
ADAPTIVE STEPSIZE CONTROL STRATEGIES IN FINITE ELEMENTSIMULATION OF 2D RAYLEIGH-BENARD-MARANGONI FLOWSAndr�ea M.P. Valli�Alvaro L.G.A. CoutinhoUniversidade Federal do Rio de Janeiro, Departamento de Engenharia CivilCx. P. 68506 - Rio de Janeiro, RJ 21945-970, BrazilGraham F. CareyThe University of Texas at Austin, CFD LabASE/EM Dept., WRW 301 - Austin, TX 78712, USAAbstract . Natural convection of an incompressible uid can be driven by buoyancyforces due to temperature gradients and thermocapillary forces caused by gradients in thesurface tension. These ows, termed Rayleigh-Benard-Marangoni problems, are of greatinterest in studying pattern formation in hydrodynamical systems. A decoupled �niteelement formulation with adaptive feedback control for timestep selection has been devel-oped for 2D viscous ow problems involving heat transfer and surface tension e�ects. The�nite element ow formulation is based on a penalty Galerkin method and the heat equa-tion utilizes a Galerkin approach. Representative Rayleigh-Benard and Marangoni owcalculations are presented, and the e�ciency of the present timestep scheme is examinedand compared with other time-stepping strategy.Keywords: Rayleigh-Benard-Marangoni ows, adaptive feedback control, timestep se-lection, �nite element1. INTRODUCTIONCoupled viscous ow and heat transfer computations are of great interest in study-ing pattern formation in hydrodynamical systems. Practical applications include, forexample, pattern formation during solidi�cation, welding in manufacturing processes andgrowth phenomena to defect fracture and crack propagation. Rayleigh-Benard-Marangoniproblems become very popular as prototypes of complex behavior where nonlinear theo-ries of pattern formation may be tested. Recently, special attention has been paid to thestudy and implementation of numerical and computational techniques to develop e�ective



algorithms capable of high resolution 3D viscous ows involving heat transfer and surfacetension e�ects. For example, domain decomposition strategies and parallel gradient-typeiterative solution schemes have been developed and implemented with success for 3-DRayleigh-Benard-Marangoni ow calculations [1]. These techniques permit making fun-damental phenomenological ow studies at the grid resolution necessary to represent the�ne scale surface-driven phenomena. Several adaptive timestepping selection strategieshave been also studied as a means to provide stable accurate transient (and steady state)solutions more e�ciently [8, 9].The focus in our work is the use of a control approach for automatic timestep selectionfor solving 2D coupled viscous ow and heat transfer computations. Adaptive techniquesfor automatic timestep determination are usually based on approximate local truncationerror measures or on purely heuristic considerations. Winget and Hughes, [9], developstep size selections based on heuristic rules for transient heat conduction. We remark thatadaptive timestep selection can be viewed as an example of a feedback control problem,[6, 7].The equations describing 2D Rayleigh-Benard-Marangoni ows are the coupled in-compressible Navier Stokes and heat transfer equations. The present algorithm employs adecoupled scheme, where the momentum and continuity equations are solved �rst, in eachtimestep, lagging the temperature in the forcing term. Then, the heat transfer equation issolved with the computed velocities as input. The �nite element ow formulation is basedon a penalty Galerkin method to enforce the incompressibility constraint, and the heatequation utilizes a Galerkin approach. Spatial discretization of the Navier Stokes equa-tions gives rise to a semi-discrete ODE system for the velocities that are usually solvedby an implicit method. An adaptive timestep selection scheme is central to an e�cientnumerical integration of the ODE equations.The outline of the treatment is as follows. In the next section we briey state theequations of the 2D Rayleigh-Benard-Marangoni problem, the �nite element formulation,and solution approach. Then, we describe a simple PID control approach and indicatehow it can be applied to timestep selection of coupled viscous ow and heat transfercomputations. Next, results of the classic Rayleigh-Benard problem and Rayleigh-Benard-Marangoni problem are compared for �xed timestep, an adaptive timestep scheme in theliterature and our PID control approach.2. FORMULATION AND APPROXIMATIONNatural convection of an incompressible uid can be driven by buoyancy forces dueto temperature gradients and thermocapillary forces caused by gradients in the surfacetension. When a thin horizontal layer uid between two horizontal plates is heated frombelow, a temperature gradient is generated across the plates. At critical Rayleigh number,circular convection cells set in - the heated uid near the bottom begins to rise while thecooler uid near to the top descends. Buoyancy is a dominant component in driving thistype of ow termed Rayleigh-Benard problem. If the plate is removed from the uppersurface, then the surface tension e�ects associate with temperature gradients on the freesurface become important. Now both buoyancy and thermocapillary e�ects provide the



