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Chapter 1

Introduction

In the last two decades there has been a rapid expansion of research and
applications for finite element simulations of fluid flow problems and trans-
port processes. The maturation of the subject and the increasing power of
computers enable the method to be applied a wide variety of flow problems.
There are applications ranging from viscous incompressible non-newtonian
flows to chemically reacting compressible high speed aerodynamic flows, and
also diverse applications to complex fluid flow and species transport. For
general treatments of the method see, for instance, Carey and Oden [3].

The need to develop improved algorithms has increased with the com-
plexity of research applications. For instance, several adaptive time-stepping
strategies have been studied as a means to provide solutions of complex
coupled problems more efficiently. Errors and computational efficiency in
transient (and steady state) solutions can be controlled using an automatic
timestep selection strategy.

Adaptive techniques for automatic timestep determination are usually
based on approximate local truncation error measures or on purely heuristic
considerations. Winget and Hughes [21], Johan et al. [14], and Jacob and
Ebecken [13] develop stepsize selections based on heuristic rules for transient
heat conduction, compressible Navier-Stokes flows and structural dynamics
problems, respectively. We remark that adaptive timestep selection can be
viewed as an example of a feedback control problem [11, 12].

Schemes based on control theory used feedback from the computed so-
lution to select the new timestep in accordance with a desired accuracy. In
general, the timestep selection schemes are based on the control of maxi-
mum change in the key variables (pressure, concentration, velocities, etc.).



Coutinho and Alves [4] use this approach in their work of finite element sim-
ulation of fluid displacements in porous media. In the present studies we
address the utilization of feedback control algorithms in conjunction with
finite element analysis for flow and reactive transport problems.

Control theory has been extensively developed, particularly in electrical
engineering and is also used widely in chemical engineering applications. Sim-
ple feedback control laws has been used with success to suppress the vortex
shedding behind a circular cylinder [17, 10]. Recently, interest has increased
in optimal flow control of viscous flows [20, 8, 9]. These problems own their
complexity because of the highly nonlinear constraints given by approxima-
tions of the Navier-Stokes equations. To have an efficient computational tool
for flow control or optimization, they use techniques to reduce the size of
the problem to low-order systems models. The potential of control theory in
conjunction with finite elements is obvious, and yet there have been relatively
few focussed studies in this direction.

The focus in our work is the use of a Proportional-Integral-Differential
(PID) control approach for automatic timestep selection. We also design a
PID controller to solve a simple chemically reacting system through auto-
matic feedback control applied to boundary conditions. No attempt is made
to design an optimal feedback control law. The class of problems under
investigation arise from coupled incompressible viscous flow and nonlinear
transient heat or mass transfer. The finite element flow formulation is based
on a penalty Galerkin method and the nonlinear reactive transport applica-
tion utilizes a Galerkin approach.

The outline of the treatment is as follows. In the next chapter we pre-
sented the class of coupled flow and transport problems under investigation.
The finite element formulation and solution approach is also given. Then,
in chapter 3 we describe a simple PID control approach and indicate how it
can be applied to timestep control and boundary control. Following this, a
representative test problem for 2D coupled viscous flow and reactive trans-
port is stated and results compared for fixed timestep, an adaptative timestep
scheme in the literature and our PID control approach. Flow and species con-
centration results at the final time are also given. In section 4.2 we discuss
isothermal reaction inside a porous catalyst. Next, we apply the timestep
control algorithm to a highly nonlinear process on a catalyst section with
heat effects included, and we show a simple example to test our boundary
control approach. Finally, we summarize the main conclusions of this work
in the last chapter.



Chapter 2

Coupled Viscous Flow and
Transport

We are investigating applications arising in analysis of coupled incompress-
ible viscous flow and heat or mass transfer. In the present work the class
of problems under investigation will be restricted to transient Stokes flow
and coupled transient reaction-convection-diffusion processes. The algorithm
employs a decoupled scheme, where the Stokes equations are solved first, in
each timestep. Then concentrations and temperatures are calculated, with
the velocities as input in the transport equations. The finite element flow
formulation is based on a penalty Galerkin method and the nonlinear reactive
transport application utilizes a Galerkin approach.

The flow is determined by approximate solution of the classical unsteady
Stokes problem: find the velocity-pressure pair (u,p) satisfying

0
8—1;—1/Au+Vp = f (2.1)
Vu = 0 (2.2)
with initial conditions
u(x,0) =uy(x) inQ (2.3)
and subject to prescribed boundary conditions
u=10 ondQ x [0,7]. (2.4)

Here f is the applied body force, v > 0 is the kinematic viscosity, €2 is an
open bounded domain in IR* with sufficiently smooth boundary 09, T is a
specified time, and the fluid density has been incorporated in p.



The transient transport equation is

%+u-VcV'(kVC)=g(C) inQand ¢ >0 (2.5)

with initial condition
o(x,0) = eo(x) (2.6)

and boundary conditions for species concentration and flux

c = ¢ on 0 (2.7)
—k@ = fBc—7) 05 (2.8)
5, = Ple—7) on o :

where c is the concentration vector of component species (including temper-
ature), u is the velocity tensor, k is the diffusion tensor, g(c) is the chemical
reaction source/sink term, and + is a known value of the concentration vector
in the medium. From (2.5) it is clear that the time rate of change (evolution)
of the species component fields depends on advection, diffusion and chemical
reaction, respectively. Here we assume that convective and diffusive effects
are of the same order.

2.1 Penalty Finite Element Formulation for
Stokes Problem

For simplicity and convenience we use a penalty method to enforce the in-
compressibility constraint. The penalty approach for the Stokes problem is
designed to determine an approximate formulation involving only velocities
and not pressures. Hence the size of the problem is reduced accordingly.
The divergence-free condition V - u = 0 is viewed as a constraint condition
embedded in the variational problem by using a penalty term.

The classical approach for formulating variational problems with con-
straints is by use of Lagrange multiplies. We may obtain the penalized
variational formulation of the Stokes problem by introducing the perturbed
Lagrangian

0
L(u,p) :/Q(a—ltl-u + %Vu:Vu — pV-u — %pQ — f-u)dz (2.9)



where € is the penalized parameter (0 < € < 1), and the expression Vu:Vu
represents the dyadic product. Taking variations with respect to u at the
stationary point (u,p) and setting §L = 0, we get

ou € 9
/Q(E-v—i-Z/Vu.Vv—pV-v—ip —f-v)de=0 (2.10)

for arbitrary admissible v.= du. Now, if we take variations with respect to
p at (u,p), and we set L = 0 for arbitrary admissible ¢ = dp, we have

./Q(—ep — Vu)gds =0. (2.11)

From equation (2.11) we see that the pressure approximation for the
penalty formulation follows as

1
pt = —-Vu", (2.12)
€
where u€ is the solution to the penalty problem.

