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Chapter 1IntroductionIn the last two decades there has been a rapid expansion of research andapplications for �nite element simulations of 
uid 
ow problems and trans-port processes. The maturation of the subject and the increasing power ofcomputers enable the method to be applied a wide variety of 
ow problems.There are applications ranging from viscous incompressible non-newtonian
ows to chemically reacting compressible high speed aerodynamic 
ows, andalso diverse applications to complex 
uid 
ow and species transport. Forgeneral treatments of the method see, for instance, Carey and Oden [3].The need to develop improved algorithms has increased with the com-plexity of research applications. For instance, several adaptive time-steppingstrategies have been studied as a means to provide solutions of complexcoupled problems more e�ciently. Errors and computational e�ciency intransient (and steady state) solutions can be controlled using an automatictimestep selection strategy.Adaptive techniques for automatic timestep determination are usuallybased on approximate local truncation error measures or on purely heuristicconsiderations. Winget and Hughes [21], Johan et al. [14], and Jacob andEbecken [13] develop stepsize selections based on heuristic rules for transientheat conduction, compressible Navier-Stokes 
ows and structural dynamicsproblems, respectively. We remark that adaptive timestep selection can beviewed as an example of a feedback control problem [11, 12].Schemes based on control theory used feedback from the computed so-lution to select the new timestep in accordance with a desired accuracy. Ingeneral, the timestep selection schemes are based on the control of maxi-mum change in the key variables (pressure, concentration, velocities, etc.).2



Coutinho and Alves [4] use this approach in their work of �nite element sim-ulation of 
uid displacements in porous media. In the present studies weaddress the utilization of feedback control algorithms in conjunction with�nite element analysis for 
ow and reactive transport problems.Control theory has been extensively developed, particularly in electricalengineering and is also used widely in chemical engineering applications. Sim-ple feedback control laws has been used with success to suppress the vortexshedding behind a circular cylinder [17, 10]. Recently, interest has increasedin optimal 
ow control of viscous 
ows [20, 8, 9]. These problems own theircomplexity because of the highly nonlinear constraints given by approxima-tions of the Navier-Stokes equations. To have an e�cient computational toolfor 
ow control or optimization, they use techniques to reduce the size ofthe problem to low-order systems models. The potential of control theory inconjunction with �nite elements is obvious, and yet there have been relativelyfew focussed studies in this direction.The focus in our work is the use of a Proportional-Integral-Di�erential(PID) control approach for automatic timestep selection. We also design aPID controller to solve a simple chemically reacting system through auto-matic feedback control applied to boundary conditions. No attempt is madeto design an optimal feedback control law. The class of problems underinvestigation arise from coupled incompressible viscous 
ow and nonlineartransient heat or mass transfer. The �nite element 
ow formulation is basedon a penalty Galerkin method and the nonlinear reactive transport applica-tion utilizes a Galerkin approach.The outline of the treatment is as follows. In the next chapter we pre-sented the class of coupled 
ow and transport problems under investigation.The �nite element formulation and solution approach is also given. Then,in chapter 3 we describe a simple PID control approach and indicate how itcan be applied to timestep control and boundary control. Following this, arepresentative test problem for 2D coupled viscous 
ow and reactive trans-port is stated and results compared for �xed timestep, an adaptative timestepscheme in the literature and our PID control approach. Flow and species con-centration results at the �nal time are also given. In section 4.2 we discussisothermal reaction inside a porous catalyst. Next, we apply the timestepcontrol algorithm to a highly nonlinear process on a catalyst section withheat e�ects included, and we show a simple example to test our boundarycontrol approach. Finally, we summarize the main conclusions of this workin the last chapter.



Chapter 2Coupled Viscous Flow andTransportWe are investigating applications arising in analysis of coupled incompress-ible viscous 
ow and heat or mass transfer. In the present work the classof problems under investigation will be restricted to transient Stokes 
owand coupled transient reaction-convection-di�usion processes. The algorithmemploys a decoupled scheme, where the Stokes equations are solved �rst, ineach timestep. Then concentrations and temperatures are calculated, withthe velocities as input in the transport equations. The �nite element 
owformulation is based on a penalty Galerkin method and the nonlinear reactivetransport application utilizes a Galerkin approach.The 
ow is determined by approximate solution of the classical unsteadyStokes problem: �nd the velocity-pressure pair (u,p) satisfying@u@t � ��u +rp = f (2.1)r � u = 0 (2.2)with initial conditions u(x; 0) = u0(x) in 
 (2.3)and subject to prescribed boundary conditionsu = û on @
 � [0; T ]: (2.4)Here f is the applied body force, � > 0 is the kinematic viscosity, 
 is anopen bounded domain in IR2 with su�ciently smooth boundary @
, T is aspeci�ed time, and the 
uid density has been incorporated in p.4



The transient transport equation is@c@t + u �rc�r � (krc) = g(c) in 
 and t > 0 (2.5)with initial condition c(x; 0) = c0(x) (2.6)and boundary conditions for species concentration and 
uxc = ĉ on @
1 (2.7)�k@c@n = �(c� 
) on @
2 (2.8)where c is the concentration vector of component species (including temper-ature), u is the velocity tensor, k is the di�usion tensor, g(c) is the chemicalreaction source/sink term, and 
 is a known value of the concentration vectorin the medium. From (2.5) it is clear that the time rate of change (evolution)of the species component �elds depends on advection, di�usion and chemicalreaction, respectively. Here we assume that convective and di�usive e�ectsare of the same order.2.1 Penalty Finite Element Formulation forStokes ProblemFor simplicity and convenience we use a penalty method to enforce the in-compressibility constraint. The penalty approach for the Stokes problem isdesigned to determine an approximate formulation involving only velocitiesand not pressures. Hence the size of the problem is reduced accordingly.The divergence-free condition r � u = 0 is viewed as a constraint conditionembedded in the variational problem by using a penalty term.The classical approach for formulating variational problems with con-straints is by use of Lagrange multiplies. We may obtain the penalizedvariational formulation of the Stokes problem by introducing the perturbedLagrangianL(u; p) = Z
(@u@t � u + �2ru:ru � pr � u � �2p2 � f � u) dx (2.9)