dominant forces driving the ow for this classical Rayleigh-Benard-Marangoni problem.We consider the transient ow of viscous incompressible uid as described by theNavier-Stokes equations coupled to the heat transfer (energy) equation. Here we con�nethe study to two-dimensional ows with non-deforming free surface. The dimensionlessequations describing the Rayleigh-Benard-Marangoni ows are@u@t + u � ru��u+rp = �RaPrTg in 
 (1)r � u = 0 in 
 (2)@T@t + u � rT � 1Prr2T = 0 in 
 (3)where u is the velocity, p is the pressure, T is the temperature, Ra = ��TgL3�� is theRayleigh number, Pr = �� is the Prandtl number, � is the thermal coe�cient, �T is thetemperature di�erence for ows with heated or cooled walls, g is the gravity vector, L isa characteristic length scale of the ow, � is the kinematic viscosity, and � is the thermaldi�usivity.The boundary conditions are as follows: u = uw (no slip) on @
1, T = T1(x; y)(isothermal boundary) or @T@n = 0 (adiabatic boundary) on @
1, where @
1 is the partof the boundary which is not a free surface. On the free surface @
2, the shear stress isequal to the gradient in the surface tension �. We assume that � varies linearly with T ,so �T = @�@T is a constant for a given uid. The non-dimensional boundary condition onthe free surface becomes @u@y = MaPr @T@x , where Ma = �T�TL��� is the Marangoni number and� is the density. Equations (1), (2) and (3) constitute a coupled system of equations tobe solved for velocity, pressure and temperature.The present algorithm employs a decoupled scheme, where the Navier-Stokes equationsare solved �rst, in each timestep, lagging the temperature in the forcing term. Then thetemperature is calculated, with the velocities as input. The �nite element ow formulationis based on a penalty Galerkin method to enforce the incompressibility constraint, andthe heat equation utilizes a Galerkin approach.Introducing a �nite element discretization and basis on 
h the variational boundaryvalue problem reduces to �nd uh 2 V h satisfying the initial condition with uh = uw on@
1 such thatZ
h(@uh@t � vh + ruh:rvh + (uh � r)uh � vh) dx (4)+ 1� I(r � uh)(r � vh) dx + Z@
2h MaPr rT � vhds= � Z
h RaPrTg � vh dx for all vh 2 V h (5)where I denotes the usual reduced numerical integration for the penalty term. This leadsto the following non-linear semidiscrete system of ordinary di�erential equations�Mdu�dt + �Au� +C(u�) + 1� �Bu� = �F (6)



which is linearized by successive approximations and integrated implicitly using a Crank-Nicolson scheme. The solution of the linear systems are obtained using a frontal solver.To �nd approximate solutions for the transport problem corresponding to (3), we usea traditional Galerkin �nite element formulation. A week variational statement may beobtained by integration by parts of the di�usion term in a standard residual formulation,and then using the Gauss divergent theorem. Assuming that convective and di�usivee�ects are of same order, we may construct a semidiscrete Galerkin �nite element methodintroducing a spatial discretization and an appropriate �nite element space for the ad-missible functions. The �nite element problem is to �nd Th 2 H0h satisfying the initialcondition such that Z
h(@Th@t !h + u � rTh !h + 1PrrTh � r!h) dx = 0 (7)for all !h 2 H0h. The resulting semi-discrete ODE system for the nodal vector T has theform MdTdt +B(u)T+DT = 0 (8)We integrate the ODE system implicitly using a Crank-Nicolson scheme. At each timestepwe solve a linear system using a frontal solver.3. ADAPTIVE CONTROLControl can be de�ned as the process of making a system of variables follow a par-ticular value, called the reference value. Closed-loop process control uses a measurementof the controlled variable and feedback of this signal to compare it with a reference value.The feedback is supplied from an output sensor of some sort, and feeds an input of the con-troller to tell the controller how far the output is from its reference value. The controlleruses this information to correct the output error.One of the most widely used algorithms for closed-loop control is the three-term con-trol, known as the Proportional-Integral-Di�erential (PID) control loop. The popularityof PID controllers can be attributed to their functional simplicity and to their robustperformance in a large range of operating conditions. The objective in using PID controlalgorithms is to control the output along a smooth curve (vs. time) towards the set-pointwhile minimizing overshoot, the amount the system output response proceeds beyond thedesired response. According to Hairer and Wanner [7], stepsize selection can be viewedas an automatic control problem with a PID controller de�ned as4tn+1 = (en�1en )kP (tolen )kI ( en�12enen�2 )kD 4tn; (9)where tol is some input tolerance, en is the measure of the change of the quantities ofinterest in time step 4tn, and kP , kI and kD are the PID parameters.An estimate of the solution change is compared with the speci�ed accuracy require-ment, and the result is fed back to calculate the new time step. The controller tries toselect the stepsize such that en comes as close as possible to the input tolerance, tol, along