The penalty form can be obtained substituting p® in (2.10): find u € V/
satisfying the initial condition with u® = g on 0f2 such that

/(5u ‘v + vVu:Vv + l(V -u)(V-v))dr = / f-vdx, (2.13)
o Ot € Q
for all admissible v € V with v.= 0 on 0f2. For sufficient regular data f, we
can prove that as € — 0, u® will converge to u, and p® will converge to the
pressure p. For a discussion of existence and uniqueness see, e.g., [3].
Consider now approximation of the variational problem (2.13) using finite
elements. Let V" C V be the finite element approximation space for veloc-
ities. In the usual way, the flow domain 2 is discretized to a union €2, of
elements ()., e = 1,2,... E. Lagrange piecewise polynomials are used as global
basis functions ¢;, j = 1,2,...,N, for the approximate subspace V", In this
study we use continuous piecewise bilinear and piecewise biquadratic basis
functions defined on a uniform discretization €2, of rectangular elements.
The direct approximation of the penalized variational problem (2.13) is
to find u® € V" satisfying the initial condition such that

; 1
/(a;h-vh +vVuy: Vv, +—(V-u;)(Vvy)) doe = / f-v, do for all v, € VI
Q B 5
(2.14)



with pressure approximation given by
€ 1 €
Dy = —EVuh. (2.15)

Introducing the approximation

N
(%) = 3 uly (), (2.16)
s=1

for the components u$ of the velocity and using wy, = (¢,,0) and (0, ¢,) at
interior node r, we have the following finite element system

*

_ _ 1 - _
M™Y. L JAu* + -Bu' = F (2.17)
dt €

where u* = (u;, u,)”, and

SERPSENENES R

0 M 0 A B!, B, F,
with
my = /Qh¢i¢j da
my = [ (00:06)s + (6,(6,),) d
(o = [ (00:(6)s dr
Gus = [ (60)u(6), dr (2.18)

By = [ (6046, dr
(£ = [ fioide (A= [ foorde

If the penalty term in (2.17) is integrated exactly then the method will
not yield solutions uj, that converge to u, as € — 0. The velocity field u;, — 0
as € — 0 and the constraint equation V - u = 0 dominates in this limit. The
discrete finite element solution is said to “lock” [see, e.g.,[22],[16],[15]]. To
obtain an approximate solution other than the “locking” solution, we use
reduced integration for evaluating the penalty integral. The penalty term is



approximately integrate using a Gauss quadrature rule of lower order than
that required for exact integration.

If we denote I(-) the reduced quadrature rule for the penalty integration,
the penalty term in (2.17) is given by

1o, 1
“Bu’ / [(V-u,V-vy) dr. (2.19)
Qp

In the numerical studies we consider two special cases: continuous piecewise
bilinear basis of the 4-node bilinear rectangle with one-point Gauss quadra-
ture rule for the penalty term (2.19) and continuous piecewise biquadratic
basis of the 9-node biquadratic rectangle with (2 x 2) Gauss quadrature rule
for the penalty term (2.19).

The semidiscrete Stokes’s system is integrate implicitly using a Crank-
Nicolson scheme with timestep At. At each timestep we have to solve a
linear system of the form

Pu;, , =d (2.20)
where
At 1
P = M+ 7(VA+ -B)
€
At At F,.+F,
d = (M- —(rA+- 'B)u - (5

and n denotes the time index.

2.2 Finite Element Formulation for the Trans-
port Equation

To find approximate solutions for the transport problem corresponding to
(2.5)-(2.8), we use a traditional Galerkin finite element formulation. For
simplicity we show the formulation for the particular case of one transport
component ¢. The extension to the case of more than one species is not
difficult. We can handle up to nine different species in our code.

A week variational statement may be obtained by integration by parts
of the diffusion term in a standard residual formulation, and then using the
Gauss divergent theorem. The variational problem reduces to solving for ¢



satisfying the initial conditions such that

/(%w—l—u Vew+kVe-Vw) dT—I—/ wde—/gz( Nwdz (2.21)
for all admissible test functions w € Hj.

We may construct a semidiscrete Galerkin finite element method intro-
ducing a spatial discretization and an appropriate finite element space for the
admissible functions in (2.21). Let €, denote the finite element discretiza-
tion of 2, and H C Hj be the finite-dimensional subspace spanned by finite
element basis ¢;, © = 1,2,... N. The finite element problem is to find ¢, €
H," satisfying the initial condition such that

ey
/ (Lwh—l-uh Vepwn+kVey-Vwy, dr—l—/ (cp —y)wpds —/ gi(c)wpdx
O

ot
(2.22)
for all w, € Hy". The finite element approximation for the concentration ¢y
at any time t can be expressed as

cn(x,t) =

t)1h; (x) (2.23)

1M
bﬁ

where the nodal solution values ¢; depend continuously on time. We have in
this studies continuous piecewise basis functions defined by the 4-node bilin-
ear rectangle, the 9-node biquadratic rectangle and the 6-node biquadratic
triangle.

Introducing (2.23) into (2.22) and setting wy, = ¢;, i = 1,2,...,N, we have
the resulting semi-discrete ODE system for the nodal vector c

Milit +B(u)c+Dc=g(c) (2.24)

where
mij = /Qh%‘%‘ dx
by = /Qhu-ijwidx
dy = [ kv Vo, dot /8 . By ds

Qp

9i = /nh g(c)i d:r+/8m Yi; ds (2.25)



We integrate the ODE system implicitly using a Crank-Nicolson scheme
with timestep At. Since the chemical reaction source term can be a nonlinear
function of the unknown concentration, we have to solve at each timestep At
a nonlinear system of the form

F(c") =0 (2.26)
where A A
F(cn+1) —_ (M + 7(B =+ D)) cn+1 - 7g(cn+1) + G
with At At
G=-(M- ?(B +D))c" — 7g(c")

and n denotes the timestep index.
The nonlinear system (2.26) is solved by Newton’s method in the present
study. If we define U = ¢"*!, we construct and solve the linear system

JUH — Uk =—F (2.27)
where UY is given, with
At At g -,
=(M+—(B+D)) - =—-=
J=M+—(B+D)) - —=5(U")
and At At
F = (M+7(B+D))U’“ - —g(UH + G

for each iterate UL, Here the solution of the linear system (2.27) is also
obtained using a frontal solver. The timestep may be chosen adaptively and
in the next section we describe one possible strategy for timestep selection
that utilizes a PID control scheme based on the approach in Coutinho and
Alves [4].



