Navier-Stokes equations®® reduces to: for
¢ > 0, find u, € V" satisfying the initial condition with u = u,, on 9Q; such that

a €
;h-whdx + /ug-vu;-whdx+/ VYU : Vwy, do
Q Qp Qp,

1

= / O'TVT - Wy, dS
o,

+ Br(T —Ty) g-wpdx for all wy, € V (5)
Qp

where I denotes reduced numerical integration, and e is the penalty parameter. This leads
to the following non-linear semidiscrete system of ordinary differential equations

1
MC;—I; +5(U) + VAU + —BU = b(T) 6)

To advance the solution from a specified initial state, we integrate implicitly using a
standard 6 method, so that at timestep (t,,tn41):
M (Un-l-l _ Un)
At

+ 0 [S(U"+1) + AU 4+ lBU"+1:|
€
1

where G = b(T) is evaluated using the previous temperature iterate. Here § = 1/2
which corresponds to the familiar Crank-Nicolson integrator. The nonlinearity resides
in the convective term s(U), which is linearized by successive approximations, s(U) ~
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s(Up_1)Uy = th u’;l_l - Vuf - vj, dz, with initial iterates given by the solution at the
previous step. Hence we have to solve a sequence of linear systems at each timestep.
Solutions of the resulting linear systems are obtained using a frontal solver.

To find approximate solutions for the transport problem corresponding to (4), we use
a traditional Galerkin finite element formulation. A weak variational statement may be
obtained by integration by parts of the diffusion term in a standard residual formulation,
and then using the Gauss divergent theorem. Assuming that convective and diffusive
effects are of same order, we may construct a semidiscrete Galerkin finite element method
introducing a spatial discretization and an appropriate finite element space for the ad-
missible functions. The finite element problem is to find T, € Hy" satisfying the initial
condition such that

o7,
/ (—hwh +u- VTh wp, + onTh . th) dr =0 (8)
q, Ot
for all w, € Hy", where o = % is the thermal diffusivity. The resulting semi-discrete
ODE system for the nodal vector T has the form
dT

N— +Cw)T+DT =0, (9)

which is integrated implicitly using the standard # method. This leads to the linear
algebraic system
N(T"! — T")
At

+ 0[C(u)T""" +DT"*"']
+ (1-6)[C(u)T"+DT" =0 (10)

to be solved for each timestep At. Here n denotes the timestep index. We use the Crank-
Nicolson scheme, § = 1/2, and a frontal solver to find solutions of the resulting linear
systems. In the next section we describe two possible strategies for timestep selection
based on controlling accuracy or the convergence rate of the successive iterations.

3 CONTROL ALGORITHMS

Many studies have been made to improve stepsize selection in numerical integration of
ordinary differential equations; e.g. in the finite element field we can find timestep selec-
tion strategies based on heuristic rules such as in Winget and Hughes? for transient heat
conduction. Gustafsson and Soderlind!® and Hairer and Wanner!! viewed the problem of
automatic timestep selection as examples of feedback control problems. This approach
was used by Coutinho and Alves® in their work on finite element simulation of miscible
displacements in porous media. Valli, Coutinho and Carey develop adaptive stepsize con-
trol strategies in finite element simulation of nonlinear flow and reactive transport,* and
coupled viscous flow and heat transfer.56



Andréa M. P. Valli, Alvaro L. G. A. Coutinho and Graham F. Carey

Most timestep schemes are based on controlling accuracy as determined by truncation
error estimates (e.g. Prediction-Modification-Correction). The objective of timestep se-
lection is to minimize the computational effort to construct an approximate solution of a
given problem in accordance with a desired accuracy. Hairer and Wanner!! showed that
stepsize selection can be viewed as an automatic control problem with a PID controller

defined as

€n— tol en_1>
Aty = (=) (=) (=) At (11)

€n €n €n€n—2

where tol is some input tolerance, e, is the measure of the change of the quantities of
interest in time t,,, and kp, kr and kp are the PID parameters. An estimate of the solution
change is compared with the specified accuracy requirement, and the result is fed back to
calculate the new time step. The controller tries to select the stepsize such that e, comes
as close as possible to the input tolerance, tol, along a smooth curve, see Figure 1.

tol

[

At Error
Controller Plant

Feedback

Figure 1: Stepsize selection viewed as a control problem.

