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Chapter 1

Introduction

Natural convection of an incompressible fluid can be driven by buoyancy
forces due to temperature gradients and thermocapillary forces caused by
gradients in the surface tension. When a thin horizontal layer fluid between
two horizontal plates is heated from below, a temperature gradient is gener-
ated across the plates. At critical Rayleigh number, circular convection cells
set in - the heated fluid near the bottom begins to rise while the cooler fluid
near to the top descends. Buoyancy is a dominant component in driving
this type of flow termed Rayleigh-Benard problem [10, 9, 7]. If the plate is
removed from the upper surface, then the surface tension effects associate
with temperature gradients on the free surface become important [16, 6, 21].
Now both buoyancy and thermocapillary effects provide the dominant forces
driving the flow. These flows are termed Rayleigh-Benard-Marangoni prob-
lems.

Coupled viscous flow and heat transfer computations are of great interest
in studying pattern formation in hydrodynamical systems. Practical appli-
cations include, for example, pattern formation during solidification, welding
in manufacturing processes and growth phenomena to defect fracture and
crack propagation [19, 5, 16]. Rayleigh-Benard-Marangoni problems become
very popular as prototypes of complex behavior where nonlinear theories of
pattern formation may be tested. Recently, special attention has been paid
to the study and implementation of numerical and computational techniques
to develop effective algorithms capable of high resolution 3D viscous flows
involving heat transfer and surface tension effects. For example, domain de-
composition strategies and parallel gradient-type iterative solution schemes
have been developed and implemented with success for 3-D Rayleigh-Benard-



Marangoni flow calculations [2]. These techniques permit making fundamen-
tal phenomenological flow studies at the grid resolution necessary to represent
the fine scale surface-driven phenomena. Several adaptive timestepping se-
lection strategies have been also studied as a means to provide stable accurate
transient (and steady state) solutions more efficiently [18, 20].

Our main objective in the present work is to study and to implement
numerical and computational techniques capable of improving the computa-
tional efficiency of algorithms for solving 2D coupled viscous flow and heat
transfer computations. Our contribution will be in the direction of reducing
the total computational effort using an adaptive timestep selection algorithm
coordinated with control strategies for iterative solution of nonlinear equa-
tions in ODE solvers, and also partitioned analysis procedures for coupled
systems. The nonlinear systems are solved by an inexact Newton method
with iterative solutions of the linear systems at each step. We also want to
perform phenomenological flow studies for monitoring the behavior of the
fluid when time progress for different parameters of the Rayleigh-Benard-
Marangoni problem.

The equations describing 2D Rayleigh-Benard-Marangoni flows are the
coupled incompressible Navier Stokes and heat transfer equations. The
present algorithm employs a decoupled scheme, where the momentum and
continuity equations are solved first, in each timestep, lagging the tempera-
ture in the forcing term. Then, the heat transfer equation is solved with the
computed velocities as input. The finite element flow formulation is based
on a penalty Galerkin method to enforce the incompressibility constraint,
and the heat equation utilizes a Galerkin approach. Spatial discretization
of the Navier Stokes equations gives rise to a semi-discrete ODE system for
the velocities that are usually solved by an implicit method. An adaptive
timestep selection scheme is central to an efficient numerical integration of
the ODE equations. At each timestep, a system of nonlinear equations has to
be solved. It is common practice to use fixed-point iterations or Newton iter-
ations. Since the convergence rate of such methods depends on the timestep,
algorithms for an efficient solution should interact with the timestep selection
strategies. It is necessary to coordinate these strategies so that efficiency is
maintained. Gustafsson and Sdderlind, [12], developed convergence control
algorithms for handling the iterative solution of nonlinear equations in ODE
solvers coordinated with adaptive timestep selection strategies.