where � is the penalized parameter (0 < �� 1), and the expression ru:rurepresents the dyadic product. Taking variations with respect to u at thestationary point (u,p) and setting �L = 0, we getZ
(@u@t � v + �ru:rv � pr � v � �2p2 � f � v) dx = 0 (2.10)for arbitrary admissible v = �u. Now, if we take variations with respect top at (u,p), and we set �L = 0 for arbitrary admissible q = �p, we haveZ
 (��p � ru) q dx = 0: (2.11)From equation (2.11) we see that the pressure approximation for thepenalty formulation follows as p� = �1�ru�; (2.12)where u� is the solution to the penalty problem.The penalty form can be obtained substituting p� in (2.10): �nd u� 2 Vsatisfying the initial condition with u� = g on @
 such thatZ
(@u�@t � v + �ru�:rv + 1� (r � u�)(r � v)) dx = Z
 f � v dx; (2.13)for all admissible v 2 V with v = 0 on @
. For su�cient regular data f, wecan prove that as � ! 0, u� will converge to u, and p� will converge to thepressure p. For a discussion of existence and uniqueness see, e.g., [3].Consider now approximation of the variational problem (2.13) using �niteelements. Let V h � V be the �nite element approximation space for veloc-ities. In the usual way, the 
ow domain 
 is discretized to a union 
h ofelements 
e, e = 1,2,. . . ,E. Lagrange piecewise polynomials are used as globalbasis functions �j, j = 1,2,. . . ,N, for the approximate subspace V h. In thisstudy we use continuous piecewise bilinear and piecewise biquadratic basisfunctions de�ned on a uniform discretization 
h of rectangular elements.The direct approximation of the penalized variational problem (2.13) isto �nd u� 2 V h satisfying the initial condition such thatZ
(@u�h@t �vh +�ru�h:rvh +1� (r�u�h)(r�vh)) dx = Z
 f�vh dx for all vh 2 V h(2.14)



with pressure approximation given byp�h = �1�ru�h: (2.15)Introducing the approximationuejh(x) = NXs=1ujs�s(x); (2.16)for the components u�j of the velocity and using !h = (�r; 0) and (0; �r) atinterior node r, we have the following �nite element system�Mdu�dt + � �Au� + 1� �Bu� = �F (2.17)where u� = (u1;u2)T , and�M = " M 00 M # �A = " A 00 A # �B = " Bx BxyBTxy By # �F = " FxFy #with mij = Z
h �i�j dxaij = Z
h((�i)x(�j)x + (�i)y(�j)y) dx(bx)ij = Z
h(�i)x(�j)x dx(bxy)ij = Z
h(�i)x(�j)y dx (2.18)(by)ij = Z
h(�i)y(�j)y dx(fx)i = Z
h f1�i dx (fy)i = Z
h f2�i dx:If the penalty term in (2.17) is integrated exactly then the method willnot yield solutions u�h that converge to uh as �! 0. The velocity �eld u�h ! 0as �! 0 and the constraint equation r � u = 0 dominates in this limit. Thediscrete �nite element solution is said to \lock" [see, e.g.,[22],[16],[15]]. Toobtain an approximate solution other than the \locking" solution, we usereduced integration for evaluating the penalty integral. The penalty term is



approximately integrate using a Gauss quadrature rule of lower order thanthat required for exact integration.If we denote I(�) the reduced quadrature rule for the penalty integration,the penalty term in (2.17) is given by1� �Bu� = 1� Z
h I (r � u�hr � vh) dx: (2.19)In the numerical studies we consider two special cases: continuous piecewisebilinear basis of the 4-node bilinear rectangle with one-point Gauss quadra-ture rule for the penalty term (2.19) and continuous piecewise biquadraticbasis of the 9-node biquadratic rectangle with (2� 2) Gauss quadrature rulefor the penalty term (2.19).The semidiscrete Stokes's system is integrate implicitly using a Crank-Nicolson scheme with timestep 4t. At each timestep we have to solve alinear system of the form Pu�n+1 = d (2.20)where P = �M + 4t2 (� �A+ 1� �B)d = ( �M� 4t2 (� �A+ 1� �B))u�n + 4t2 ( �Fn+1 + �Fn2 )and n denotes the time index.2.2 Finite Element Formulation for the Trans-port EquationTo �nd approximate solutions for the transport problem corresponding to(2.5)-(2.8), we use a traditional Galerkin �nite element formulation. Forsimplicity we show the formulation for the particular case of one transportcomponent c. The extension to the case of more than one species is notdi�cult. We can handle up to nine di�erent species in our code.A week variational statement may be obtained by integration by partsof the di�usion term in a standard residual formulation, and then using theGauss divergent theorem. The variational problem reduces to solving for c



satisfying the initial conditions such thatZ
(@c@t!+u �rc !+krc �r!) dx+Z@
2 �(c�
)! ds = Z
 gi(c)! dx (2.21)for all admissible test functions ! 2 H0.We may construct a semidiscrete Galerkin �nite element method intro-ducing a spatial discretization and an appropriate �nite element space for theadmissible functions in (2.21). Let 
h denote the �nite element discretiza-tion of 
, and Hh0 � H0 be the �nite-dimensional subspace spanned by �niteelement basis  i, i = 1,2,. . . ,N. The �nite element problem is to �nd ch 2H0h satisfying the initial condition such thatZ
h(@ch@t !h+uh �rch!h+krch �r!h)dx+Z@
2 �(ch�
)!hds = Z
h gi(c)!hdx(2.22)for all !h 2 H0h. The �nite element approximation for the concentration chat any time t can be expressed asch(x; t) = NXj=1 cj(t) j(x) (2.23)where the nodal solution values cj depend continuously on time. We have inthis studies continuous piecewise basis functions de�ned by the 4-node bilin-ear rectangle, the 9-node biquadratic rectangle and the 6-node biquadratictriangle.Introducing (2.23) into (2.22) and setting !h =  i, i = 1,2,. . . ,N, we havethe resulting semi-discrete ODE system for the nodal vector cMdcdt +B(u) c+Dc = g(c) (2.24)where mij = Z
h  i j dxbij = Z
h u � r j i dxdij = Z
h kr i � r j dx+ Z@
2 � i j dsgi = Z
h g(c) i dx + Z@
2 
 i ds (2.25)



We integrate the ODE system implicitly using a Crank-Nicolson schemewith timestep4t. Since the chemical reaction source term can be a nonlinearfunction of the unknown concentration, we have to solve at each timestep 4ta nonlinear system of the form F(cn+1) = 0 (2.26)where F(cn+1) = (M+ 4t2 (B+D)) cn+1 � 4t2 g(cn+1) +Gwith G = � (M� 4t2 (B+D)) cn � 4t2 g(cn)and n denotes the timestep index.The nonlinear system (2.26) is solved by Newton's method in the presentstudy. If we de�ne U = cn+1, we construct and solve the linear systemJ(Uk+1 � Uk) = � ~F (2.27)where U0 is given, withJ = (M+ 4t2 (B+D)) � 4t2 @g@U(Uk)and ~F = (M + 4t2 (B+D))Uk � 4t2 g(Uk) + Gfor each iterate Uk+1. Here the solution of the linear system (2.27) is alsoobtained using a frontal solver. The timestep may be chosen adaptively andin the next section we describe one possible strategy for timestep selectionthat utilizes a PID control scheme based on the approach in Coutinho andAlves [4].