a smooth curve. The measure of the change over a timestep of the quantities of interest,en, is de�ned by en = max(eu; eT )where eu = êutolu with êu = ku�m+1 � u�mkku�m+1keu = êTtolT with êT = kTm+1 �TmkkTm+1kHere eu and eT are respectively the normalized changes in nodal velocities and tempera-tures, and k � k denotes the Euclidean norm. The corresponding user supplied tolerancesare tolu and tolT . We supply timestep limits, (4t)min and (4t)max, to incorporating theanti windup e�ect.At each timestep, the velocities are calculated with the temperatures as input in theforcing term, and then the temperatures are obtained using the updated velocities. Thenew timestep size is given by (9), and the velocities and temperature are updated tocalculated the new solutions.If a timestep gives an unacceptable value of en, the step is rejected. Then the step isrepeated with a scaled timestep size based on the magnitude of the error relative to thetolerance, [8]. However, we �nd in numerical experiments that the number of rejections isvery small, producing a smooth sequence of timesteps. In our algorithm, if the sequence ofiterates of the nonlinear system is converging at a slow rate, the timestep is also rejected.4. NUMERICAL RESULTSOur �rst example involves natural convection in a unit square with heated lateralwalls and adiabatic top and bottom wall. The computed Nusselt number at the leftwall (Nu0 = R 10 qdy, where q is the heat ux), and the stream function at the midpoint( mid) are compared to the results from [2, 3, 4]. Consider the two-dimensional ow of aBoussinesq uid of Pr = 0.71 and Ra = 103 in an square cavity described by 0 � x; y � 1.Both components of the velocity are zero on all the boundaries, the boundaries at y = 0and 1 are insulated, @T@y = 0, and T = 1 at x = 0 and T = 0 at x = 1.The approximate velocities and temperature are calculated using biquadratic elementsin a uniform mesh with size h = 116 , a �xed timestep of 0.01, the PID timestep size control,and the Winget and Hughes approach [9]. We assume that the steady-state occurs whenkum+1�umk < �u kum+1k and kTm+1�Tmk < �T kTm+1k, where m denotes the timestepindex, k � k denotes Euclidean norm, and �u and �T are input tolerances. The results areshown in Table 1, and the agreement for all cases are good. The contours of the streamfunction and temperature are shown in Figures 1. The stream function contour shows theconcentric nature of the streamlines.We compare approximate solutions using a �xed timestep size of 0.01, the PID timestepsize control, and Winget and Hughes approach. We start with a timestep size of 0.01, andwe allow minimum and maximum timesteps of 0.01 and 0.5, respectively. It is importantto note that for step sizes greater than 0.01 the successive iterations failed to converge