In the present work, we consider two different ways to define the measure of the change
over a timestep of the quantities of interest, e,. First, we use the changes in nodal
velocities and temperature to compute e, taking,

€n, = max (e, er) (12)
where
€ ottt —un

- S L 13
€u tol, €u [unt]| (13)

er T T
_ _ 14
T e T -

where tol, and tolr are user supplied tolerances corresponding to the normalized changes

in velocities and temperature, respectively. Second, we define e, computing changes in
* 2 * 2
the nondimensional kinetic energy given by K = fQ Wdaﬁdy, where uv* and v* are

the nondimensional velocities components. Now e,, is defined by

Kn—|—1 — Kn
€k = &= — X7 (15)

_ fk
€n |Kn+1‘

N tOlK’
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where tol is a given tolerance. The nondimensional kinetic energy is a suitable parameter
for monitoring the behavior of the fluid as time progresses. For example, we can say that
the steady-state occurs when the kinetic energy at two different time steps reaches a
difference less than an input tolerance.

In the numerical integration of the Navier-Stokes by the implicit Crank-Nicolson method,
a system of nonlinear equations has to be solved at every step. In the present work we
use fixed-point iterations given by successive approximations. The convergence rate of
the iterative method depends on the stepsize, and the computational efficiency of the
method can be measured by the total number of successive iterations to obtain the final
solution. To improve efficiency, diminishing computational costs, it is necessary to control
the convergence rate of the fixed point iterations.

Gustafsson and Séderlind” establish a model for controlling the convergence rate of
the iterative method that relates the convergence rate to the stepsize. Assuming that the
stepsize is limited by the convergence rate of nonlinear iterations, the new stepsize should
be chosen as

Q

ref
At, 16
: (16)

Atn—i—l =

where a,¢f is a reference rate of convergence and « is an estimated rate of convergence.
Now the controller tries to keep the estimated convergence rate as close as possible of a
reference value. We must find which is the convergence rate, a,.s, the controller aim for
to give the most efficient integration. In general, any value 0.2 < a,.; < 0.4 would be
acceptable, and a,.; ~ 0.2 gives performance near to optimal.” The estimated rate of
convergence is calculated using three consecutive iterates, u,_i, u,, and u,,1, as follows

0 = max @, = max —||un+1 ~ U]

. (17)
O P |

It is necessary to coordinate the convergence control algorithm (16) with the stepsize
control strategy (11) so that efficiency is maintained.

We propose two timestep control algorithms based on controlling accuracy or the con-
vergence rate of the successive iterations. The first control uses only the PID control for
timestep selection, (11), with changes in velocities and temperature. The Control 1 is

defined by
kp kr 2\ kp
€n_1 tol €n_1
Nty = — At, 1
i ( €n ) (en) (enen—2> (18)

e, = max (ey, er), (19)

where

and At,,, represents the new timestep size. The definition of e, and er is given by equa-
tions (13) and (14). In the second control, the size of the timestep is limited by the changes

7
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in the kinetic energy or by the rate of convergence of the successive approximations. We
take the minimum between the two values. The Control 2 is given by

Aty = min(At,, At,), (20)
where
At, = 2refag (21)
o
kp kr 2 \ kp
e tol e
At, = (e 1) (i) (e ! ) Aty (22)
€n €n €En€n—2
with
i . _ K™ - K|
n = , = 23
= Yolg K (K] (23)

Experimental studies will be given in the next section showing the efficiency of the two
controls, (18) and (20). Comparative studies between the two controls will also be carried
out for a representative test problem for Rayleigh-Benard-Marangoni flows.