Iterations of Newton’s method requires the solution of linear systems, and
iterative methods are typically preferred to this. Since we do not need to ob-



tain exact solutions of these systems, the appropriate method is an inexact
Newton method [17, 14]. The accuracy required in solving the linear systems
varies as the nonlinear algorithm proceeds, and this accuracy requirement
uses nonlinear residual information. This scheme often strongly improves
computational time and in some cases can improve robustness. The use
of iterative solvers allows us to solve more practical applications related to
the Rayleigh-Benard-Marangoni problem. However, iterative solvers tend to
present a poor performance in penalty formulations basically due to the ill-
condition introduced by the penalty parameter. To overcome this difficulty
we are using them in the context of inexact Newton methods, where the
initial solution of the nonlinear system are usually obtained with few itera-
tions of the linear solver. The preconditioned Generalized Minimum Residual
(GMRES) method is a Krylov-subspace method design to solve nonsymmet-
ric linear systems [14]. Although there is no clear best Krylov subspace
method, preconditioned GMRES is a very attractive method for this class
of problem. The GMRES convergence is smooth and the overall algorithm
is very easy to implement. Potential bottlenecks are preconditioning com-
putations and matrix-vector products. Element-by-element preconditioners
and matrix-vector products will be used, saving memory and speeding our
computations.

The last consideration in this study is the use of partitioned analysis pro-
cedures for coupled systems. In the partitioned solution approach, the system
is broken down into partitions in accordance with the physical and computa-
tional characteristics. The solution is separately advanced in time over each
partition that, in our case, are the flow and heat calculations. Interaction
effects need to be accounted for periodical transmission and synchronization
of the coupled variables, velocities and temperature.

The outline of the treatment is as follows. In the next chapter we state the
equations of the 2D Rayleigh-Benard-Marangoni problem, the finite element
formulation, and solution approach. Next, we show validation test problems
for steady state solutions of the classic Rayleigh-Benard problem for different
values of the Rayleigh number. We also study problems involving the effect
of the thermocapillary force at the free surface for different values of the
Marangoni number. Last, we present the approach we are going to use in
the thesis.



Chapter 2

Results

2.1 Rayleigh-Benard-Marangoni flows

2.1.1 Formulation and Approximation

We consider the transient flow of viscous incompressible fluid as described by
the Navier-Stokes equations coupled to the heat transfer (energy) equation.
The effect of buoyancy is included as temperature dependent body force term
in the momentum equations by means of the Boussinesq approximation [11].
The applied temperature field induces a surface tension equivalent to the
application of a shear stress at the horizontal free surface. The velocity field
enters the convective term in the heat transfer equation.
The Navier Stokes equations for viscous flow of incompressible fluid may
be written as
Ju 1 )
E-l—u-Vu—uAu—i—;Vp = —0B(T—-Tyg inQ (2.1)
V-u =0 in Q2 (2.2)

where u is the velocity, p is the pressure, €2 is the flow domain, T is the
temperature, Ty is the reference temperature, v is the kinematic viscosity, p
is the density, 3 is the thermal coefficient, and g is the gravity vector. We
assume that there is no slip at the solid walls 0€);, i.e., u = u,, where u,,
is the specified wall boundary velocity. The Marangoni problem involves a
shear stress boundary in 0€2y. The surface stress, 74, tangent to the free



boundary is equal to the gradient in the surface tension o,

ou Oo oT

be = ,ua—y = % = UT% (23)

where op = g—; is determined empirically for a given fluid. We assume here
that o varies linearly with T, so o7 is a constant for a given fluid.
The temperature of the fluid is governed by the energy transport equation

for negligible viscous dissipation
or :
P57 +pcu- VT =V - (kVT)=0 inQ (2.4)

where u is the velocity, p is the density, ¢, is the specific heat, and £ is
the thermal conductivity. Temperature, flux or mixed thermal boundary

conditions may be applied.
w;vk, T+ = I where AT is a scaling factor, and p* = (%)ﬁ—j Substitut-

The equations are scaled as follows: z*;y* = x;y%, tr = u*;v* =

AT
ing these relations into (2.1), (2.2) and (2.4), we obtain the dimensionless

formulation of the equations

86_?+U'VU_AU+VP = —];—ZTg in 2 (2.5)
V-u =0 in Q (2.6)

oT 1 _, .
E-I-U-VT—EVT =0 in Q (2.7)

where we dropped the superscript * for simplicity. The non-dimensional
3
constants are: the Rayleigh number Ra = zmu% and the Prandtl number
Pr = £, where o = p% is the thermal diffusivity. The boundary condition
D

on the free surface (2.3) becomes

Ou _ Ma Ot (2.8)
dy  Pr Ox
where Ma = % is the Marangoni number. Equations (2.5), (2.6) and (2.7)
constitute a coupled system of equations to be solved for velocity, pressure
and temperature.