Chapter 3Adaptive Control
3.1 PID ControlControl can be de�ned as the process of making a system of variables followa particular value, called the reference value. Closed-loop process controluses a measurement of the controlled variable and feedback of this signalto compare it with a reference value. The feedback is supplied from anoutput sensor of some sort, and feeds an input of the controller to tell thecontroller how far the output is from its reference value. The controller usesthis information to correct the output error. This kind of process is usedin applications ranging, for example, from air conditioning thermostats toguidance and control of aircraft.A simple feedback system consists of an actuator, a control device oftencalled controller, the process (or plant), and an output sensor, as shownin Figure 3.1. The central component of a feedback control system is theprocess, whose output is to be controlled. In our case we are interested inprocess control. The di�erence between the desired output and the actualoutput of the system measured by an sensor is equal to the error, which isadjusted by the controller. The actuator is the device that can in
uence thecontrolled variable of the process. The output of the control device causesthe actuator to modulate the process in order to reduce the error.One example of a feedback control system is the room-temperature con-trol system of a house [7]. The plant is the house, the thermostat is theoutput sensor, the gas valve is the controller, and the furnace is the actuator.Suppose the thermostat is turned on when both the temperature in the house11



Desiredoutput-���� -Error Controller -Actuator - Process -ActualoutputSensor r� Feedback6 MeasuredoutputFigure 3.1: A feedback system block diagram of a basic closed-loop controlsystemand the outside temperature are below the reference temperature. The gasvalve will be open causing the furnace to �re and heat to be supplied to thehouse. This is a closed loop system.One of the most widely used algorithms for closed-loop control is thethree-term control, known as the Proportional-Integral-Di�erential (PID)control loop. The popularity of PID controllers can be attributed to theirfunctional simplicity and to their robust performance in a large range of oper-ating conditions. The objective in using PID control algorithms is to controlthe output along a smooth curve (vs. time) towards the set-point while min-imizing overshoot, the amount the system output response proceeds beyondthe desire response.A PID control algorithm includes a term which is proportional (P) to theoutput error, a term proportional to the integral (I) of the error, and a termproportional to the derivative (D) of the error, and therefore has the form�S(�) = k(�(�) + 1TI Z �0 �(~� )d~� + TD d�(�)d� ) (3.1)or � _S(�) = kI�(�) + kP _�(�) + kD��(�) (3.2)where S(�) is the controller output deviation, _S(�) implies time rate ofchange of S, �(�) is the error, k is the proportional gain, TI is called theintegral, or reset time, TD is the derivative time, and kI , kP and kD arethe integral, proportional and derivative parameters, respectively. In orderto adapt the continuous-time model to a discrete environment, we replace



derivatives by di�erences in (3.2) to obtain:�(Sn+1 � Sn) = kI �n + kP (�n � �n�1) + kD (�n � 2�n�1 + �n�2) (3.3)The proportional term acts like a rubber band in an analogous mechanicalsystem: it exerts a restoring force proportional to how much the rubberband is stretched from its original shape. The proportional term can reduceerror responses to disturbances as we adjust kD up or down. The integralterm is added to reduce or eliminate constant steady state errors. It can dothis because it sums up errors over time. The derivative feedback is usedin conjunction with proportional and/or integral feedback to increase thedamping of the dynamic response. In general, it also improves the stabilityof the system. These three kinds of control attempt to provide a good degreeof error reduction simultaneously with acceptable stability and damping.Designing a particular PID control loop requires merely tuning the con-troller. The constants kP , kI, and kD have to be adjust to yield satisfactorycontrol. Increasing kP and kI tends to reduce system errors but may lead toinstability, while increasing kD tends to improve stability. The selection ofthe parameters is basically a search in a three-dimensional space. There areseveral methods and rules proposed to solve this parameter selection prob-lem. Dorf and Bishop, [5], for instance, show many design methods usingroot locus and performance indices. In the next section we describe onepossible strategy that utilizes a discrete PID control scheme for automatictimestep selection based on the approach in Coutinho and Alves, [4].3.2 Timestep ControlThe particular problems considered here arise from coupled incompressibleviscous 
ow and nonlinear transient heat or mass transfer. The nonlinearityenters through a chemical reaction source or sink term in the transport equa-tion. Depending on the nature of the data and nonlinearity, we may need tochoose a very small timestep to obtain convergence in solving the nonlinearsystem (2.26). In general the problem occurs in the beginning of the implicittime integration scheme. To increase the robustness of our time scheme weuse adaptive timestep selection based on feedback control theory.Many studies have been made to improve stepsize selection in numericalintegration of ordinary di�erential equations; e.g. in the �nite element �eldwe can �nd timestep selection strategies based on heuristic rules such as in