Chapter 3

Adaptive Control

3.1 PID Control

Control can be defined as the process of making a system of variables follow
a particular value, called the reference value. Closed-loop process control
uses a measurement of the controlled variable and feedback of this signal
to compare it with a reference value. The feedback is supplied from an
output sensor of some sort, and feeds an input of the controller to tell the
controller how far the output is from its reference value. The controller uses
this information to correct the output error. This kind of process is used
in applications ranging, for example, from air conditioning thermostats to
guidance and control of aircraft.

A simple feedback system consists of an actuator, a control device often
called controller, the process (or plant), and an output sensor, as shown
in Figure 3.1. The central component of a feedback control system is the
process, whose output is to be controlled. In our case we are interested in
process control. The difference between the desired output and the actual
output of the system measured by an sensor is equal to the error, which is
adjusted by the controller. The actuator is the device that can influence the
controlled variable of the process. The output of the control device causes
the actuator to modulate the process in order to reduce the error.

One example of a feedback control system is the room-temperature con-
trol system of a house [7]. The plant is the house, the thermostat is the
output sensor, the gas valve is the controller, and the furnace is the actuator.
Suppose the thermostat is turned on when both the temperature in the house

11



Desired ™ Error Controller Actuator Process Actual
output output
Measured q Feedback
ensor
output

Figure 3.1: A feedback system block diagram of a basic closed-loop control
system

and the outside temperature are below the reference temperature. The gas
valve will be open causing the furnace to fire and heat to be supplied to the
house. This is a closed loop system.

One of the most widely used algorithms for closed-loop control is the
three-term control, known as the Proportional-Integral-Differential (PID)
control loop. The popularity of PID controllers can be attributed to their
functional simplicity and to their robust performance in a large range of oper-
ating conditions. The objective in using PID control algorithms is to control
the output along a smooth curve (vs. time) towards the set-point while min-
imizing overshoot, the amount the system output response proceeds beyond
the desire response.

A PID control algorithm includes a term which is proportional (P) to the
output error, a term proportional to the integral (I) of the error, and a term
proportional to the derivative (D) of the error, and therefore has the form

_S(r) = k {9(7) + Ti /0 0(7)d7 + Tp d(r) } (3.1)

I dr

or

—S(7) = kO(7) + kpb(7) + kp(7) (3.2)

where S(7) is the controller output deviation, S(7) implies time rate of
change of S, §(7) is the error, k is the proportional gain, T is called the
integral, or reset time, T is the derivative time, and k;, kp and kp are
the integral, proportional and derivative parameters, respectively. In order
to adapt the continuous-time model to a discrete environment, we replace



derivatives by differences in (3.2) to obtain:
_(Sn+1 - Sn) = k[ 071 + kP (gn - gnfl) + kD (Gn - 207171 + 07172) (33)

The proportional term acts like a rubber band in an analogous mechanical
system: it exerts a restoring force proportional to how much the rubber
band is stretched from its original shape. The proportional term can reduce
error responses to disturbances as we adjust kp up or down. The integral
term is added to reduce or eliminate constant steady state errors. It can do
this because it sums up errors over time. The derivative feedback is used
in conjunction with proportional and/or integral feedback to increase the
damping of the dynamic response. In general, it also improves the stability
of the system. These three kinds of control attempt to provide a good degree
of error reduction simultaneously with acceptable stability and damping.

Designing a particular PID control loop requires merely tuning the con-
troller. The constants kp, k;, and k; have to be adjust to yield satisfactory
control. Increasing kp and k; tends to reduce system errors but may lead to
instability, while increasing kp tends to improve stability. The selection of
the parameters is basically a search in a three-dimensional space. There are
several methods and rules proposed to solve this parameter selection prob-
lem. Dorf and Bishop, [5], for instance, show many design methods using
root locus and performance indices. In the next section we describe one
possible strategy that utilizes a discrete PID control scheme for automatic
timestep selection based on the approach in Coutinho and Alves, [4].

3.2 Timestep Control

The particular problems considered here arise from coupled incompressible
viscous flow and nonlinear transient heat or mass transfer. The nonlinearity
enters through a chemical reaction source or sink term in the transport equa-
tion. Depending on the nature of the data and nonlinearity, we may need to
choose a very small timestep to obtain convergence in solving the nonlinear
system (2.26). In general the problem occurs in the beginning of the implicit
time integration scheme. To increase the robustness of our time scheme we
use adaptive timestep selection based on feedback control theory.

Many studies have been made to improve stepsize selection in numerical
integration of ordinary differential equations; e.g. in the finite element field
we can find timestep selection strategies based on heuristic rules such as in



Winget and Hughes, [21], for transient heat conduction. Gustaffson et al.,
[11], and Hairer and Wanner, [12], viewed the problem of automatic timestep
selection as examples of feedback control problems. This approach was used
by Coutinho and Alves, [4], in their work of finite element simulation of
miscible displacements in porous media.

Most, timestep schemes are based on controlling accuracy as determined
by truncation error estimates (e.g. Prediction-Modification-Correction). The
objective of timestep selection is to minimize the computational effort to
construct an approximate solution of a given problem in accordance with a
desired accuracy. In general, timestep selection can be expressed as

tol
Atpor = (i> At (3.4)
€n
which can be rewritten as
— (log Atpy1 —log Aty,) = (loge,, — logtol) (3.5)

where tol is some input tolerance, e, is an estimate of the local truncation
error, and At, is the timestep in the previous iteration. Equation (3.5) is
equivalent to equation (3.2) if we take kp = kp = 0, k; = 1, and

S, = logAt, (3.6)
0, = loge, — logtol (3.7)

Thus, the timestep selection strategy (3.4) can be interpreted as a simplified
version of the standard integral feedback controller. We recognize log At,
as the control variable, the deviation (loge, — log) as the control error, and
logtol as the set point.

Figure (3.2) shows a block diagram of the feedback control problem. The
process takes the timestep At, as a input, calculates the solution of the
problem, and produces an error estimate ¢,, that is fed back to the controller.
The controller tries to select the new timestep in a such way that the quantity
log e, comes as close as possible to logtol.

Using these ideas we can design a new stepsize control algorithm using
the standard discrete PID controller (3.3),

_(Sn+1 - Sn) = k[ gn + kP (gn - gnfl) + kD (gn - 207171 + 9n72)-



tol

At Error
Controller Plant

Feedback

Figure 3.2: Stepsize selection viewed as a control problem.