The present algorithm employs a decoupled scheme, where the Navier-
Stokes equations are solved first, in each timestep, lagging the temperature



in the forcing term. Then the temperature is calculated, with the velocities
as input. The finite element flow formulation is based on a penalty Galerkin
method to enforce the incompressibility constraint, and the heat equation
utilizes a Galerkin approach.

We now consider the following penalized variational formulation of the
Navier-Stokes equation [4]: for ¢ > 0, find u® € V satisfying the initial
condition with u® = u,, on 90€2; such that

ou‘ 1
/( Sy 4+ VuhVv + (u®-V)u®- v + —(V-u)(u®-v)
Ja© Ot 2

1 Ma
(V- u)(V - ikl viy o
+ 6(V u)(V-v))de + o, Pr VT -vds

= — | =Tg-vdx (2.9)

for all admissible v € V with v.= 0 on 0€2;. The pressure approximation
for the penalty formulation follows as
1
p-=—-Vu* (2.10)
€

€

where u‘ is the solution to the penalty problem. Observe that the term
5(V - u)(u - v) we have added to ensure coercivity reduces to zero when
V-u=0. As e — 0, u® will converge to the velocity u and p® will converge to
the pressure p. For a discussion of existence and uniqueness see, e.g., [4, 3].
Consider now approximation of the variational problem (2.9) using finite
elements. Let V* C V be the finite element approximation space for veloc-
ities. In the usual way, the flow domain € is discretized to a union € of
elements ()., e = 1,2,... E. Lagrange piecewise polynomials are used as global
basis functions ¢;, j = 1,2,... N, for the approximate subspace V". In this
study we use continuous piecewise bilinear and piecewise biquadratic basis
functions defined on a uniform discretization 2, of rectangular elements.
The direct approximation of the penalized variational problem (2.9) is to
find u, € V" satisfying the initial condition with u, = u,, on 9Q; such that

0 1
/Q ( uy -vy, + Vu,:Vv, + (uh . V)uh vy + i(v : uh)(uh : Vh)
h

ot
1 Ma
(V- . d “OVT v d
+ (Vo) (Veva)) do + o, Pr VL vads
R
= | Zrg-vyde forallv, € V" (2.11)
Q, Pr



with pressure approximation given by
1
pr = ——Vuy. (2.12)
€

Introducing the discretization of elements and the basis functions, the
velocities are

Ugp(x) = ;u;géj(x), (2.13)

where s is the velocity component index (s = 1,2 for 2D flow) and u® is the
nodal vector. Using w;, = (¢;,0) and (0, ¢;) at interior node i, we have the
following non-linear semidiscrete system of ordinary differential equations

*

_du
M
dt

- 1. _
+Au"+C(u")+ -Bu" =F (2.14)
€
where u* = (u', u?)’ and
Mol . [Ao0] . [B, By] o [F,
el Ao R e e e[

with

mij = /Q¢i¢j dx

h

a = [ (6)e(6)s + (60),(81),) da

Qp

Boy = [ (00):(6) do

Gus = [ (60)u(6), dr (2.15)
Gy = [ (904(0y)y da

U = = [ peresido— [ TES06 s

Ui = [ e dm./m%%%@ ds

C(u*) = -/Qh(Uh -Vu, - v, + %(V ~up)(uy, - vy)da.



The nonlinearity resides in the convective term C(u*), which is linearized
by successive approximations

C(u*) ~ C(u_,)u :/Q (1 - V)uy, - vadz (2.16)
3Ll

with initial iterates given by the solution at the previous step. Substitut-
ing (2.16) into (2.14), we obtain a sequence of linear problems for uj at

iterate k. Given uj, for £ = 1,2,..., solve
_ du* 1 B
M ;’“ +(A+C+-Bju,=F (2.17)
€
where
- CcC o
S tEd
with
Cij = Ug_1 - V¢j ¢; dx.
Qp

The semidiscrete system (2.17) is integrate implicitly using a Crank-
Nicolson scheme with timestep /\t,
— u, o Ws+tuy,  Fogg +Fn

Motk Tnk A L O 4B - 218
At +( + +e ) 2 2 ( )

where n denotes the time index. At each timestep we have to solve a sequence
of linear systems of the form