Winget and Hughes, [21], for transient heat conduction. Gusta�son et al.,[11], and Hairer and Wanner, [12], viewed the problem of automatic timestepselection as examples of feedback control problems. This approach was usedby Coutinho and Alves, [4], in their work of �nite element simulation ofmiscible displacements in porous media.Most timestep schemes are based on controlling accuracy as determinedby truncation error estimates (e.g. Prediction-Modi�cation-Correction). Theobjective of timestep selection is to minimize the computational e�ort toconstruct an approximate solution of a given problem in accordance with adesired accuracy. In general, timestep selection can be expressed as4tn+1 =  tolen !4tn (3.4)which can be rewritten as� (log4tn+1 � log4tn) = (log en � log tol) (3.5)where tol is some input tolerance, en is an estimate of the local truncationerror, and 4tn is the timestep in the previous iteration. Equation (3.5) isequivalent to equation (3.2) if we take kP = kD = 0, kI = 1, andSn = log4tn (3.6)�n = log en � log tol (3.7)Thus, the timestep selection strategy (3.4) can be interpreted as a simpli�edversion of the standard integral feedback controller. We recognize log4tnas the control variable, the deviation (log en � log) as the control error, andlog tol as the set point.Figure (3.2) shows a block diagram of the feedback control problem. Theprocess takes the timestep 4tn as a input, calculates the solution of theproblem, and produces an error estimate en that is fed back to the controller.The controller tries to select the new timestep in a such way that the quantitylog en comes as close as possible to log tol.Using these ideas we can design a new stepsize control algorithm usingthe standard discrete PID controller (3.3),�(Sn+1 � Sn) = kI �n + kP (�n � �n�1) + kD (�n � 2�n�1 + �n�2):
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Figure 3.2: Stepsize selection viewed as a control problem.Substituting the de�nitions (3.6) and (3.7) into the above equation, we have� (log4tn+1 � log4tn) = kI(log en � log tol) +kP [(log en � log tol)� (log en�1 � log tol)] +kD [(log en � log tol)� 2(log en � log tol) +(log en � log tol)]which can be rearranged as,4tn+1 = (en�1en )kP (tolen )kI ( en�12enen�2 )kD 4tn; (3.8)where tol is some input tolerance, en is the measure of the change of thequantities of interest in time step 4tn, and kP , kI and kD are the PIDparameters.An estimate of the solution change is compared with the speci�ed accu-racy requirement, and the result is fed back to calculate the new time step.The controller tries to select the stepsize such that en comes as close as pos-sible to the input tolerance, tol, along a smooth curve. Figure (3.3) shows a
ow chart of our PID control algorithm. For time step n = 2, 3, ::: we mayproceed sequentially as follows:1. Given (4t)min, (4t)max, kP , kI , kD, and tol, and starting with en�2/tol= en�1/tol = 1.0, and 4tn+1 = 4tn = some initial timestep value.2. calculate en.3. if en > tol reject the timestep:� tn+1 = tn - 4tn



� 4tn+1 = max ( tolen4tn, 4tmin)� cn�1  cnelse� calculate 4tn+1 using (3.8)� 4tn+1 = max (4tn+1, 4tmin)� 4tn+1 = min (4tn+1, 4tmax)4. en�2 = en�1, en�1 = en.In the present work the measure of the relative change en of the solu-tion (e.g. concentration, temperature, velocities) over a timestep is evaluateby computing kcn+1�cnkkcn+1k , where cn is the approximate solution at time tn,and k � k denotes the Euclidean norm. We supply timestep limits, (4t)minand (4t)max, to incorporating the anti windup e�ect, according to controltheory [5].If a timestep gives an unacceptable value of en, the step is rejected. Thenthe step is repeated with a scaled timestep size based on the magnitude of theerror relative to the tolerance. However, we �nd in numerical experimentsthat the number of rejections is very small, producing a smooth sequence oftimesteps as we will see in chapter 4. In our algorithm, if the sequence ofiterates of the nonlinear system is converging at a slow rate, the timestep isalso rejected.Although feedback control theory provides sophisticated techniques tochoose the PID parameters, robustness is required when a general �nite ele-ment method is used for a wide range of di�erent simulations. We performparametric studies of the PID controller for values similar to those used byGusta�son et al. [11] and also by Coutinho and Alves [4]. Subsequent nu-merical experiments demonstrate that the PID controller is very robust forthe reaction-di�usion applications studied here.In the next section we use the ideas developed here to solve a simplechemically reacting system through automatic feedback control applied toboundary conditions. We discuss the algorithm implementation and laterthe limitations of PID controllers to solve more complex boundary controlproblems.
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3.3 Boundary ControlConsider the steady state solution for coupled chemical reaction with heattransfer. The control problem is to �nd the value of the temperature orconcentration on portions of the boundary that keeps the temperature orconcentration at a speci�ed point of the domain as close as possible of a targetvalue. The control variable is the step in the boundary condition, �bcm, andthe quantity to be controlled is the di�erence between the temperature orconcentration at x̂ and some target value. Using the same notation as before,we have Sm = �bcm (3.9)�m = c�m � ctarg (3.10)where Sm is the control variable, �m is the deviation, x̂ is a �xed point in thedomain, c�m is the approximate steady state temperature or concentration atx̂ calculate at iteration m, and ctarg is the target value.To design our boundary control algorithm, we use again the standarddiscrete PID controller (3.3),�(Sm+1 � Sm) = kI �m + kP (�m � �m�1) + kD (�m � 2�m�1 + �m�2):Substituting the de�nitions (3.9) and(3.10) into the above equation, we have�bcm+1 = �bcm � kI(c�m � ctarg)� kP (c�m � c�m�1)�kD(c�m � 2c�m�1 + c�m�2) (3.11)bcm+1 = bcm + �bcm+1 (3.12)where bcm is the value of the temperature or concentration on portions of theboundary, and kI , kP and kD are the integral, proportional and derivativeparameters. The boundary control process is summarized in the followingalgorithm:1. Compute u and v according to (2.20).2. Set m = 0 and idstop = 0.3. Assign values to �bcm, bcm, kI , kP , kD, �, mmax, ctarg, and x̂.4. While (idstop = 0) and (m � mmax)



� Compute the steady state temperature and concentration accord-ing to (2.27).� Set c�m equal to the temperature or concentration at point x̂.� Compute the error = kc�m�ctargkkctargk , and set idstop = 0 if error < �� Compute �bcm+1 and bcm+1 according to (3.11) and (3.12) , re-spectively.� Impose the new boundary condition� m = m + 1In the boundary control process, we start the calculations of the new bound-ary condition using the control (3.11) when m = 3. In the �rst two iterationswe increment the boundary condition using a given constant value.



Chapter 4Numerical Results
4.1 Validation ProblemsThe �rst example is a particular test problem introduced by Johnson andPitkaranta [15] for the Stokes 
ow (2.1)-(2.4), and also studied by Song etal. [19] and Carey and Krishnan [2]. The analytic solution for this problemis de�ned by the velocity vector �eldu(x; y) = x2(1� x)2(2y � 6y2 + 4y3)v(x; y) = y2(1� y)2(�2x + 6x2 � 4x3) (4.1)and the pressure �eld p(x; y) = x2 � y2 (4.2)on the unit square 
 = (0; 1) � (0; 1). This velocity �eld is divergent freeand satis�es the no-slip condition on @
. Substituting (4.1) and (4.2) in theStokes equation (2.1), we �nd that the body force f = (f1; f2) is equal tof1(x; y) = 2x� 0:01[(2� 12x+ 12x2)(2y � 6y2 + 4y3) +(x2 � 2x3 + x4)(�12 + 24y)]f2(x; y) = �2y � 0:04[(�x+ 3x2 � 2x3)(1� 6y + 6y2) +(3� 6x)(1� y)2y2)]:The viscosity is chosen as 0.01 units, and we take a constant penaltyparameter of � = 10�8. The maximum nodal velocity is approximately 1:2�10�2 units, which corresponds to a Reynolds number of 1.2. The approximatesolution is computed for a sequence of uniform meshes with mesh size h =20