4 NUMERICAL RESULTS AND DISCUSSIONS

Buoyancy and thermocapillary surface traction due to temperature gradients on the free
surface provide the dominant forces driving 2-D Rayleigh-Benard-Marangoni flows. Buoy-
ancy enters the momentum equation as a body force term, and the effect of the thermo-
capillary surface tensions enters as an applied shear stress. The dimensionless equations
describing the Rayleigh-Benard-Marangoni flows are

ou Ra
5 T U Vu-Au+ Vp P18 (24)
V.ou = 0 (25)
oT 1
VT — —V2T = 2
VT = =V 0 (26)

where Ra = %ﬂ’glﬁ is the Rayleigh number, Pr = Z is the Prandtl number, AT is
the temperature difference for flows with heated or cooled walls and L is a characteristic
length scale of the flow. The equations were scaled using the following dimensionless

: . ¥ _ T x Y * __ tv x _ ul x _ vl x _ 1'—Tp *_QL_2
variables: z* = 7, y* = ¥, t* = uwt =t ot =2 T = 250 and p —(p)u2.For

2
convenience, we drop the superscript *. The non-dimensional boundary condition on the
free surface becomes

ou B Ma 0T

77 2
oy  Pr oz’ (27)
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where Ma = "Tpﬁ—aTL is the Marangoni number. Equations (24), (25), (26) and (27) con-
stitute a coupled system of equations to be solved for velocity, pressure and temperature
using the numerical scheme described in section 2.2.

The first case studied involves natural convection in a unit square with temperatures
T =1, T = 0 on the left and right walls respectively, adiabatic top and bottom wall (no
free surface), with Pr = 0.71 and different Rayleigh numbers, Ra, of 103, 10* and 105.
The computed Nusselt number at the left wall,

1
Nug = / qdy, (28)
0

where ¢ is the heat flux, and the stream function at the midpoint, 1,,,4, are compared
to benchmark computations.'? It is believed that this benchmark solution is in error by
no more than 1 per cent for all Rayleigh numbers. We compare approximate solutions
using fixed timestep sizes, Control 1, Control 2, the Winget and Hughes approach and
the benchmark solution.

The approximate velocities and temperature are calculated using 9-node isoparametric
quadrilaterals elements in a uniform mesh of 16 x 16 elements at Ra = 103, 10* and 32 x 32
elements at Ra = 105. We assume that the steady-state occurs when the kinetic energy at
two different time steps reaches a relative difference less than a given tolerance, toly;. The
initial timestep size in all cases is chosen to have convergence of the successive iterations
at the beginning of the process. If we start with a timestep size greater than the initial
timestep defined below, the successive approximation iterations failed to converge after a
few time steps. The results are shown in Table 1.

Table 1: Comparison of specific results to benchmark case

Fixed At Control 1 Control 2 | Winget&Hughes | Benchmark
Ra | Nuy | Ymia | Nuo | Ymia | Nuo | Ymia | Nuo Vmid Nug | Ymid
10 [ 1.118 | 1.175 | 1.119 | 1.175 | 1.117 | 1.174 | 1.119 1.175 1.117 | 1.174
10* | 2.255 | 5.067 | 2.236 | 5.077 | 2.246 | 5.064 | 2.249 5.066 2.238 | 5.071
105 | 4.550 | 9.134 | 4.518 | 9.036 | 4.553 | 9.120 | 4.503 8.925 4.509 | 9.111

Table 2 contains the percentage relative differences between the values calculated by
each case studied and the corresponding values of the benchmark solution for the different
Rayleigh numbers. The results are in good agreement for all the cases, with percentage
errors no more than 1% in all quantities for Control 1 and Control 2, see Table 2. However,
observe that the differences increase as Ra increases due to the growing difficulty of the
problem. The Winget and Hughes approach also produces good results with percentage
errors no more than 2% in all quantities.
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Table 2: Percentage errors