Substituting the definitions (3.6) and (3.7) into the above equation, we have

— (log Aty —logAt,) = ki(loge, — logtol) +
kp [(loge, — logtol) — (loge, 1 — logtol)] +
kp[(loge, —logtol) — 2(loge, — logtol) +
(loge, — logtol)]

which can be rearranged as,

€n1\kp tol Ky En1
Atpiy = (—)" ()" (——
€n €n €n€n—2

ko Aty (3.8)

where tol is some input tolerance, e, is the measure of the change of the
quantities of interest in time step At,, and kp, k; and kp are the PID
parameters.

An estimate of the solution change is compared with the specified accu-
racy requirement, and the result is fed back to calculate the new time step.
The controller tries to select the stepsize such that e, comes as close as pos-
sible to the input tolerance, tol, along a smooth curve. Figure (3.3) shows a
flow chart of our PID control algorithm. For time step n = 2, 3, ... we may
proceed sequentially as follows:

1. Given (At)min, (A)maz, kp, ki, kp, and tol, and starting with e, 5/tol
= e, 1/tol = 1.0, and At = At, = some initial timestep value.

2. calculate e,,.
3. if e, > tol reject the timestep:

o 1"t =" . At,



e At,, 1 = max (ZﬂAtn, At

o "l ("

e calculate At, 1 using (3.8)
[ ] Atn+1 = max (Atn+1, At
[ ] Atn+1 - min (Atn+1, At

min)
maw)

4. €n—2 = €pn—1, En—1 = €.

In the present work the measure of the relative change e, of the solu-
tion (e.g. concentration, temperature, velocities) over a timestep is evaluate

by computing %7;0“””7 where ¢" is the approximate solution at time t",
and || - || denotes the Euclidean norm. We supply timestep limits, (At)n

and (At)maz, to incorporating the anti_windup effect, according to control
theory [5].

If a timestep gives an unacceptable value of ¢,, the step is rejected. Then
the step is repeated with a scaled timestep size based on the magnitude of the
error relative to the tolerance. However, we find in numerical experiments
that the number of rejections is very small, producing a smooth sequence of
timesteps as we will see in chapter 4. In our algorithm, if the sequence of
iterates of the nonlinear system is converging at a slow rate, the timestep is
also rejected.

Although feedback control theory provides sophisticated techniques to
choose the PID parameters, robustness is required when a general finite ele-
ment method is used for a wide range of different simulations. We perform
parametric studies of the PID controller for values similar to those used by
Gustaffson et al. [11] and also by Coutinho and Alves [4]. Subsequent nu-
merical experiments demonstrate that the PID controller is very robust for
the reaction-diffusion applications studied here.

In the next section we use the ideas developed here to solve a simple
chemically reacting system through automatic feedback control applied to
boundary conditions. We discuss the algorithm implementation and later
the limitations of PID controllers to solve more complex boundary control
problems.



Algorithm:

Initial Data:
K ,K ,K , tol
P D

(at) ., (At) , (At).
min max

init
Y .
Reject Atp:
—| n=23,.. |~— tol
= , (At)
Bt g max(eAtn( )mln)
n
YES
Y
®n
Calculate new solution = €y > tol
NO
Update solution ~< Cdculate At A1

Figure 3.3: The flow chart of the PID control algorithm.



3.3 Boundary Control

Consider the steady state solution for coupled chemical reaction with heat
transfer. The control problem is to find the value of the temperature or
concentration on portions of the boundary that keeps the temperature or
concentration at a specified point of the domain as close as possible of a target
value. The control variable is the step in the boundary condition, dbc,,, and
the quantity to be controlled is the difference between the temperature or
concentration at x and some target value. Using the same notation as before,
we have

Sm = by, (3.9)

On = € — Carg (3.10)
where S,, is the control variable, 6,, is the deviation, X is a fixed point in the
domain, ¢, is the approximate steady state temperature or concentration at
x calculate at iteration m, and ¢4 is the target value.

To design our boundary control algorithm, we use again the standard
discrete PID controller (3.3),

— (St = Sm) = k1 O + kp (B — O 1) + kp (O — 2001 + Op_2).

Substituting the definitions (3.9) and(3.10) into the above equation, we have

Sbcpr = 6bey, — ki(cy, — Crarg) — kp(c), — Chyq) —
kp(cr — 265,y + ) (3.11)
bCri1 = bey + 0bcy, 1 (3.12)

where bc,, is the value of the temperature or concentration on portions of the
boundary, and k;, kp and kp are the integral, proportional and derivative
parameters. The boundary control process is summarized in the following
algorithm:

1. Compute u and v according to (2.20).

2. Set m = 0 and idg,, = 0.

w

. Assign values to 0bcy,, bey,, ki, kp, kp, €, Mpmaz, Carg, and X.

4. While (idszo, = 0) and (m < myya,)



Compute the steady state temperature and concentration accord-
ing to (2.27).

Set ¢y, equal to the temperature or concentration at point x.

m—Ctarg||

Compute the error = e , and set idg,, = 0 if error < €

letargll
Compute 0b¢,11 and bey, g according to (3.11) and (3.12) | re-
spectively.

Impose the new boundary condition

m=m + 1

In the boundary control process, we start the calculations of the new bound-
ary condition using the control (3.11) when m = 3. In the first two iterations
we increment the boundary condition using a given constant value.



Chapter 4

Numerical Results

4.1 Validation Problems

The first example is a particular test problem introduced by Johnson and
Pitkaranta [15] for the Stokes flow (2.1)-(2.4), and also studied by Song et
al. [19] and Carey and Krishnan [2]. The analytic solution for this problem
is defined by the velocity vector field

u(w,y) = (1= 2)*(2y — 6y” + 4y°) (4.1)
v(z,y) = y*(1—y)*(—2x + 62> — 427) '
and the pressure field
pl,y) =2° -y’ (4.2)

on the unit square Q = (0,1) x (0,1). This velocity field is divergent free
and satisfies the no-slip condition on 2. Substituting (4.1) and (4.2) in the
Stokes equation (2.1), we find that the body force f = (fi, f2) is equal to

filz,y) = 22— 0.01[(2 — 122 + 122%)(2y — 6> + 4y*) +
(2% — 22° + %) (=12 + 24y)]
folz,y) = —2y —0.04](—x + 32" — 22°)(1 — 6y + 6y°) +
(3 = 62)(1 — y)*y*)].
The viscosity is chosen as 0.01 units, and we take a constant penalty
parameter of ¢ = 10~%. The maximum nodal velocity is approximately 1.2 x

10~ 2 units, which corresponds to a Reynolds number of 1.2. The approximate
solution is computed for a sequence of uniform meshes with mesh size h =

20



1111 L and all the approximations are shown for the first timestep

1075, The initial condition is taken as the exact solution at the initial time
t = 0. Our objective is to examine the rates of convergence for this test
problem, and to compare with the theoretical estimates.

