
FINITE ELEMENT SIMULATION AND CONTROL OFNONLINEAR FLOW AND REACTIVE TRANSPORTA.M.P. Valli � G.F. Carey y A.L.G.A. Coutinho zABSTRACTIn this work we develop a decoupled scheme and �nite element model for incompressibleviscous 
ow with control for multi species reactive transport and thermal processes. The �niteelement 
ow formulation is based on a penalty Galerkin method and the nonlinear reactivetransport application utilizes a Galerkin approach. One interesting aspect of the work is theintroduction of adaptive active control for the timestep algorithm and for the boundary condi-tions in the transport processes, e.g., we investigate the suitability of a PID control scheme (fortimestep control) and compare its e�ciency with another time-stepping strategy. Supportingnumerical studies are presented to demonstrate the approach.1 INTRODUCTIONSince the early 1970's there has been a rapid expansion of research and applications for �nite elementsimulations of 
uid 
ow and transport processes. The subject area has matured to a point wherethe method is now applied to a wide variety of 
ow problems ranging from viscous incompressiblenon-newtonian 
ows to chemically reacting compressible high speed aerodynamic 
ows. Similarly,there are diverse applications to heat and species transport and to complex 
uid 
ow and transportprocesses. For general treatments of these see, for instance, Carey and Oden [1]. There are nowseveral commercial analysis programs that are based on this methodology.With the evolution of the methodology and its extension to more complex classes of coupledproblems there has been an increasing need for improved algorithms and other enhancements suchas adaptive grid re�nement and coarsening. For example, several adaptive timestepping strategieshave been studied as a means to provide stable accurate transient (and steady state) solutions moree�ciently. This adaptive timestepping selection process is usually approached by means of localtruncation error analysis.In like fashion, the adaptive grid schemes use feedback from the computed solution on a givenintermediate grid to ascertain where the grid should be locally re�ned. We remark that both of theseprocesses (adaptive timestep selection and adaptive grid re�nement) can be viewed as examples offeedback control problems. This brings us to the main theme of the present work - the utilizationof feedback control algorithms in conjunction with �nite element analysis.Of course, control theory has been extensively developed, particularly in electrical engineeringand is also used widely in chemical engineering applications. Its potential in conjunction with ananalysis technique such as �nite elements is obvious, and yet there have been relatively few focussedstudies in this direction. We argue that this situation is about to change dramatically as analysissoftware continuous to evolve and become more \fully automated". The focus in our work is two-fold:(1) the use of a control approach for automatic timestep selection; (2) the treatment of chemicallyreacting systems through automatic feedback control applied to boundary conditions. Only the �rstcase will be consider in this short paper.�CFD Lab, The University of Texas at Austin, Austin, TX, USA, Phone: (512) 4714069, E-Mail:avalli@cfdlab.ae.utexas.eduyCFD Lab, Phone: (512) 4714207, E-Mail: carey@cfdlab.ae.utexas.eduzCivil Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Phone: (55)(21)5641165, E-Mail: alvaro@coc.ufrj.br



The outline of the treatment is as follows. In the next section we brie
y state the class ofcoupled 
ow and transport problems under investigation. The �nite element formulation and solutionapproach is also given. Then in section 3 we describe a simple PID control approach and indicate howit can be applied to timestep control. Following this, a representative test problem for 2D coupledviscous 
ow and reactive transport is stated and results compared for �xed timestep, an adaptivetimestep scheme in the literature and our PID control approach. Flow and species concentrationresults at the �nal time are also given.2 COUPLED VISCOUS FLOW AND TRANSPORTWe are investigating applications arising in analysis of coupled incompressible viscous 
ow and heator mass transfer. The present work will be restricted to steady viscous 
ow and coupled transientreaction-convection-di�usion processes. Accordingly, the 
ow is determined by approximate solutionof the stationary incompressible Navier Stokes equations���u+ u � ru+rp = f (1)r � u = 0 (2)where u is velocity, p is pressure, f is the applied body force, � > 0 is the kinematic viscosity.Boundary conditions complete the stationary 
ow problem in (1), (2).The transient transport equation is@c@t + u � rc�r � (krc) = g(c) (3)where c is the concentration vector of component species (including temperature), u is the velocitytensor and g(c) is the chemical reaction source/sink term. From (3) it is clear that the time rateof change (evolution) of the species component �elds depends on advection, di�usion and chemicalreaction, respectively. Boundary conditions for species concentration or 