Fixed At | Control 1 | Control 2 | Winget&Hughes

Ra | Nug | Ymia | Nuo | ¥mia | Nuo | Ymia | Nuo Vmid
10 01 ] 01 ]02]01] 007 007 0.2 0.1
104 08 | 0.1 | 0.1 | 0.1 | 04 | 0.1 | 0.5 0.1
10° 09 | 0.3 ] 02| 08 | 1.0 | 01 | 0.1 2.0

Now we compare the computational effort to calculate the solution for each case studied.
The computational effort is measured by the total number of successive approximations
needed to calculate the velocity field using one of the approaches divided by the number
of successive approximations obtained using a fixed timestep size. For each case, we
calculate the number of time iterations, ntstep, the number of rejected steps, nrejec,
the total number of successive approximations, nsa, and the computational effort, ccsort-
The PID parameters in all cases are k, = 0.075, k; = 0.175 and k4 = 0.01.*°

The results for Ra = 10% are shown in Table 3. We start with a minimum timestep
size of 0.01, and we allow a maximum timestep size of 0.1. We define a tolerance of
0.1 for changes in nodal velocities and temperature. The tolerance corresponding to the
normalized changes in kinetic energy is equal to one. The reference rate of convergence is
equal to 0.2. We assume that the steady-state solution is reached when toly, = 10~%. We
can observe in Table 3 that the number of successive approximations necessary to calculate
the approximate solutions was reduced for all approaches. However, Control 2 presented
the best results. We obtain the solution with 24 successive iterations using Control 2,
and we need 64 iterations with the fixed timestep. Thus, we are able to calculate the
solution 2.4 times faster using the Control 2 without any significant loss of accuracy. For
Control 2, the choice of the timestep is dominated by the changes in the kinetic energy
in all iterations.

Table 3: Computational effort for the natural convection problem, Ra = 103.

Ra = 103 ntstep || nrejec || nsa || Ceffort
Fixed At 24 0 58 1
Control 1 11 0 32 0.55
Control 2 8 0 24 0.41
Winget&Hughes 15 0 41 0.71

Figure 2 shows the timestep size against time and time against the number of successive
approximations using Control 1, Control 2 and the Winget and Hughes approach for
Ra = 10%. In this example the kinetic energy is the most suitable parameter to choose

10
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the timestep, since Control 2 gives the best result. It is worthwhile noting also that
Control 2 begins to act before any other approach and, after a few steps, provides a
timestep equal to the maximum stepsize allowed, 0.1.

0.1 10

01 9 ™ Contral 1
0.0g * Control 1 g o Contral 2
0.0 o Contral 2 7 + WWaH
n.o7 +Wy&H B

=
fo]
[l

=
o
B

timestep
)
)
o
nurnber of successive approximations
m

3 [emg >—@<‘0
2

| 0
0 01 0.2 0.3 0.4 0 01 0z 03
time time

=
f]
[

=
0
=]

=
o

Figure 2: Timestep variation (left) and number of successive approximations (right) using Control 1,
Control 2 and the Winget and Hughes approach for Ra = 103.

Table 4 shows the results for Ra = 10%. We start with a minimum timestep of 0.01,
and we allow a maximum timestep size of 0.01. We define tolerances of 0.2, 0.1 and 0.5 for
changes in nodal velocities, temperature and kinetic energy, respectively. The reference
rate of convergence is equal to 0.19. We establish that the steady-state occurs when
tolyy = 1073, Here we also improve efficiency for all approaches, reducing the number of
successive approximations necessary to calculate the approximate solutions. Control 1
and Control 2 are equivalent in terms of efficiency. The choice of the timestep in Control
2 is dominated by the convergence rate of the successive iterations, with only two time
iterations limited by the changes in the kinetic energy. Control 1, which is based on
controlling accuracy, gives timestep sizes larger than the ones calculated by Control 2, see
Figure 3.

Table 4: Computational effort for the natural convection problem, Ra = 10%.