Table 4.1 shows the error in the approximate velocity in the L2?-norm
(]l |lo) and H'-norm (|| - [|) for the refined meshes in Case 1 (bilinears). The
error in the approximate velocity is plotted against mesh size h on a log-log
scale in Figure 4.1. The respective approximate slopes of 1.9026 and 0.9797
indicate global rates of convergence. The theoretical rates of convergence in
Case 1 in the || - ||op and || - ||; norms are equal to 2 and 1, respectively.

Mesh Size L?-norm H'-norm

h=1/2 7746371089279643FE — 02 || .5754132802187018E — 01
h=1/4 .2463945413680297E — 02 || .3099889670988598 K — 01
h=1/8 .6504252528721037E — 03 || .1551477584896485E — 01
h =1/16 | .1641288155366836F — 03 || .7734175790649037E — 02
h = 1/32 4107556219923611F — 04 || .3861947127641377FE — 02

Table 4.1: The L?norm and H'-norm of error in the velocity solution for
bilinear elements.

The error in the velocity in the norms || ||p and ||-||; in Case 2 (biquadrat-
ics) is shown in Table 4.2. Figure 4.2 shows the error in the approximate ve-
locity plotted against mesh size h on a log-log scale. The slopes of the curves
yield rates of convergence for the velocity 2.9628 and 2.0154 in the || - ||y and
|| - || norms , respectively. Hence we find that the velocity approximations
in both cases converge towards the exact solution at optimal rates.

The second numerical experiment is a validation study for the transport
equation (2.5)-(2.8). A test problem is constructed to have in the unit square
domain and £ > 0 analytic solution

c=10*(t +1)’z(z — Dy(y — 1) (4.3)

for concentration. The velocity field is the same used in the first exam-
ple (4.1). We assume ki3 = koo = 1, k12 = ko; = 0, and the reaction term is
taken to be

g(z,y) = =+ f, (4.4)
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Mesh Size L?-norm H'-norm

h=1/2 .1021730098325111F — 02 || .1866760928638470E — 01
h=1/4 .1404786196967832E — 03 || .4521962356252536FE — 02
h=1/8 1786013086271515E — 04 || .1117877402750865E — 02
h =1/16 | .2242721112992155F — 05 | .2786660995213754F — 03
h =1/32 | .2806896476081326F — 06 | .6961697872977085F — 04

Table 4.2: The L?-norm and H'-norm of error in the velocity solution for
biquadratic elements.

where the function f is given by

oc oc oc 0%c 0%*c
FUu— +v— — kyy— — kyg—— + .

/= ot ox dy Ox? oy?

The initial solution is defined as the exact solution at the initial time ¢ = 0.
We specify essential boundary conditions, ¢(t, z,y) = 0 from (4.3) evaluated
on the boundary of the unit square domain €2. Of particular interest here is
to examine the rates of convergence of the concentration for this test problem
and compare them with the theoretical estimates.

The transport equation is solved using the bilinear, biquadratic and six-
node triangular elements described earlier for a sequence of uniform meshes
with mesh size h = %, i, é, %, and % In the case of bilinear elements, we also
compute the solution at h = é. For the convergence study with respect to
h we keep a constant small timestep of At = 107%. All the approximations
are shown for the first time step t = 1079,

The L?-norm of the error in the concentration solution for bilinear and
six-node triangular elements is shown in Table 4.3. The L?-norm and H'-
norm of the error for the concentration using bilinear elements are plotted
against mesh size in Figure 4.3 on a log-log scale. The respective slopes
1.9708 and 1.0202 indicate the global rates of convergence, and are in good
agreement with the theoretical predictions 2 and 1, respectively.

For biquadratic elements we obtain relative errors in the L?-norm of order
less than 10! for any number of elements. This means that within roundoff
error we obtain the exact solution as expected.

Optimal global rates of convergence are also obtained for six-node triangu-
lar elements in both norms as shown in Figure 4.4. (The rates of convergence



Mesh Size | 4-node bilinear || 6-node triangular
h=1/2 12873418E + 01 || 30613016 E + 00
h=1/4 35371359E 4 00 || .43871262E — 01
h=1/8 90379169E — 01 || .56366812E — 02
h=1/16 || .22716094E — 01 || .70867673F — 03
h =1/32 || .56865901E — 02 || .88027906F — 04

Table 4.3: The L?-norm of the error in concentration for 4-node bilinear and
6-node triangular elements.

slope = 1.9708

- log ||error]|
=

T slope = 1.0202
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Figure 4.3: Rates of convergence for the concentration approximation in the

L?-norm and H'-norm with bilinear functions

for the concentration approximation in the L?-norm and H'-norm for this
example are 2.9480 and 1.9699, respectively.)

We also examined the order of convergence of the solution with respect
to the time step At. In view of the above convergence results we select for
this study biquadratic basis functions and a mesh with 2x2 elements. The
approximate solutions are compared at the time ¢ = 0.1 for values of At
equal to 10792,1079%,10°% in Table 4.4. The error in the L2-norm is plotted
against At on a log-log scale in Figure 4.5. We know that the theoretical
truncation error for the Crank-Nicolson scheme is O(At#?), and we see an
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Figure 4.4: Rates of convergence for the concentration approximation in the
L?-norm and H'-norm with six-node triangular elements

approximate slope of 2.0397.

Time Step Size || L?-norm of the error
At =10 16462243 E — 01
At =109 .13438152F — 03
At =10"% A3711075F — 05

Table 4.4: The L?-norm of error in the concentration solution for a mesh
with 2x2 biquadratic elements.

Our main objective now is to assess the accuracy of the solutions when the
time step control strategies studied previously are applied to the validation
problem. In particular, we want to see if we can obtain approximate solutions
of the same accuracy as before but with a small number of time steps. We
also want to verify that the PID controller is robust.

To compare the PID timestep control and the strategy developed by
Winget and Hughes [21] we again use a grid with 2 biquadratic elements
as in the previous study for convergence of the Crank-Nicolson method. The
initial time step size is 1074, and we allow a minimum and a maximum time
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Figure 4.5: Rates of convergence for the concentration approximation in the
L?-norm using Crank-Nicolson method with 2 x 2 biquadratic elements

step sizes of 107 and 1079, respectively. Changes in nodal temperature
and concentration are calculate with an input tolerance of 107%, and the
calculations stop when the time is greater than 0.1.