ux and initial conditions forconcentrations complete the mathematical statement of the problem for (3). Of particular interestin the present work are time dependent boundary conditions to which control can be applied toachieve a desired behavior in the solution at a later time. For example, we may wish to adjust theboundary data so that the maximum concentration 
uctuates within a certain range.For simplicity and convenience we use a penalty method to enforce the incompressibility con-straint. Introducing a �nite element discretization and basis on 
h the variational boundary valueproblem reduces to solving for the velocity approximation uh 2 Hh satisfyingZ
h �ruh:rvh dx+ Z
h uh � ruh �vh dx� 1� I (r �uh)(r �vh) dx = Z
h f �vh dx; 8vh 2 H0h (4)where we have assumed essential boundary data for uh such that vh vanishes on the boundary, andI denotes reduced numerical integration. This leads to the nonlinear algebraic systemAu+ b(u) + 1�Cu = F (5)which is solved by Newton's method in the present study.Similarly, introducing a Galerkin �nite element scheme for transport component ciZ
h �@chi@t !h + uh � rchi !h + krchi � r!h� dx = Z
h gi(c)!h dx; 8!h 2 V0h (6)where again we have assumed essential data for convenience. The resulting semi-discrete ODEsystem for the nodal vector ci (component i) has the formMdcidt +B(u) ci +Dci = gi (7)



where gi depends on the unknown species solution. We integrate the ODE system implicitly usinga Crank-Nicolson scheme with timestep 4t. That is, at each timestep 4t we solve systems of theform Pcn+1 = d (8)where n denotes the timestep index. The timestep may be chosen adaptively and in the next sectionwe describe one possible strategy that utilizes a PID control scheme based on the approach inCoutinho and Alves [2].3 ADAPTIVE CONTROLOne of the most widely used algorithms for closed-loop control is the three-term control, known asthe Proportional-Integral-Di�erential (PID) control loop. The popularity of PID controllers can beattributed to their functional simplicity and to their robust performance in a large range of operatingconditions. The objective in using PID control algorithms is to control the output along a smoothcurve (vs. time) towards the set-point while minimizing overshoot, the amount the system outputresponse proceeds beyond the desire response.Stepsize selection algorithms in most integration methods are based on control of the maximumchange in the key variables (pressure, saturation/concentration, etc.). According to Hairer andWanner [4], stepsize selection can be viewed as an automatic control problem with a PID controllerde�ned as 4tn+1 = (en�1en )kP ( tolen )kI ( en�12enen�2 )kD 4tn; (9)where tol is some input tolerance, en is the measure of the change of the quantities of interest intime step 4tn, and kP , kI and kD are the PID parameters.An estimate of the solution change is compared with the speci�ed accuracy requirement, and theresult is fed back to calculate the new time step. The controller tries to select the stepsize such thaten comes as close as possible to the input tolerance, tol, along a smooth curve. For time step n =2, 3, ::: we may proceed sequentially as follows:1. Given (4t)min, (4t)max, kp, kI , kD, and tol, and starting with en�2tol = en�1tol = 1:0, and 4tn+1= 4tn = some initial timestep value.2. calculate en.3. if en > tol reject the timestep:� tn+1 = tn - 4tn� 4tn+1 = max ( tolen4tn, 4tmin)� cn�1  cnelse� calculate 4tn+1 using (9)� 4tn+1 = max (4tn+1, 4tmin)� 4tn+1 = min (4tn+1, 4tmax)4. en�2 = en�1, en�1 = en.In the present work the measure of the relative change en of the concentration over a timestepis evaluate by computing kcn+1�cnkkcn+1k , where cn is the approximate concentration at time tn, andk � k denotes the Euclidean norm. We supply timestep limiters, (4t)min and (4t)max, to prevent anexcessive growth or reduction of the time step (\anti windup e�ect").If a timestep gives an unacceptable value of en, the step is rejected. Then the step is repeated witha scaled timestep size based on the magnitude of the error relative to the tolerance. However, we �nd



in numerical experiments that the number of rejections is very small, producing a smooth sequenceof timesteps. In our algorithm, if the sequence of iterates of the nonlinear system is converging at aslow rate, the timestep is also rejected.Although feedback control theory provides sophisticated techniques to choose the PID parame-ters, robustness is required when a general �nite element method is used for a wide range of di�erentsimulations. We perform parametric studies of the PID controller for values similar to those usedby Gusta�son et al. [5] and also by Coutinho and Alves [2]. Subsequent numerical experimentsdemonstrate that the PID controller is very robust for the reaction-di�usion application studiedhere.4 NUMERICAL RESULTSTo test the approach, we �rst construct a problem on the unit square domain and t > 0 havinganalytic solution c(x; y; t) = 102(t+ 1)2x(x � 1)y(y � 1)for the concentration. The velocity �eld for Stokes 