Ra = 10* ntstep || nrejec || nsa || Ceffort
Fixed At 14 0 56 1

Control 1 10 0 47 0.84
Control 2 10 0 45 0.80
Winget&Hughes 12 0 52 0.93

11
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Figure 3: Timestep variation (left) and number of successive approximations (right) using Control 1,
Control 2 and the Winget and Hughes approach for Ra = 10%.

Table 5 shows the results for Ra = 105. We start with a minimum timestep size of 0.001,
and we allow a maximum timestep size of 0.1. We define a tolerance of 0.1 for changes in
nodal velocities and temperature. The tolerance corresponding to the normalized changes
in kinetic energy is equal to one. The reference rate of convergence is equal to 0.25. We
establish that the steady-state occurs when tol,; = 1072. Now, Control 2 is dominated
by the changes in the kinetic energy, with only 4 iterations calculated according to the
the convergence rate of the successive iterations. All approaches reduce the number of
successive approximations to obtain the solution, but Control 2 gives the best result. The
total number of successive approximations obtained by Control 1 can be reduced if we
define large tolerances for changes in nodal velocities and temperature. However, the
results will loose accuracy, yielding errors greater than 1% as the case of the Winget and
Hughes approach (see Table 2).

Table 5:

Computational effort for the natural convection problem, Ra = 10°.
Ra = 10° ntstep || nrejec || nsa || Ceffort

Fixed At 108 0 363 1

Control 1 48 5 260 0.72

Control 2 39 0 189 || 0.52
Winget&Hughes 48 3 244 || 0.67

Figure 4 shows the timestep size against time and the time against the number of suc-
cessive approximations using Control 1, Control 2 and the Winget and Hughes approach
for Ra = 10°. Since the size of the timestep increases significantly when time progress

12
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for Control 1 and the Winget and Hughes approach, the number of successive iterations
to obtain convergence of the nonlinear process at each corresponding time also increases.
This fact is responsible by the larger number of successive iterations calculated by these
two approaches when compared with Control 2. Figure 5 shows the nondimensional ki-
netic energy for Ra = 103, Ra = 10* and Ra = 10°. The kinetic energy is also a suitable
parameter to monitor convergence to steady-state. The stream function contours and
temperature contours are shown in Figure 6.

0.012 10
El * Control 1
0.0 * Control 1
g o Cantral 2
o Contral 2
7 +WWaH

0.008 ] +WWaH

0.006

tirmestep

B j 7 ¥ Hv\
i L
| f
4w i o

0.004

nurnber of successive appraximations
m
—

il
a 0os 01 015 0.2 il 0.05 0.1
tirne tirme

Figure 4: Timestep variation (left) and number of successive approximations (right) using Control 1,
Control 2 and the Winget and Hughes approach for Ra = 10°.
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Figure 5: Nondimensional kinetic energy plotted as a function of time for Ra = 10%, Ra = 10* and Ra
= 10°.
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Figure 6: Stream functions contours (top) and temperature contours (bottom) for Ra = 103, Ra = 10*
and Ra = 10°.

The second numerical experiment involves buoyancy forces due to temperature gra-
dients and thermocapillary forces caused by gradients in the surface tension. The flow
domain and boundary conditions are the same as the first example, except that the top is
now a flat free surface. The Rayleigh number is 103, the Prandtl number is 0.71, and the
problem is solved at different Marangoni numbers. The approximate steady-state veloc-
ities and temperature are calculated using biquadratic elements in a uniform mesh with
size h = 1. Here we assume that the steady-state occurs when |[u™™ —u"|| < 7, [[u™™||
and ||T"*—T"|| < 77 || T""!||, where n denotes the timestep index, ||-|| denotes Euclidean
norm, and 7, and 7 are input tolerances.

First, we find solutions at M = -1, -100 and -1000 (see Figure 7). At M = -1, the
effect of the surface tension is small and the streamlines are roughly circular. The solution
is similar in structure to the classic buoyancy driven flow studied in the first example,
Figure 6. At M = -100, the effect of the thermocapillary force at the free surface is more
pronounced. The streamlines are concentrated near the top boundary. At M = -1000, the
flow is being strongly driven at the top boundary as seen in similar experiments presented
by Zebib, Homsy and Meiburg.'?