Pu; ,, =d (2.19)
where
P - M+ Arcy!B)
d = (M- SHA+CH B)u, + % (F"“; =
with

Cij = Upk—1- V¢j ¢; du.
Qp

The algorithm to find the approximate velocities u;, ;, n =0, 1, 2, ...,
can be described as follows:



e Given uj, At, €, kya
e Repeat forn =0,1, 2, ...
1. Vo < u;
2. k=1, err=€e+1
3. Repeat while (err > €) and (k < kpaz)
(a) Solve Pvy = d where

SIVAN . 1.
P = M+7(A+C+—B)
€
At
2

Fn+1 + Fn

=

At 1_
d = (M—T(A+C+ZB))ufl—|— )

with
Cij = / V-1 V¢j ¢ du.
Qp

(b) Calculate the err = HV’TM

[Vill
(€) Vi1 < Vg

(d) k=k+1
4. a4 < vy

* *
5. uy < uy, .,

If the penalty term in (2.14) is integrated exactly then the method will
not yield solutions uy that converge to u as € — 0. The velocity field u, — 0
as € — 0 and the constraint equation V - u = 0 dominates in this limit. The
discrete finite element solution is said to “lock” [see, e.g.,[22],[15],[13]]. To
obtain an approximate solution other than the “locking” solution, we use
reduced integration for evaluating the penalty integral. The penalty term is
approximately integrated using a Gauss quadrature rule of lower order than
that required for exact integration.

If we denote I(-) the reduced quadrature rule for the penalty integration,
the penalty term in (2.14) is given by

YBut =L [ (Y w) (Vw) d (2.20)
€ € Ja,
In the numerical studies we consider two special cases: continuous piecewise
bilinear basis of the 4-node bilinear quadrilateral for approximating the ve-
locities with one-point Gauss quadrature rule for the penalty term (2.20) and
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continuous piecewise biquadratic basis of the 9-node biquadratic quadrilat-
eral for approximating the velocities with (2 x 2) Gauss quadrature rule for
the penalty term (2.20). The solution of the linear system (2.19) is obtained
using a frontal solver.

To find approximate solutions for the transport problem corresponding
to (2.7), we use a traditional Galerkin finite element formulation. A week
variational statement may be obtained by integration by parts of the diffusion
term in a standard residual formulation, and then using the Gauss divergent
theorem. The variational problem reduces to solving for 7' satisfying the
initial conditions such that

/(a—Tw+u-VTw+iVT-W) dz =0 (2.21)
o Ot Pr
for all admissible test functions w € Hj.

Assuming that convective and diffusive effects are of same order, we may
construct a semidiscrete Galerkin finite element method introducing a spa-
tial discretization and an appropriate finite element space for the admissible
functions in (2.21). Let €, denote the finite element discretization of €2, and
H} C H, be the finite-dimensional subspace spanned by finite element basis
Yi, i = 1,2,... N. The finite element problem is to find T, € H," satisfying
the initial condition such that

o7, 1
/Q (—hwh+u-VThwh+—
h

ot Pr VTh . Vu)h) dr =0 (222)

for all w, € Hy". The finite element approximation for the temperature 7},
at any time t can be expressed as

i, 1) = 250 (2.23)

where the nodal solution values T; depend continuously on time. We have
in this studies continuous piecewise basis functions defined by the 4-node
bilinear quadrilateral, the 9-node biquadratic quadrilateral and the 6-node
biquadratic triangle.
Introducing (2.23) into (2.22) and setting w, = v;, i = 1,2,... N, we have
the resulting semi-discrete ODE system for the nodal vector T
dT

M~ +BuT+DT=0 (2.24)

11



where

mij = /Qh%/}z'%‘ dx
by = / - Vit do
Jay,

1
dij = ./Qh 5=V - Vi da

We integrate the ODE system implicitly using a Crank-Nicolson scheme
with timestep At. We have to solve at each timestep At a linear system of
the form

F(T"™) =0 (2.25)
where At
F(T") = (M + 7(B +D) T + G
with

G:—(M—%(BJFD))T"

and n denotes the timestep index. The solution of the linear system (2.25)
is obtained using a frontal solver.

2.1.2 Validation Studies

Our first example involves natural convection in a unit square with heated
lateral walls and adiabatic top and bottom walls. We consider two flows
with different Rayleigh number Ra to demonstrate the effect of the Rayleigh
numbers on the flow. The computed Nusselt number at the left wall, Nuy,
and the stream function at the midpoint, ¢,,;4, are compared to the results
from [8, 10, 9] to validate our code.