12 ; 14 ; 18 ; 116 ; 132 , and all the approximations are shown for the �rst timestep10�5. The initial condition is taken as the exact solution at the initial timet = 0. Our objective is to examine the rates of convergence for this testproblem, and to compare with the theoretical estimates.Table 4.1 shows the error in the approximate velocity in the L2-norm(k � k0) and H1-norm (k � k1) for the re�ned meshes in Case 1 (bilinears). Theerror in the approximate velocity is plotted against mesh size h on a log-logscale in Figure 4.1. The respective approximate slopes of 1.9026 and 0.9797indicate global rates of convergence. The theoretical rates of convergence inCase 1 in the k � k0 and k � k1 norms are equal to 2 and 1, respectively.Mesh Size L2-norm H1-normh = 1/2 :7746371089279643E � 02 :5754132802187018E � 01h = 1/4 :2463945413680297E � 02 :3099889670988598E � 01h = 1/8 :6504252528721037E � 03 :1551477584896485E � 01h = 1/16 :1641288155366836E � 03 :7734175790649037E � 02h = 1/32 :4107556219923611E � 04 :3861947127641377E � 02Table 4.1: The L2-norm and H1-norm of error in the velocity solution forbilinear elements.The error in the velocity in the norms k�k0 and k�k1 in Case 2 (biquadrat-ics) is shown in Table 4.2. Figure 4.2 shows the error in the approximate ve-locity plotted against mesh size h on a log-log scale. The slopes of the curvesyield rates of convergence for the velocity 2.9628 and 2.0154 in the k � k0 andk � k1 norms , respectively. Hence we �nd that the velocity approximationsin both cases converge towards the exact solution at optimal rates.The second numerical experiment is a validation study for the transportequation (2.5)-(2.8). A test problem is constructed to have in the unit squaredomain and t > 0 analytic solutionc = 102(t+ 1)2x(x� 1)y(y � 1) (4.3)for concentration. The velocity �eld is the same used in the �rst exam-ple (4.1). We assume k11 = k22 = 1, k12 = k21 = 0, and the reaction term istaken to be g(x; y) = �c2 + f; (4.4)
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Mesh Size L2-norm H1-normh = 1/2 :1021730098325111E � 02 :1866760928638470E � 01h = 1/4 :1404786196967832E � 03 :4521962356252536E � 02h = 1/8 :1786013086271515E � 04 :1117877402750865E � 02h = 1/16 :2242721112992155E � 05 :2786660995213754E � 03h = 1/32 :2806896476081326E � 06 :6961697872977085E � 04Table 4.2: The L2-norm and H1-norm of error in the velocity solution forbiquadratic elements.where the function f is given byf = @c@t + u@c@x + v @c@y � k11 @2c@x2 � k22 @2c@y2 + c2:The initial solution is de�ned as the exact solution at the initial time t = 0.We specify essential boundary conditions, c(t; x; y) = 0 from (4.3) evaluatedon the boundary of the unit square domain 
. Of particular interest here isto examine the rates of convergence of the concentration for this test problemand compare them with the theoretical estimates.The transport equation is solved using the bilinear, biquadratic and six-node triangular elements described earlier for a sequence of uniform mesheswith mesh size h = 12 ; 14 ; 18 ; 116 , and 132 . In the case of bilinear elements, we alsocompute the solution at h = 164 . For the convergence study with respect toh we keep a constant small timestep of �t = 10�04. All the approximationsare shown for the �rst time step t = 10�04.The L2-norm of the error in the concentration solution for bilinear andsix-node triangular elements is shown in Table 4.3. The L2-norm and H1-norm of the error for the concentration using bilinear elements are plottedagainst mesh size in Figure 4.3 on a log-log scale. The respective slopes1.9708 and 1.0202 indicate the global rates of convergence, and are in goodagreement with the theoretical predictions 2 and 1, respectively.For biquadratic elements we obtain relative errors in the L2-norm of orderless than 10�14 for any number of elements. This means that within roundo�error we obtain the exact solution as expected.Optimal global rates of convergence are also obtained for six-node triangu-lar elements in both norms as shown in Figure 4.4. (The rates of convergence



Mesh Size 4-node bilinear 6-node triangularh = 1/2 :12873418E + 01 :30613016E + 00h = 1/4 :35371359E + 00 :43871262E � 01h = 1/8 :90379169E � 01 :56366812E � 02h = 1/16 :22716094E � 01 :70867673E � 03h = 1/32 :56865901E � 02 :88027906E � 04Table 4.3: The L2-norm of the error in concentration for 4-node bilinear and6-node triangular elements.
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Figure 4.3: Rates of convergence for the concentration approximation in theL2-norm and H1-norm with bilinear functionsfor the concentration approximation in the L2-norm and H1-norm for thisexample are 2.9480 and 1.9699, respectively.)We also examined the order of convergence of the solution with respectto the time step �t. In view of the above convergence results we select forthis study biquadratic basis functions and a mesh with 2�2 elements. Theapproximate solutions are compared at the time t = 0:1 for values of �tequal to 10�02; 10�03; 10�04 in Table 4.4. The error in the L2-norm is plottedagainst �t on a log-log scale in Figure 4.5. We know that the theoreticaltruncation error for the Crank-Nicolson scheme is O(�t2), and we see an
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Figure 4.4: Rates of convergence for the concentration approximation in theL2-norm and H1-norm with six-node triangular elementsapproximate slope of 2.0397.Time Step Size L2-norm of the error�t = 10�02 :16462243E � 01�t = 10�03 :13438152E � 03�t = 10�04 :13711075E � 05Table 4.4: The L2-norm of error in the concentration solution for a meshwith 2�2 biquadratic elements.Our main objective now is to assess the accuracy of the solutions when thetime step control strategies studied previously are applied to the validationproblem. In particular, we want to see if we can obtain approximate solutionsof the same accuracy as before but with a small number of time steps. Wealso want to verify that the PID controller is robust.To compare the PID timestep control and the strategy developed byWinget and Hughes [21] we again use a grid with 2 biquadratic elementsas in the previous study for convergence of the Crank-Nicolson method. Theinitial time step size is 10�04, and we allow a minimum and a maximum time