We perform parametric studies of the PID controller for values similar
to those used by Gustaffson et al. [11] and also by Coutinho and Alves [4].
We choose values of k, ranging from 0.03 to 0.20, £; from 0.03 to 0.40, and
kp from 0.003 to 0.02. Table 4.5 shows the L?-norm of the error in the
concentration solution, the number of time iterations, ntstep, the number
of steps rejected, nrejec, for different values of the PID parameters, and
the number total of Newton iterations, newt, and the computational effort,
Ceffort-

We can see from Table 4.5 that the error in the approximate solution
at the final time is of order 107 for all cases studies. Moreover, with the
PID control strategy we find approximate solutions with a much smaller
number of time steps without any significant loss of accuracy. Observe that
we need 100 time steps to obtain a solution with the same accuracy when
the minimum fixed time step is used (Table 4.5).

The PID controller is very robust as we also can see from Table 4.5.
Although feedback control theory provides techniques to choose the PID



case H ky, kr, kp

error

H nistep H nrejec H newt H Ceffort ‘

1 0.05 0.05 0.005 :37023368E-05 | 66 0 132 || 0.66
2 0.1 0.3 0.015 :38800581E-05 || 62 0 124 | 0.62
3 0.075 0.175 0.01 | .38512072E-05 || 62 0 124 | 0.62
4 0.1 0.16 0.011 :38680409E-05 || 63 0 126 | 0.63
5 0.06 0.13 0.008 38456781E-05 || 63 0 126 | 0.63
6 0.08 0.216 0.0116 | .38684855E-05 || 62 0 124 | 0.62
7 0.15 0.32 0.017 38897674E-05 || 62 1 126 | 0.63
8 0.2 0.4 0.02 38806720E-05 || 62 2 128 | 0.64
9 0.04 0.04 0.004 36271440E-05 || 67 0 134 | 0.67
10 | 0.03 0.03 0.003 :35057604E-05 || 69 0 138 | 0.69
11 | 0.0 0.175 0.0 :38528566E-05 || 62 0 124 | 0.62
12 | 0.0750.175 0.0 38512100E-05 || 62 0 124 | 0.62
13 | No control 13711077E-05 || 100 0 200 1

14 | Winget & Hughes | .32976399E-05 | 66 0 132 | 0.66

Table 4.5: Results for the PID controller using bilinear elements on a 2x2
grid.

parameters, robustness is required when a general finite element method is
used for a wide range of different simulations. The variation in the number
of time iterations is very small if we keep k, in the range 0.05 to 0.10, k;
from 0.05 to 0.30, and kp from 0.005 to 0.015.

Cases 3, 11, and 12 are plotted in Figures 4.6, 4.7 and 4.8, respectively.
We also show results using the step size selection strategy developed by
Winget and Hughes in Figure 4.9. This approach took 66 time steps with no
rejected steps.

4.2 Isothermal Reaction on a Catalyst Slab

In this section we study an example of diffusion with homogeneous chemical
reaction. Our objective is to validate our code with respect to the combined
diffusion-reaction process. We discuss isothermal reaction inside a porous
catalyst and compare our results with the studies performed by Finlayson [6]
and Petersen [18].

When a catalyst particle made from a porous material impregnated with a
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Figure 4.6: Time step variation for case 3 on a 2x2 grid using PID controller.
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Figure 4.7: Time step variation for case 11 on a 2x2 grid using Integral
Feedback controller.
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Figure 4.8: Time step variation for case 12 on a 2x2 grid using PI Feedback
controller.
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Figure 4.9: Time step variation on a 2x2 grid using Winget and Hughes
approach.



catalytic substance is submerged in a gas stream, the reactant A diffuses into
the particle, react on the catalytic surface, and the product B diffuses out,
A — B. We assume that the process is isothermal, i.e., the heat generated by
the reaction can be neglected, and homogeneous, the chemical change takes
places in the entire volume of the fluid. We also assume that the reaction
mechanism is known.

Consider a catalyst section exposed to reactant A with concentration ¢ at
the surface. The rate of disappearance of reactant A is given by the following
second-order, irreversible reaction

R = —Fkc?

where ¢ is the concentration of reactant A in the neighborhood of the surface,
and k is a rate constant. The equations of the problem can be obtained ap-
plying the shell mass-balance method and Fick’s first law to describe diffusion
inside of a porous catalyst [1]. The equation of the problem is

oc
6_; —~DV? = —kc (4.5)
with boundary conditions
oc
—k% = 0 on 0N — 0} (4.6)
¢ = ¢ on 0% (4.7)
and initial condition
C(.’E, Y, O) = éo(l‘, y) in (48)

where D is the effective diffusivity measured experimentally, 2 = [0, L] x[0, L]
is the section, and 0€; is the right side of the domain.

The problem is scaled as follows: x*;y* = x;y/L, t* = tD/L?, and ¢* =
¢/¢. Substituting these relations into (4.5), (4.6), (4.7) and (4.8), we obtain
the scaled form of the equations

oc*

o Vit = —¢ct? (4.9)
Jc*
o =0 on 90 — O (4.10)
¢t =1 on 0} (4.11)

(2%, y*,0) = co(z",y") in Q* (4.12)



where Q* = [0, 1] x [0, 1] is the dimensionless section, 02} is the right side of
the domain, and ¢ is the Thiele modulus defined as

¢ = \/keL?D.

For convenience, we drop the superscript * henceforth.

We are interested on steady state solutions of the problem for different
values of the Thiele modulus ¢. We assume that the steady state occurs
when

I =" < 7 [l

where n denotes the timestep index, || - || denotes Euclidean norm, and 7, is
equal to 1077 in this example. Since we are simulating a 1-D problem, we
choose in all cases a mesh with 16 x 1 bilinear elements. We use the timestep
control to calculate all approximate steady state solutions.

The effectiveness factor n gives the ratio of the amount reacted with
diffusion to the amount that would be reacted if the concentration were ev-
erywhere the same, and equal to the value at the boundary. In this example,
the effectiveness factor can be defined by the equation

B fﬂl P’ dx

n= m (4.13)

Finlayson [6] calculates approximate solutions for the problem on the
interval [0,1] using the orthogonal collocation method. He shows that for one
interior collocation point the effectiveness factor can be expressed by

1 5 [-25+(6.25+ 104%)/2)?