Now, we consider the case of a fluid where the surface tension acts in the direction
contrary to the flow. Figure 8 shows the stream function contours for M = 10 and M =
100. The contours at M = 10 look similar to the solution at M = -1 due to the small
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Figure 7: Stream function contours for Ma = —1, Ma = —100 and Ma = —1000.

thermocapillary effect. At M = 100, the surface tension effect is strong enough to reverse
the flow on the top surface and two cells are formed.
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Figure 8: Stream function contours for Ma = 10 and Ma = 100

To study the behavior of the PID timestep selection in the second problem, we select
the case where M = -100. The steady-state solution is obtained at 7, = 10~3 and 7r
= 10~*. We start with a minimum timestep size of 0.001, and we allow a maximum
timestep of 0.1. Solutions are obtained with tolerances of 0.2 and 0.1 for changes in nodal
velocities and temperature, respectively. The tolerance corresponding to the normalized
changes in kinetic energy is equal to one. The reference rate of convergence is equal to
0.2. As we can see in Table 6, we obtain the solutions with 57 successive approximation
iterations using Control 2. With a fixed timestep size of 0.001, we need 272 iterations.
Thus, the solutions are obtained 4.8 times faster using Control 2. Here, the choice of the
timestep in Control 2 is dominated by the changes in the kinetic energy, with only three
time iterations limited by the changes in the convergence rate of the successive iterations.

Figure 9 shows the timestep variation and the number of successive approximations
against time using Control 1, Control 2 and the Winget and Hughes approach. We can
observe that Control 1 yields a smoother sequence of time steps than the Winget and
Hughes approach. However, these two approaches are equivalent in terms of efficiency.
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Table 6: Computational effort for the Rayleigh-Benard-Marangoni problem, Pr = 0.71, Ra = 1000 and
Ma = -100 in a unit square.

Case ntstep || nrejec || nsa || Ceffort
Fixed At 118 0 272 1
Control 1 23 0 75 0.28
Control 2 13 0 57 0.21
Winget&Hughes 25 0 80 0.29

Control 2 calculates the solutions with the smallest computational effort. Figure 10 shows
the time evolution of the nondimensional kinetic energy for Pr = 0.71, Ra = 1000 and
Ma = -100. Note that the kinetic energy presents smooth oscillations, damped as the
solution progresses towards the steady-state.
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Figure 9: Timestep variation (left) and number of successive approximations (right) using Control 1,
Control 2 and the Winget and Hughes approach for Pr = 0.71, Ra = 1000 and Ma = -100 in a unit

square

5 CONCLUSIONS

In this study, it is shown that, using control strategies for timestep selection and con-
vergence rate improvement of nonlinear iterative processes, the computational efficiency
of finite element solutions of 2D viscous flows problems involving heat transfer combined
with surface tension effects can be improved. It is presented comparison results on the
study of representative Rayleigh-Benard and Rayleigh-Benard-Marangoni problems using
a fixed timestep, an adaptive timestep scheme from the literature and our two control
approaches. It is also investigated the use of the non-dimensional kinetic energy to im-
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Figure 10: Nondimensional kinetic energy plotted as a function of time for Pr = 0.71, Ra = 1000 and
Ma = -100 in a unit square

prove the timestep selection when coordinated with the convergence rate control of the
nonlinear iterations.

Based on numerical studies of representative Rayleigh-Benard and Rayleigh-Benard-
Marangoni problems, it is concluded that we find approximate solutions with a smaller
number of steps without any significant loss of accuracy. In addition, the controllers also
produce a smooth variation of timestep, suggesting that a robust control algorithm is
possible. Further, the control strategy that maintains the desired solution accuracy by
adjusting the timestep size to account for changes in the kinetic energy or by the rate of
convergence of the successive approximations showed the best results in all cases studied
here.
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