1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5

- 
lo

g 
||e

rr
or

||

- log ht

slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397

L2-norm

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5

- 
lo

g 
||e

rr
or

||

- log ht

slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397

L2-norm

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3 3.5

- 
lo

g 
||e

rr
or

||

- log ht

slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397slope = 2.0397

L2-norm

Figure 4.5: Rates of convergence for the concentration approximation in theL2-norm using Crank-Nicolson method with 2� 2 biquadratic elementsstep sizes of 10�04 and 10�03, respectively. Changes in nodal temperatureand concentration are calculate with an input tolerance of 10�05, and thecalculations stop when the time is greater than 0.1.We perform parametric studies of the PID controller for values similarto those used by Gusta�son et al. [11] and also by Coutinho and Alves [4].We choose values of kp ranging from 0.03 to 0.20, kI from 0.03 to 0.40, andkD from 0.003 to 0.02. Table 4.5 shows the L2-norm of the error in theconcentration solution, the number of time iterations, ntstep, the numberof steps rejected, nrejec, for di�erent values of the PID parameters, andthe number total of Newton iterations, newt, and the computational e�ort,ceffort.We can see from Table 4.5 that the error in the approximate solutionat the �nal time is of order 10�06 for all cases studies. Moreover, with thePID control strategy we �nd approximate solutions with a much smallernumber of time steps without any signi�cant loss of accuracy. Observe thatwe need 100 time steps to obtain a solution with the same accuracy whenthe minimum �xed time step is used (Table 4.5).The PID controller is very robust as we also can see from Table 4.5.Although feedback control theory provides techniques to choose the PID



case kp, kI, kD error ntstep nrejec newt ceffort1 0.05 0.05 0.005 .37023368E-05 66 0 132 0.662 0.1 0.3 0.015 .38890581E-05 62 0 124 0.623 0.075 0.175 0.01 .38512072E-05 62 0 124 0.624 0.1 0.16 0.011 .38680409E-05 63 0 126 0.635 0.06 0.13 0.008 .38456781E-05 63 0 126 0.636 0.08 0.216 0.0116 .38684855E-05 62 0 124 0.627 0.15 0.32 0.017 .38897674E-05 62 1 126 0.638 0.2 0.4 0.02 .38896720E-05 62 2 128 0.649 0.04 0.04 0.004 .36271440E-05 67 0 134 0.6710 0.03 0.03 0.003 .35057604E-05 69 0 138 0.6911 0.0 0.175 0.0 .38528566E-05 62 0 124 0.6212 0.075 0.175 0.0 .38512100E-05 62 0 124 0.6213 No control .13711077E-05 100 0 200 114 Winget & Hughes .32976399E-05 66 0 132 0.66Table 4.5: Results for the PID controller using bilinear elements on a 2�2grid.parameters, robustness is required when a general �nite element method isused for a wide range of di�erent simulations. The variation in the numberof time iterations is very small if we keep kp in the range 0.05 to 0.10, kIfrom 0.05 to 0.30, and kD from 0.005 to 0.015.Cases 3, 11, and 12 are plotted in Figures 4.6, 4.7 and 4.8, respectively.We also show results using the step size selection strategy developed byWinget and Hughes in Figure 4.9. This approach took 66 time steps with norejected steps.4.2 Isothermal Reaction on a Catalyst SlabIn this section we study an example of di�usion with homogeneous chemicalreaction. Our objective is to validate our code with respect to the combineddi�usion-reaction process. We discuss isothermal reaction inside a porouscatalyst and compare our results with the studies performed by Finlayson [6]and Petersen [18].When a catalyst particle made from a porous material impregnated with a
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catalytic substance is submerged in a gas stream, the reactant A di�uses intothe particle, react on the catalytic surface, and the product B di�uses out,A! B. We assume that the process is isothermal, i.e., the heat generated bythe reaction can be neglected, and homogeneous, the chemical change takesplaces in the entire volume of the 
uid. We also assume that the reactionmechanism is known.Consider a catalyst section exposed to reactant A with concentration ĉ atthe surface. The rate of disappearance of reactant A is given by the followingsecond-order, irreversible reactionR = �kc2where c is the concentration of reactant A in the neighborhood of the surface,and k is a rate constant. The equations of the problem can be obtained ap-plying the shell mass-balance method and Fick's �rst law to describe di�usioninside of a porous catalyst [1]. The equation of the problem is@c@t �Dr2c = �kc2 (4.5)with boundary conditions�k @c@x = 0 on @
 � @
1 (4.6)c = ĉ on @
1 (4.7)and initial condition c(x; y; 0) = ĉ0(x; y) in 
 (4.8)where D is the e�ective di�usivity measured experimentally, 
 = [0; L]�[0; L]is the section, and @
1 is the right side of the domain.The problem is scaled as follows: x�; y� = x; y=L, t� = tD=L2, and c� =c=ĉ. Substituting these relations into (4.5), (4.6), (4.7) and (4.8), we obtainthe scaled form of the equations@c�@t� �r2c� = ��2c�2 (4.9)@c�@x� = 0 on @
� � @
�1 (4.10)c� = 1 on @
�1 (4.11)c�(x�; y�; 0) = c0(x�; y�) in 
� (4.12)



where 
� = [0; 1]� [0; 1] is the dimensionless section, @
�1 is the right side ofthe domain, and � is the Thiele modulus de�ned as� = qkĉL2=D:For convenience, we drop the superscript * henceforth.We are interested on steady state solutions of the problem for di�erentvalues of the Thiele modulus �. We assume that the steady state occurswhen kcn+1 � cnk < �c kcn+1kwhere n denotes the timestep index, k � k denotes Euclidean norm, and �c isequal to 10�7 in this example. Since we are simulating a 1-D problem, wechoose in all cases a mesh with 16�1 bilinear elements. We use the timestepcontrol to calculate all approximate steady state solutions.The e�ectiveness factor � gives the ratio of the amount reacted withdi�usion to the amount that would be reacted if the concentration were ev-erywhere the same, and equal to the value at the boundary. In this example,the e�ectiveness factor can be de�ned by the equation� = R 10 �2c2dxR 10 �21dx : (4.13)Finlayson [6] calculates approximate solutions for the problem on theinterval [0,1] using the orthogonal collocation method. He shows that for oneinterior collocation point the e�ectiveness factor can be expressed by� = 16 + 524 [�2:5 + (6:25 + 10�2)1=2]2�4 : (4.14)The approximation is accurate for � � 2, and for larger value of � a higherapproximation is required to improve the results. The e�ectiveness factor� is plotted versus the Thiele modulus � in Figure 4.10 for the collocationmethod and Galerkin method. We can see that the two curves coincide for� � 1:2.For large values of � Petersen [18] shows that an asymptotic solution isavailable. In this case the general formula becomes� = s23 1�: (4.15)