_ 42 . 414
T=5%" 91 e (4.14)

The approximation is accurate for ¢ < 2, and for larger value of ¢ a higher
approximation is required to improve the results. The effectiveness factor
n is plotted versus the Thiele modulus ¢ in Figure 4.10 for the collocation
method and Galerkin method. We can see that the two curves coincide for
o <1.2.
For large values of ¢ Petersen [18] shows that an asymptotic solution is
available. In this case the general formula becomes
21
n= 35 (4.15)
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Figure 4.10: Effectiveness factor as a function of Thiele modulus for colloca-
tion method and Galerkin method.

Figure 4.11 shows the effectiveness factor n plotted against the Thiele mod-
ulus ¢ for values of ¢ > 3. Observe that accurate solutions are also obtained
for large values of ¢. Consequently, the Galerkin formulation gives adequate
approximations for all values of ¢. The steady state solutions for different
values of the Thiele modulus are shown in Figure 4.12.

4.3 Nonisothermal Reaction on a Catalyst Sec-
tion

The problem studied now involves chemical reaction on a catalyst section
with heat effects included. The process is highly nonlinear because of an ex-
ponential chemical reaction term arising from the temperature dependence
of the chemical reaction rate. To obtain convergence of the Newton Raphson
method used to solve the nonlinear system (2.26) resulting from the dis-
cretization in space of the transport equation by the finite element method,
we need to choose a very small timestep. To increase the robustness of our
time scheme, we use the timestep control studied before. We first consider an
nonisothermal steady state case, then a time-dependent nonisothermal case.
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Consider a first-order, irreversible reaction in a catalyst section {2 =
[~ L, L] x [~ L, L] with reaction rate given by

R = —acexp(—AE/RT),

where T is the absolute temperature, AFE is the activation energy, R is the
gas constant, and a is constant. The equations of the problem are

oT AFE
pcpa+pcpu-VT— EV’T = acexp(— AT) (4.16)
AFE
%+u Ve—DV?c = —acexp(— AT), (4.17)
with initial conditions
T(z,y,0) = hi(z,y
C(:anao) = hQ(x;y); (418)
and boundary conditions
oT dc
e = _— = Q
on on 0 on 9t
aT -
-D e _ ko(c —¢) on 09y,

an

where p is the density, ¢, is the specific heat, & is the thermal conductivity,
D is the diffusivity, h, is the heat transfer coefficient, k, is the mass transfer
coefficient, n is the unit outward normal, and 92 = 9€2; UdS), is the boundary
of the domain.

The equations can be S('aled as follows: z*;y* = x; yf, u*;v* = u; v%,
¢ ==, T = =, and t* = ~. Substituting these relations into (4 16), (4.17), (4.18)
and (4 19) We obtaln the dlmensmnless unsteady equations for the non-
isothermal problem

oT* 1 »*c* B 1
VT — — VT = 1 — — 4.2
G T VT = Y 2 PO =50)  (420)
* 1 2/* 1
0w Ve - Lt = 0 - ), (a21)

ot Mg M, T



with initial conditions

T (z,y,0) = hy(z,y)

(x,y,0) = hy(z,y), (4.22)
and boundary conditions
oT* oc*
= = Q*
e o 0 on 00
or* Nu, . .
_6(3* Sh

e () on 0

where My = pc,L?/kts, My = L?/Dts, Nu = h,2L/D is the Nusselt number,
Sh = ks2L/D is the Sherwood number, ¢ = /koL?/D is the Thiele modulus,
Q* =[0,1] x [0,1] is the dimensionless section, and 0Q* = 0QF U 02} is the
boundary of the domain. Here ky = aexp(—~). The dimensionless variables
~v and [ are defined as

_AE
v T,
ﬂ (*AHR)C()D

KTy ’

where —AHpg is the heat of reaction. For convenience, we drop the super-
script * henceforth.

First we solve the nonisothermal case in steady state under conditions
in which the Nusselt and Sherwood numbers are very large. The boundary
conditions are

or Oe

% = 8_77 = 0 on 691
T = 1.1 on 0f),
c = 1.0 on 0f),

where 0€)5 is the right side of the unit square 2, and 0€2; = 92 — 9€25. The
functions hy and hy in (4.22) defining the initial conditions are

hi(xz,y) = ho(x,y) = 1 + sin(nz)sin(ny).



The analytic solution for the Stokes problem is

r,y) = 1002%(1 — 2)*(2y — 6y* + 4y?)

(,9)
o(z,y) = 100y%(1 — y)?(—2z + 622 — 4a?) (4.24)

where the viscosity v = 0.01, and the pressure is p(z,y) = 100(2? — y?). We
calculate the approximate solution for the Stokes problem, substitute the
velocities into the transport equation, and solve for the concentration and
temperature of the problem. To find the velocity field we use biquadratic
basis functions in a 4 x 4 grid with 2 x 2 point integration of the penalty
term. Figure 4.13 shows the velocity for the Stokes problem.

Figure 4.13: Velocity for Stokes flow.

We calculate the steady state approximate solution for the Thiele modulus
o =08, 8 =06, v=20, M{ =176, My = 199, and a grid with 8 x 8
bilinear elements. We assume that the steady state occurs when the following
condition is satisfied

(T —T™) + (™ — e™)|
[T + emtt]

<T

where m denotes the timestep index and || - || denotes Euclidean norm. The
initial time step size is 107%, and the minimum and maximum time step sizes



allowed are 107% and 10, respectively. A tolerance of 10~ was supplied for
changes in nodal temperature and concentration, and 7 = 107, We need to
start with this small timestep to obtain convergence of the Newton sequence
in the transport equation.

We perform parametric studies of the PID controller for values around
those used by Gustaffson et al. [11] and also by Coutinho and Alves [4]. We
choose values of k, ranging from 0.03 to 0.20, k; from 0.03 to 0.40, and kp
from 0.003 to 0.02.

Table 4.6 shows for different values of the PID parameters the number of
time iterations, ntstep, the number of steps rejected, nrejec, the number of
Newton iterations, newt, and the computational effort, c.ffor+. We need about
800 Newton iterations to obtain the solution applying the PID control, in
contrast with 2998 Newton iterations (case 10) when a fixed timestep is used.
We have in this example a 3.75 times improvement in the computational effort
to compute the solution within the same accuracy.

case ky, kr, kp ntstep || nrejec | newt || Ceffort
1 0.075 0.175 0.01 240 7 800 0.27
2 0.1 0.3 0.015 232 11 792 0.26
3 0.05 0.05 0.005 282 1 897 0.30
4 0.1 0.16 0.011 242 7 807 0.27
5 0.06 0.13 0.008 247 6 819 0.27
6 0.08 0.216 0.0116 237 9 800 0.27
7 0.2 0.4 0.02 229 14 791 0.26
8 0.03 0.03 0.003 315 0 981 0.33
9 0.0 .175 0.0 241 8 807 0.27
10 No Control 1101 0 2998 1
11 || Winget & Hughes 264 8 876 0.29

Table 4.6: Results for the PID timestep controller and Winget & Hughes
approach

The PID control is robust since the number of Newton iterations does
not change too much for the different values of the PID parameters. We can
also observe that the number of rejected timesteps is relatively small. The
results for Winget and Hughes approach [21] are presented in case 11. The
PID controller find the steady state solution a little faster than Winget and



Hughes approach. Figure 4.14 and 4.15 show the timestep size against time
for case 1 and Winget and Hughes approach, respectively. We can observe
that the PID control produces a very smooth curve. The initial temperature
profile and the steady state solution are shown in Figure 4.16.