Table 1: Comparison of speci�c results to benchmark caseFixed �t PID control Winget & Hughes BenchmarkNu0  mid Nu0  mid Nu0  mid Nu0  mid1.1184 1.1747 1.1178 1.1740 1.1187 1.1749 1.117 1.174
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Figure 1: Stream function contours (left) and temperature contour (right) for Ra = 103 andPr = 0.71after a few timesteps. The steady-state solutions are obtained at �u = �T = 10�03. Wede�ne a tolerance of 0.18 for changes in nodal velocities and 0.1 for changes in nodaltemperature. The PID parameters are kp = 0.075,ki = 0.175 and kd = 0.01.Table 2 shows the number of time iterations, ntstep, the number of rejected steps,nrejec, the total number of successive approximations, nsa, and the computational e�ort,ceffort, de�ned here as nsa diveded by the number of sucessive approximations obtainedusing a �xed timestep size. We obtain the solution with 29 successive approximationiterations using the PID controller, and we need 64 iterations with a �xed timestep of0.01. Thus, we are able to calculate the solution 2.2 times faster using the timestep sizecontrol without any signi�cant loss of accuracy. The approach of Winget and Hughes alsoshows good results for this particular example. Figures 2 shows the timestep size againsttime using the PID controller and the Winget and Hughes approach. The PID controlproduce a smooth sequence of timesteps.Table 2: Results for the natural convection problem with Ra = 103 and Pr = 0.71.Ra = 103 ntstep nrejec nsa ceffortFixed �t 27 0 64 1PID Control 10 0 29 0.45Winget & Hughes 15 0 40 0.63In the second example, we consider ow in a rectangular container of length 4 times theheight with Pr = 0.72 and Ra = 30000. The temperatures on the bottom surface and topsurface are Th = 1 and Tc = 0, respectively. The approximate velocity and temperatureare calculated using biquadratic shape functions with a grid of 32 � 8 elements, and the
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timeFigure 2: Timestep variation using the PID controller (left) and Winget and Hughes approach(right), Ra = 103 and Pr = 0.71.PID timestep selection. We consider the steady-state problem and the computed streamfunction and temperature contours are shown in Figure 3. There are six recirculationcells, and the results agree with those in [5].
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Figure 3: Stream function contour Pr = 0.72, Ra = 30000 in a container with aspect ratio 4:1The steady-state solution is obtained at �u = �T = 10�03, and we set a tolerance of0.01 for changes in nodal velocities and temperature. We start with a timestep size of0.001, and we allow minimum and maximum time steps of 0.001 and 0.5, respectively.This starting timestep is the largest for which we obtained convergence in the successiveiterations. The PID parameters are kp = 0.075,ki = 0.175 and kd = 0.01. As we can seein Table 3, we obtain the solutions with 983 successive approximation iterations usingthe PID controller. With a �xed timestep size of 0.001, we need 1547 iterations. Thus,the solutions are obtained 1.6 times faster using the PID controller. In this problem thePID control also shows better results than the approach used by Winget and Hughes.Figures 4 shows the timestep size against time using the PID controller and the Wingetand Hughes approach, respectively.The third numerical experiment involves buoyancy forces due to temperature gradientsand thermocapillary forces caused by gradients in the surface tension. The ow domainand boundary conditions are the same as the �rst example except that the top is now a



Table 3: Results for the problem using the PID control and the �xed timestep size.Case ntstep nrejec nsa ceffortFixed �t 513 0 1547 1PID Control 248 1 983 0.63Winget & Hughes 258 7 1045 0.67
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iterationFigure 4: Timestep variation using the PID controller (left) and Winget and Hughes approach(right) for Pr = 0.72, Ra = 30000 in a container with aspect ratio 4:1.at free surface, Ra = 103, Pr = 0.71, and Ma = -100. The approximate steady-statevelocities and temperature are calculated using biquadratic elements in a uniform meshwith size h = 116 . Figure 5 shows the computed stream function and temperature contours,and the e�ect of the surface tension can be observed. The streamlines are concentratednear the top boundary as similar experiments presented in [10].
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Figure 5: Stream function contours (left) and temperature contour (right) for Ra = 103, Pr= 0.71, and Ma = -100To study the behavior of the PID timestep selection, we start with a timestep size of0.001, the maximum step for which the successive iterations converge. We allow minimumand maximum time steps of 0.001 and 0.1, respectively, and �u = �T = 10�04. The solutionsare obtained with a tolerance of 0.018 for changes in nodal velocities and 0.01 for changes



in the nodal temperature. The PID parameters are kp = 0.01,ki = 0.55 and kd = 0.01.As we can see in Table 4, we obtain the solutions with 233 successive approximationiterations using the PID controller. With a �xed timestep size of 0.001, we need 571iterations. Thus, the solutions are obtained 2.5 times faster using the PID controller.Figures 6 shows the timestep size against time using the PID controller and the Wingetand Hughes approach.Table 4: Results using the PID control and the �xed timestep size when Pr = 0.71, Ra = 1000and Ma = -100 in a unit square.Case ntstep nrejec nsa ceffortFixed �t 151 0 571 1PID Control 49 0 233 0.41Winget & Hughes 52 0 245 0.43
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iterationFigure 6: Timestep variation using the PID controller (left) and Winget and Hughes approach(right), Ra = 103, Pr = 0.71, and Ma = -1005. CONCLUSIONSWe introduce an adaptive timestep selection scheme based on feedback control theoryto increase the robustness of our �nite element formulation of coupled incompressibleviscous ow and transient heat transfer. The �nite element ow formulation is basedon a penalty Galerkin method and the heat equation utilizes a Galerkin approach. Thealgorithm employs an iteratively decoupled scheme in the present work.We solve Rayleigh-Benard-Marangoni problems, and results are compared with �xedtimestep, an adaptive timestep scheme from the literature, and our PID control approach.With the PID control strategy we �nd approximate solutions with a much smaller numberof steps without any signi�cant loss of accuracy. For instance, we have a 2.45 timesimprovement in the computational e�ort to compute the solution within the same accuracyin the third experiment involving the Marangoni e�ects. The PID control shows better
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