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
ffe

ct
iv

en
es

s 
fa

ct
or

Thiele modulus

Galerkin approximation
Collocation approximation

Figure 4.10: E�ectiveness factor as a function of Thiele modulus for colloca-tion method and Galerkin method.Figure 4.11 shows the e�ectiveness factor � plotted against the Thiele mod-ulus � for values of � � 3. Observe that accurate solutions are also obtainedfor large values of �. Consequently, the Galerkin formulation gives adequateapproximations for all values of �. The steady state solutions for di�erentvalues of the Thiele modulus are shown in Figure 4.12.4.3 Nonisothermal Reaction on a Catalyst Sec-tionThe problem studied now involves chemical reaction on a catalyst sectionwith heat e�ects included. The process is highly nonlinear because of an ex-ponential chemical reaction term arising from the temperature dependenceof the chemical reaction rate. To obtain convergence of the Newton Raphsonmethod used to solve the nonlinear system (2.26) resulting from the dis-cretization in space of the transport equation by the �nite element method,we need to choose a very small timestep. To increase the robustness of ourtime scheme, we use the timestep control studied before. We �rst consider annonisothermal steady state case, then a time-dependent nonisothermal case.
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Consider a �rst-order, irreversible reaction in a catalyst section 
 =[�L; L]� [�L; L] with reaction rate given byR = �a c exp(��E=R̂T );where T is the absolute temperature, �E is the activation energy, R̂ is thegas constant, and a is constant. The equations of the problem are�cp@T@t + �cpu � rT � kr2T = a c exp(��ER̂T ) (4.16)@c@t + u � rc�Dr2c = �a c exp(��ER̂T ); (4.17)with initial conditions T (x; y; 0) = ~h1(x; y)c(x; y; 0) = ~h2(x; y); (4.18)and boundary conditions @T@n = @c@n = 0 on @
1�k@T@n = hg(T � ~T ) on @
2 (4.19)�D @c@n = kg(c� ~c) on @
2;where � is the density, cp is the speci�c heat, k is the thermal conductivity,D is the di�usivity, hg is the heat transfer coe�cient, kg is the mass transfercoe�cient, n is the unit outward normal, and @
 = @
1[@
2 is the boundaryof the domain.The equations can be scaled as follows: x�; y� = x; y 1L , u�; v� = u; v tsL ,c� = cc0 , T � = TT0 , and t� = tts . Substituting these relations into (4.16), (4.17), (4.18)and (4.19), we obtain the dimensionless unsteady equations for the non-isothermal problem@T �@t� + u� � rT � � 1M1r2T � = �2c��M1 exp(
(1� 1T � )) (4.20)@c�@t� + u� � rc� � 1M2r2c� = ��2c�M2 exp(
(1� 1T � )); (4.21)



with initial conditions T �(x; y; 0) = h1(x; y)c�(x; y; 0) = h2(x; y); (4.22)and boundary conditions@T �@n = @c�@n = 0 on @
�1�@T �@n = Nu2 (T � � g1(t)) on @
�2 (4.23)�@c�@n = Sh2 (c� � g2(t)) on @
�2;where M1 = �cpL2=kts, M2 = L2=Dts, Nu = hg2L=D is the Nusselt number,Sh = kg2L=D is the Sherwood number, � = qk0L2=D is the Thiele modulus,
� = [0; 1]� [0; 1] is the dimensionless section, and @
� = @
�1 [ @
�2 is theboundary of the domain. Here k0 = a exp(�
). The dimensionless variables
 and � are de�ned as 
 = �ER̂T0 ;� = (��HR)c0DkT0 ;where ��HR is the heat of reaction. For convenience, we drop the super-script * henceforth.First we solve the nonisothermal case in steady state under conditionsin which the Nusselt and Sherwood numbers are very large. The boundaryconditions are @T@n = @c@n = 0 on @
1T = 1:1 on @
2c = 1:0 on @
2where @
2 is the right side of the unit square 
, and @
1 = @
� @
2. Thefunctions h1 and h2 in (4.22) de�ning the initial conditions areh1(x; y) = h2(x; y) = 1 + sin(�x)sin(�y):



The analytic solution for the Stokes problem isu(x; y) = 100x2(1� x)2(2y � 6y2 + 4y3)v(x; y) = 100y2(1� y)2(�2x + 6x2 � 4x3) (4.24)where the viscosity � = 0.01, and the pressure is p(x; y) = 100(x2 � y2). Wecalculate the approximate solution for the Stokes problem, substitute thevelocities into the transport equation, and solve for the concentration andtemperature of the problem. To �nd the velocity �eld we use biquadraticbasis functions in a 4 � 4 grid with 2 � 2 point integration of the penaltyterm. Figure 4.13 shows the velocity for the Stokes problem.
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Figure 4.13: Velocity for Stokes 
ow.We calculate the steady state approximate solution for the Thiele modulus� = 0.8, � = 0:6, 
 = 20, M1 = 176, M2 = 199, and a grid with 8 � 8bilinear elements. We assume that the steady state occurs when the followingcondition is satis�edk(Tm+1 �Tm) + (cm+1 � cm)kkTm+1 + cm+1k < �where m denotes the timestep index and k � k denotes Euclidean norm. Theinitial time step size is 10�03, and the minimum and maximum time step sizes



allowed are 10�03 and 10, respectively. A tolerance of 10�04 was supplied forchanges in nodal temperature and concentration, and � = 10�04. We need tostart with this small timestep to obtain convergence of the Newton sequencein the transport equation.We perform parametric studies of the PID controller for values aroundthose used by Gusta�son et al. [11] and also by Coutinho and Alves [4]. Wechoose values of kp ranging from 0.03 to 0.20, kI from 0.03 to 0.40, and kDfrom 0.003 to 0.02.Table 4.6 shows for di�erent values of the PID parameters the number oftime iterations, ntstep, the number of steps rejected, nrejec, the number ofNewton iterations, newt, and the computational e�ort, ceffort. We need about800 Newton iterations to obtain the solution applying the PID control, incontrast with 2998 Newton iterations (case 10) when a �xed timestep is used.We have in this example a 3.75 times improvement in the computational e�ortto compute the solution within the same accuracy.case kp, kI , kD ntstep nrejec newt ceffort1 0.075 0.175 0.01 240 7 800 0.272 0.1 0.3 0.015 232 11 792 0.263 0.05 0.05 0.005 282 1 897 0.304 0.1 0.16 0.011 242 7 807 0.275 0.06 0.13 0.008 247 6 819 0.276 0.08 0.216 0.0116 237 9 800 0.277 0.2 0.4 0.02 229 14 791 0.268 0.03 0.03 0.003 315 0 981 0.339 0.0 .175 0.0 241 8 807 0.2710 No Control 1101 0 2998 111 Winget & Hughes 264 8 876 0.29Table 4.6: Results for the PID timestep controller and Winget & HughesapproachThe PID control is robust since the number of Newton iterations doesnot change too much for the di�erent values of the PID parameters. We canalso observe that the number of rejected timesteps is relatively small. Theresults for Winget and Hughes approach [21] are presented in case 11. ThePID controller �nd the steady state solution a little faster than Winget and