Consider the two-dimensional flow of a Boussinesq fluid of Prandtl num-
ber 0.71 in an square cavity described by 0 < z,y < 1. Both components of
the velocity are zero on all the boundaries, the boundaries at y = 0 and 1
are insulated, ?3_5 =0,andT =1latx=0and T =0 at z = 1. We calculate
the flow and thermal field for Rayleigh numbers of 10% and 10*. The Nus-
selt number expresses the ratio of convective heat transfer to diffusive heat
transfer in the vicinity of a wall (boundary layer). For this studied case, the
Nusselt number satisfies

1
Nuyg =/ qdy,
0

12



where ¢ is the heat flux.

The approximate velocity and temperature are calculated using biquadratic
elements and an uniform mesh with size h = % The results are shown in
Table (2.1), and the agreement for both Rayleigh numbers is good.

Benchmark | Our solution
Ra | Nug | Ymia | Nug | Vmid
10% | 1.117 | 1.174 | 1.118 | 1.174
10* | 2.238 | 5.071 | 2.258 | 5.047

Table 2.1: Comparison of specific results to benchmark case

The contours of the stream function and temperature at Ra = 10° and
Ra = 10" are shown in Figures (2.1) and (2.2). These figures provide the
essential feature of this type of flow, the fluid rising along the heated wall
and sinking along the cooled wall. The temperature difference is the ”en-
gine” driving the flow. The temperature is convected in a clockwise manner
from the pure conduction solution. The stream function contour shows the
concentric nature of the streamlines.

The second numerical experiment involves buoyancy forces due to temper-
ature gradients and thermocapillary forces caused by gradients in the surface
tension. The flow domain and boundary conditions are the same as the first
example except that the top is now a flat free surface. The Rayleigh number
is 10® and the problem is solved at different Marangoni numbers.

First, at M = -1, the effect of the surface tension is small and the stream-
lines are roughly circular, see Figure (2.3). The solution is similar in structure
to the classic buoyancy driven flow studied in the first example, Figure (2.1).
The effect of the thermocapillary force at the free surface is more pronounced
at M = -100, see Figure (2.4). The streamlines are concentrated near the
top boundary. At M = -1000, the flow is being strongly driven at the top
boundary as similar experiments presented in [21].

Now we consider the case where the surface tension is oppositely directed.
Figure (2.5) shows the stream function contours for M = 10 and M = 100.
The contours at M = 10 look similar to the solution at M = -1, Figure (2.3),
due to the small thermocapillary effect. At M = 100, the surface tension
effect is strong enough to reverse the flow on the top surface and two cells
are formed.

13
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Figure 2.1: Stream function contour (left) and temperature contour (right)
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Figure 2.3: Stream function contours, Ra = 10 and Ma = —1
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Figure 2.4: Stream function contours, Ra = 10*, Ma = —100 (left) and Ma

= -1000 (right)
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Figure 2.5: Stream function contours, Ra = 10%, Ma = 10 (left) and Ma =

100 (right)

16

0.5

0.5



Chapter 3

Approach

The approach we are going to use in the thesis can be summarized in the
following steps:

1.

Implementation of the PID control algorithm for timestep selection as
presented in [18] to solve coupled problems, like 2D Rayleigh-Benard-
Marangoni flows.

. Numerical experiments involving calculations of the kinetic energy for

monitoring the liquid phase behavior when time progresses for Rayleigh-
Benard problems [5, 7]. Then, expand the studies to include Marangoni
effects.

Utilization of the nondimensional kinetic energy to improve timestep
selection.

. Study and implementation of control techniques for the iterative solu-

tion of nonlinear equations in ODE solvers [12].

Implementation of an iterative solver, the preconditioned GMRES, to
find approximate solutions of the linear equations. At the moment, we
have the linear systems solved by frontal elimination.

Implementation of an inexact Newton method to replace the succes-
sive approximation iterations used to find approximate solutions of the
nonlinear systems.

17



7. Include partitioned analysis procedures for coupled systems to improve
the efficiency of the calculations on the 2D Rayleigh-Benard prob-
lems [1].

8. Numerical studies of a practical problem where all the techniques can
be applied and tested.

18
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