ow isu(x; y; t) = ((x2(1� x)2(2y � 6y2 + 4y3); y2(1� y)2(2x+ 6x2 � 4x3));We assume coe�cients of dispersion in the x and y directions have been normalised so that, k11 =k22 = 1, and k12 = k21 = 0. The reaction term is taken to be �c2 + f , where f is a function of(x; y; t). The initial condition is taken as the exact solution at the initial time t = 0, and we specifyessential boundary conditions, c(t; x; y) = 0, on the unit square domain. Since we are interested inthe time integration error control we select for this study biquadratic basis functions and a meshwith 2�2 elements. Therefore, the solution at any time t is exactly represented in the �nite elementbasis so that the approximation error is associated with time discretization.First we calculate the solution at t = 0:1 for a �xed time step �t = 10�04, and then we comparethis with the PID timestep control approach. We also include a comparison with another heuristicadaptive stepsize selection scheme by Winget and Hughes [6]. Table 1 shows the L2-norm of theerror in the concentration solution, the number of time iterations, ntstep, the number of rejectedsteps, nrejec, and the number of Newton iterations, newt, for di�erent values of the PID parameters.case kp, kI , kD error ntstep nrejec newt1 0.1 0.3 0.015 :39033754E � 05 62 0 1242 0.075 0.175 0.01 :38654828E � 05 62 0 1243 0.1 0.16 0.011 :38823761E � 05 63 0 1264 0.06 0.13 0.008 :38599892E � 05 63 0 1265 0.08 0.216 0.0116 :38827800E � 05 62 0 1246 0.15 0.32 0.017 :38890713E � 05 63 1 1287 No control :13885237E � 05 100 0 2008 Winget & Hughes :33119825E � 05 66 0 132Table 1: Results for the PID controller using bilinear elements on a 2�2 grid.With the PID control strategy we �nd the approximate solutions with a much smaller number ofsteps without any signi�cant loss of accuracy (Table 1). We also �nd that the PID controller is veryrobust. The timestep size is plotted against time for Cases 2 and 8 in Figures 1 and 2, respectively.We see in Figure 1 that the PID controller produce a smooth sequence of time steps. The approachof Winget and Hughes also shows good results for this particular example.The next problem is nonisothermal reaction on a catalyst section 
 = (0; 1)� (0; 1) de�ned by[3] �r2T = ��2c exp(
(1� 1T ))
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TimeFigure 1: Time step variation for case 2 on a 2�2 grid using PID controller.
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TimeFigure 2: Time step variation on a 2�2 grid using Winget and Hughes approach.�r2c = ��2c exp(
(1� 1T ));where T is the temperature, c is the concentration, � is the Thiele modulus, and � and 
 aredimensionless variables. We assume T = c = 1 on the right side of the unit square, and no 
ux onthe rest of the boundary. The initial conditions are taken as T = c = 1 + sin(�x)sin(�y).The approximate solution was calculated for � = 0:6, 
 = 20, � = 0:5, and a grid with 8 � 8bilinear elements. We �rst obtain the approximate solution for a �xed time step of 10�04. In the PIDcontrol we assume parameters kp = 0.075, kI = 0.175, and hD = 0.01, an initial timestep of 10�04,and a tolerance of 10�06 for changes in nodal temperature and concentration. We allow a minimumand a maximum time step of 10�04 and 10�03, respectively. Table 2 shows the performance resultsfor each case studied, and Figures 3 and 4 show plots of timestep size for PID controller and Wingetand Hughes approach, respectively.Since we have a much stronger nonlinearity in this problem than in the previous one, we canbetter observe the advantage of using timestepping control. In this problem the PID control alsoshows better results than the approach used by Winget and Hughes.REFERENCES[1] G.F. Carey and J.T. Oden. Finite Elements: Fluid Mechanics, volume 6. Prentice{Hall, Engle-wood Cli�s, NJ, 1986.



[2] A.L.G.A. Coutinho and J.L.D. Alves. Parallel �nite element simulation of miscible displacementsin porous media. SPE Journal, 4(1):487{500, 1996.[3] B.A. Finlayson. The Method of Weighted Residuals and Variational Principles, volume 87 ofMathematics in Science and Engineering. Academic Press, New York, NY, 1972.[4] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-Algebraic Problems. Springer{Verlag, 1993.[5] M. Lundh K. Gusta�son and G. S�oderlind. A pi stepsize control for the numerical solution forordinary di�erential equations. BIT, 28:270{287, 1988.[6] J.M. Winget and T.J.R. Hughes. Solution algorithms for nonlinear transient heat conductionanalysis employing element-by-element iterative strategies. Comp. Meth. Appl. Mech. and Eng.,52:711{815, 1985. case ntstep nrejec newtNo Control 936 0 2065PID Control 166 0 563Winget&Hughes 178 8 623Table 2: Results for the steady state catalyst problem using time control.
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Figure 3: The time step variation for the steady state catalyst problem using PID controller.
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Figure 4: The time step variation for the steady state catalyst problem using Winget&Hughesapproach.