Hughes approach. Figure 4.14 and 4.15 show the timestep size against timefor case 1 and Winget and Hughes approach, respectively. We can observethat the PID control produces a very smooth curve. The initial temperaturepro�le and the steady state solution are shown in Figure 4.16.Next we solve the unsteady problem (4.20), (4.21), (4.22) and (4.23) withM1 = 176, M2 = 199, Nu = 55.3, Sh = 66.5, 
 = 20, � = 0.6, and �= 0.8. The velocity �eld is the same calculated in the steady state problem(Figure 4.13). The approximate solutions are calculated using a grid with 8�8 bilinear elements. We �rst obtained the approximate solution for a constanttimestep size of �t = 0.05. Figure 4.17 shows the transient temperaturedistribution in a catalyst section at times t = 0, 1, 5, 10 and 20.For a �xed time equal to 20, we compare approximate solutions using thePID controller and Winget and Hughes approach. We start with a timestepsize of 0.05, and we allow minimum and maximum time steps of 0.05 and5, respectively. The solutions are obtained with a tolerance of 10�06 for thechanges in nodal temperature and concentration. The PID parameters arekp = 0.075,ki = 0.175 and kd = 0.01.Table 4.7 shows the results for each case studied. We obtain the solu-tion with 423 Newton iterations using the PID controller, and we need 1223Newton iterations with a �xed timestep of 0.05. Thus, we have obtainedthis solution 2.89 times faster. Here we also obtain the solution using thePID controller a little faster than using Winget and Hughes approach. Fig-ure 4.18 and 4.19 show the timestep size against time for the PID controllerand Winget and Hughes approach, respectively.case ntstep nrejec nnewt ceffortNo Control 400 0 1223 1PID Control 104 1 423 0.34Winget&Hughes 112 1 433 0.35Table 4.7: Results for the transient catalyst problem with timestep controland Winget and Hughes approach.
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Figure 4.14: Timestep variation using the PID controller for case 1 (steadystate problem).
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Figure 4.15: Timestep variation using Winget and Hughes approach (steadystate problem).
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Figure 4.16: Initial temperature pro�le and steady state solution using bilin-ear elements on a 8�8 grid (� = 0.8).
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Figure 4.17: Evolution of temperature solution using bilinear elements on a8�8 grid
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Figure 4.18: Timestep variation using the PID controller (transient problem).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

T
im

e 
S

te
p

Time

Winget and Hughes approach

Figure 4.19: Timestep variation using Winget and Hughes approach (tran-sient problem).



4.4 Boundary Control ApplicationTo test our boundary control, we solve the nonisothermal problem (4.20)and (4.21) in steady state with initial conditionT (x; y; 0) = (1 + cos(�=2x)) bcc(x; y; 0) = 1 + cos(�=2x)and boundary conditions@T@n = @c@n = 0 on @
1T = bc on @
2c = 1:0 on @
2where @
2 is the right side of the unit square 
, @
1 = @
 � @
2, and bcis the imposed temperature on the boundary @
2 update at each step of theboundary control. The constants of the problem are: � = 0.2, � = 0.6, 
 =20, and M1 = M2 = 1.0. The velocity �eld is zero, u = v = 0. The targetsolution is the approximate solution of the problem with bc = 1.0 on @
2,i.e., T = 1.0 on @
2. The target value, ctarg, is the target temperature at themiddle of the domain, ctarg = 1.5283911.The PID constants of the boundary control are kp = 0.05, ki = 0.175, kd= 0.01, �bcm = 0.1, and we stop the process when � = 10�02. The steadystate solutions are calculated using the timestep control proposed here, anda grid with 8 � 8 bilinear elements. First, we start the boundary controlprocess with bcm = 0.3 (Case 1) and, then with bcm = 1.2 (Case 2).Figure 4.20 and Figure 4.21 show the values of the temperature on @
2calculate by the boundary control at each iteration for Cases 1 and 2, respec-tively. The �nal value of bcm+1 obtained by the boundary control is 1.0063with m = 13 in Case 1, and 1.0060 with m = 27 in Case 2. The approximatesteady state temperature and concentration in catalytic for y = 1.0 (Case 1)with the correspondent target solution are shown in Figures 4.22 and 4.23,respectively.We observe that the control works correctly in both cases. However, thecontroller do not produce a smooth sequence of boundary steps and oscillatestoo much around the target solution. We can observe in both cases that theboundary control produces excessive growth and reduction of the boundarystep after it gets closer to the target solution. We have not de�ned here
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boundary step limiters. Setting a maximum boundary step of 0.3 in Case 1,we can reduce the number of steps of the boundary control from 14 to 6, seeFigure 4.24.
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Chapter 5ConclusionsWe introduced an adaptive timestep selection scheme based on feedback con-trol theory to increase the robustness of our �nite element formulation ofcoupled incompressible viscous 
ow and nonlinear transient heat and masstransfer. Our �nite element 
ow formulation is based on a penalty Galerkinmethod and the nonlinear reactive transport application utilizes a Galerkinapproach. The algorithm employs an iteratively decoupled scheme in thepresent work.We solve a representative test problem for 2D coupled viscous 
ow andreactive transport, and results are compare with �xed timestep, an adaptivetimestep scheme from the literature, and our PID control approach. We alsostudied a highly nonlinear process involving chemical reaction on a catalystsection with heat e�ects included.With the PID control strategy we �nd approximate solutions with a muchsmaller number of steps without any signi�cant loss of accuracy. For instance,we have a 3.75 times improvement in the computational e�ort to compute thesolution within the same accuracy in the nonisothermal reaction problem ofSection 4.3. Some promising results with PID control for timestep selection,such as, smooth variation in timestep suggest that a robust algorithm ispossible.We design a PID controller to solve a simple chemically reacting systemthrough automatic feedback control applied to the boundary conditions. Noattempt is made to design an optimal feedback control law. The PID bound-ary control shows ine�cient at present - others approaches like optimizationappear preferable. 47
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