Next we solve the unsteady problem (4.20), (4.21), (4.22) and (4.23) with
M, = 176, M, = 199, Nu = 55.3, Sh = 66.5, v = 20, # = 0.6, and ¢
= 0.8. The velocity field is the same calculated in the steady state problem
(Figure 4.13). The approximate solutions are calculated using a grid with 8 x
8 bilinear elements. We first obtained the approximate solution for a constant
timestep size of At = 0.05. Figure 4.17 shows the transient temperature
distribution in a catalyst section at times t = 0, 1, 5, 10 and 20.

For a fixed time equal to 20, we compare approximate solutions using the
PID controller and Winget and Hughes approach. We start with a timestep
size of 0.05, and we allow minimum and maximum time steps of 0.05 and
5, respectively. The solutions are obtained with a tolerance of 10~ for the
changes in nodal temperature and concentration. The PID parameters are
k, = 0.075,k; = 0.175 and k4 = 0.01.

Table 4.7 shows the results for each case studied. We obtain the solu-
tion with 423 Newton iterations using the PID controller, and we need 1223
Newton iterations with a fixed timestep of 0.05. Thus, we have obtained
this solution 2.89 times faster. Here we also obtain the solution using the
PID controller a little faster than using Winget and Hughes approach. Fig-
ure 4.18 and 4.19 show the timestep size against time for the PID controller
and Winget and Hughes approach, respectively.

case ntstep || nrejec || nnewt || Ceffort
No Control 400 0 1223 1

PID Control 104 1 423 0.34
Winget&Hughes 112 1 433 0.35

Table 4.7: Results for the transient catalyst problem with timestep control
and Winget and Hughes approach.
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Figure 4.14: Timestep variation using the PID controller for case 1 (steady
state problem).
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Figure 4.15: Timestep variation using Winget and Hughes approach (steady
state problem).
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Figure 4.16: Initial temperature profile and steady state solution using bilin-
ear elements on a 8x8 grid (¢ = 0.8).
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Figure 4.18: Timestep variation using the PID controller (transient problem).
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Figure 4.19: Timestep variation using Winget and Hughes approach (tran-
sient problem).



4.4 Boundary Control Application

To test our boundary control, we solve the nonisothermal problem (4.20)
and (4.21) in steady state with initial condition

T(z,y,0) = (14 cos(n/2z))be
c(z,y,0) = 14 cos(n/2x)

and boundary conditions

oT oc

% = % = 0 on an
T = be on 0€2
c = 1.0 on 0

where 0€)y is the right side of the unit square €2, 92, = 02 — 0€), and bc
is the imposed temperature on the boundary 02 update at each step of the
boundary control. The constants of the problem are: ¢ = 0.2, § = 0.6, v =
20, and M; = My = 1.0. The velocity field is zero, u = v = 0. The target
solution is the approximate solution of the problem with bc = 1.0 on 0€)5,
i.e., T'=1.0 on 0€y. The target value, cq,g, is the target temperature at the
middle of the domain, ¢4,y = 1.5283911.

The PID constants of the boundary control are k, = 0.05, k; = 0.175, kg4
= 0.01, 6bc,, = 0.1, and we stop the process when € = 107%2. The steady
state solutions are calculated using the timestep control proposed here, and
a grid with 8 x 8 bilinear elements. First, we start the boundary control
process with be,, = 0.3 (Case 1) and, then with bc,, = 1.2 (Case 2).

Figure 4.20 and Figure 4.21 show the values of the temperature on 0€)
calculate by the boundary control at each iteration for Cases 1 and 2, respec-
tively. The final value of bc¢,, 1 obtained by the boundary control is 1.0063
with m = 13 in Case 1, and 1.0060 with m = 27 in Case 2. The approximate
steady state temperature and concentration in catalytic for y = 1.0 (Case 1)
with the correspondent target solution are shown in Figures 4.22 and 4.23,
respectively.

We observe that the control works correctly in both cases. However, the
controller do not produce a smooth sequence of boundary steps and oscillates
too much around the target solution. We can observe in both cases that the
boundary control produces excessive growth and reduction of the boundary
step after it gets closer to the target solution. We have not defined here
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Figure 4.20: The temperature on the boundary for each iteration of the
boundary control (Case 1).
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Figure 4.21: The temperature on the boundary for each iteration of the
boundary control (Case 2).
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Figure 4.23: The steady state concentration for y = 1.0 calculate using the
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boundary step limiters. Setting a maximum boundary step of 0.3 in Case 1,
we can reduce the number of steps of the boundary control from 14 to 6, see
Figure 4.24.
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Figure 4.24: The temperature on the boundary for each iteration of the
boundary control.



Chapter 5

Conclusions

We introduced an adaptive timestep selection scheme based on feedback con-
trol theory to increase the robustness of our finite element formulation of
coupled incompressible viscous flow and nonlinear transient heat and mass
transfer. Our finite element flow formulation is based on a penalty Galerkin
method and the nonlinear reactive transport application utilizes a Galerkin
approach. The algorithm employs an iteratively decoupled scheme in the
present work.

We solve a representative test problem for 2D coupled viscous flow and
reactive transport, and results are compare with fixed timestep, an adaptive
timestep scheme from the literature, and our PID control approach. We also
studied a highly nonlinear process involving chemical reaction on a catalyst
section with heat effects included.

With the PID control strategy we find approximate solutions with a much
smaller number of steps without any significant loss of accuracy. For instance,
we have a 3.75 times improvement in the computational effort to compute the
solution within the same accuracy in the nonisothermal reaction problem of
Section 4.3. Some promising results with PID control for timestep selection,
such as, smooth variation in timestep suggest that a robust algorithm is
possible.

We design a PID controller to solve a simple chemically reacting system
through automatic feedback control applied to the boundary conditions. No
attempt is made to design an optimal feedback control law. The PID bound-
ary control shows inefficient at present - others approaches like optimization
appear preferable.
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